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0. ABSTRACT

A new series representation of the distribution of Hotelling's general-
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1, INTRODUCTION

Let S1 (m=xm) and 82 {(mxm) have independent Wishart distributions
with n, , N, degrees of freedom respectively and the same population co-
variance matrix I . S1 may be noncentral and we denote the noncentrality

matrix by £ . The generalized Tg statistic is then defined by [2]

- e -~ -1
T = TO/n2 & tr(S-IS2 } .

Since its introduction by Lawley [11] and later by Hotelling [9] [10] im
connection with wartime problems of multivariate quality control the dis-
tribution of this statistic has attracted a good deal of theoretical inter-
est amongst statisticians. A fundamental contribution was made by Constan-
tine [2], who found a zonal polynomial series representation of the distri-
bution of T . However, Constantine's series converge only for 0 < T <1,
In subsequent research, Davis [3] [4] has discovered a differential equation
satisfied by the density of T in the null case (8 = 0) which has facil-
itated the numerical computation of percentage points for special cases
(m=23, 4) , Pillai and Young [18] have also worked on the problem and
found further specialized results for the null distribution. When m = 2
Hotelling [10] derived a simple formula for the null distribution which can
be written as a Gaussian hypergeometric series which is everywhere conver-
gent in T [_21.1 This formula has been the source of conjectures by Con-

stantine [2], Pillai [17] and others concerning pof¢sible general forms of

1

There appears to be an error in the formula given by Constantine [ 2] and
later by Davis [ 3]. The correct formula has an additional factor of (1/2).
{15] provides a new derivation of this formula,



the density. However, until the present no progress has been made on the
analytic derivation of the exact density in the general case. The reader

is referred to the articles [16], [17] by Pillai for a detailed review.

The purpose of the present paper is to offer a fresh approach to the
problem of the distribution of T . The techniques used here involve a matrix
operator calculus which has been developed by the author in other work [13],
[14], [15] to solve certain problems of distribution theory primarily of in-
terest in econometrics. However, these methods offer a convenient solution
to the apparently long standing problem of a general solution to the distri-

" pution of T in both the null and the noncentral cases. It seems likely
that these methods will also provide a means by which related problems of
multivariate statisfical theory, such as the distribution of Pillai's trace,

may be resolved.

2. THE NULL DISTRIBUTION OF T

Since T is invariant under the transformations S, - 8_1/2512"1/2
and 52 - 2'1/2822—1/2 we set the common population covariance matrix
= = t z .
T =1 . Now let S1 XX' where the mx 7y matrix X 1is Nm,nI(M’ Imnl) .

We write T = tr{SISEI) = x'(In C)S;l)x where x = vec{X) and vec( )

1
denotes vectorization by columns. Conditional on 52 , T is distributed
as a quadratic form in normal variates. In the null case M =20,
=MM'/2 = 0 and we have the density

m, /2 -1 mml/Z-l(

1/2
(1) paf(t|s,) = r2 r(m./2){ T det (1®S.,) Fi-(1/2)I®S,, T
2 L 1 2 00 2

vhere



Fol- /2185, 7) = [an )etr(-(1/2)T(1®szzﬂﬁnﬂ')(@
1

and where O(mnl) is the orthogonal group of T, X mn, matrices, Ell = elei
vhere € is the first unit vector and (gﬂ) represents the normalized
Haar measure on O(mml)

The unconditional density of T therefore has the following form:

mn1/2-1

@ P = STy
2 172 T(mn,/2) T, (n,/2)

(n1+n2-m-1)/2
'J etr{-(l/Z)Sz}(det SZ) OFO(-(I/Z)I()SZ, T)dS2 .
Sz>0 .

We introduce an auxiliary matrix W of dimension mxm and use 3W in
what follows to denote the matrix differential operator 3/3W . With this

notation we may write in operator form:

{(3) OFO(-(le)IC)Sz, T) = etr{-(1/2)(IC)BW)HEllﬂ'}etr(SZW)|W=OQ§ﬂ

JO(mnl)

Jo(mnl)etr{-(1/2)(I@B?W)HEllﬁ'}(gﬁ)

OFO(—(I/Z)I()BW, T)etr(52W)

W=0

The evaluation at W = 0 may be performed outside the integral in view of
its uniform convergence; and DFO(-(I/Z)IC)aw, T) » may, be regarded as a linear
operator on a matrix space of complex analytic functions of W .

From (2) and (3) we deduce that



mn, /2-1
@ PUEM = sy
2 © T /2)T (n,/2)
: { (n1+n2-m—1)/2 _
-J OFO(-(1/2)I®BW., T)etr{-(l/Z)Sz(I-ZW)} \det 52) d52
Sz>0' W=0

The integral over 52 in (4) is absolutely and uniformly convergent for
all W satisfying Re(W) < el where ¢ 1is any positive quantity less than
1/2. We may therefore take both the operator and the evaluation at W = 0

outside the integration, yielding:

mn1/2-l
T I‘II£(111 +n2)/2)

| \~ (#5172
pdf(T) = ey OFO(-(l/z)chaw, T)det(I-ZW) vo
ml/z-l
) I‘m((nlmz)lz F (16 -(n1+n2}/2
= . -1®3Z, T)det(I-2)
T(m, /2T, (/2] 00 Jdet ( .
| nm1/2-1
) Tm( (n1+n2)/2 [ r{ - - (n;+n,)/2
= etry-T(I®3Z hh'}(dh]d t{I-2)
Tany/2)T, (ny/2) Jvl,mnl ( ) = Z=0
mn1/2-1
- I'm((n1+n2)/2)T J -(n1+n2)/2
= — det (I+TQ) (dh)
I‘(nm1/2)l‘m(n2/2) v,,m, —
where Vl m denotes the Stiefel manifold h'h = 1 where h is mn, % 1,
|

(dh) denotes the normalized Haar measure on this manifold and

|
(&) Q= }hn!
i=1

where the hi are the mx1 vectors taken from the partition of



p! = (hi, hé, ...,hﬂ ) into n, component vectors.

1
(7) is an extremely simple representation of the exact null distribution
- (n1+n2J /2
of T . Moreover, by expanding det(I+TQ) in its usual zonal

Polynomial series (valid of course for 0 < T < 1) and integrating, we
obtain the series discovered by Constantine [2] in 1966. The reader is re-
ferred to [15] for this derivation of Constantine's series. An alternative
and simpler demonstration proceeds from (6) and uses the easily established
identity:

n

K

1
: 2
(9) c(k)(lnl@)az) =} _(TT € (32} ;
© fll
2/x
and rule of differentiation:

(10) CK(HZ)det(_I-Z)-u = (i;-) CK((I-Z)-I)det(I-Z)-G .
X

Using (9) and (10) in (6) we obtain directly the Constantine formula:

(-]

T { (n,+n Z)T k N, +n n
oy o BAL 22007 (-T) 1 2) (L
W pdE(D) = 7T, (7, D) Lo ¥tm, 72, K( 2 )K(Z)KCK(Im)

which is convergent for 0 < T <1 .
An alternative formula for the density which is everywhere convergent

over T > (0 is obtained as follows. We note in.fact that



JV etx{-—T(‘I ®32)hh'}@_)

l,mn1

s
- 11:1(-2-, = —T(I®BZ))

m mm
= ,F (—-2—1—- - --é—; -—2;-; T(I@GZ))etr{-T(I@&Z)}

and
-(n14n2)/2 —(n1+n2)/2
etr(-T(I@EZ))det(I-Z) = etr(-anSZ)det(I-Z)
—(n1+n2)/2
= det[(1 +n1T)I-Z] '
-m(n1+n2)/2 -(n1+n2)/2

= (1+n1T)' det[I~Z/(1+n1T)]

Transforming Z -+ Z/(1 +n1T) = X we obtain
mn1/2-1
I‘m( (n 1+nz)'/ 2)’1‘

(12) pdf(T) = m(n1+n2)/2

T(may/2) Ty (n,/2) (L+ny T)

mn m, -(n;+n,}/2
I L U s VRO | 1"
1"*1(‘"2" 2 T m‘;f”@a"))“““‘x) X=0

mn1/2-1

T (n1+n2-m-1) /2

TR )E-J etr(-S) (det §)
I‘(mnl/Z)l"m(nz/Z) (1+n1T) 12 5>0

mnl—l 111111 T
.lFl 2’ 2‘; 1+n1T{I®S) ds



mn,/2-1 -m(n,+n,}/2
TV gmm P e (T/(1+n1T))k
(13) = T'(an,/2)T (n,/2) A k!
mnl-l
z ( 2 e J (n1+n2-m-1)/2 ®
o) ——t str(-8) (det S) - C ({I®S)dSs .
> /ﬁ) $>0 )
\Z/,
We write

(14) CK(InlC)S) = ] bCy(S)
8

where the summation is over all partitions © of k into <m parts. The

b; are constant coefficients in this expansion for which explicit formulae

are available in the case k = (k) , viz bgk) = (2%) /(%) (compare (9)
' 6 k
above).

Using (14) in (13)we find upon integration:

mn1/2-1
Fm((nlmz)/z)r
m(n1+n2)/2

(15) pdf(T) =
r(mnI/Z)rm(nz/Z)[1+an)

3 em P ) o) o) o

To show that (15) is everywhere convergent in T we note first from (12)

that thé density may also be written as:



m./2-1

I‘m( (n1+n2) /Z)T !

r(mn1/2)rm(n2/2)(1+n1T)

(16) pdf(T) =

m n1+n2)72

'JV Etr{(T/(1+n1T))(I€§aX)KK'}(QE)det(I_XS(n1+n2)/2

mnl—l,m:n1

X=0

where K'K = Imn -1 and (dK) denotes the normalized Haar measure on

1
V . Now
mnl—l,mn1
. ' -(n1+n2)/2
(173 etr{(T/(1+n1T))(1()3X)KK‘}(QE)det(I—X)
Jy : ‘ X=0
-msnl--l,mn1
. : -(n1+n2)/2
= etr{(T/(1+n1T))PaX}(g§)det(I-X)
‘me -1l,m . X=0
i e |
_ ' ~(n1+n2)/2
= J \ det[l -(T/(1+n1T})P] (dK)
v .
mny-1,0my
nl ] )
where P = Zi=1KiK{ and the Ki are the component m=<[mn1—1) matrices
in the partition K!' = [Ki 5 K5 Poees s Kﬁll .
We note that if h is an mn, x1 wvector chosen so that H'H = Imn

‘ 1
where H = [K I h] and that if h is partitioned as

h' = (h!, hY, ..., 0! ) into n, component m-vectors h, then
1 2 n, 1 i

n
1
(18) p= J KKl e=mI - ] hh!
= i=l
and

. _
(19) |C (P)] < myC (1) .



3t:follows that the series expansion

-(n;+n,}/2
(20) J det[I-(T/(l-i-an))P} 172 (dK}
nml-l,mn1
X
o (T/(1+n T)) (n +n )
- 1 12 I C_(P) (dK)
kéo ki Z 2 Jly kKo

mnl-l,nm1

is convergent for all T > 0 since, in view of (19}, it is majorized by

the series

w (an/(l+an)) n,+n,
kZO k! E 2 KCK(Im)

which is everywhere comvergent in T > 0 . Moreover, since the series (20)
is everywhere convergent ih T so is the series representation of the den-
sity given by (15).

Two useful integral formulae are implied by the above results, First

from (7) and (11) we have:

(21 I C dh) = ! C /ml
) v (D) == C D —§—k

1,mn, K
™
where Q.=-zi=1hih£ is mxm and h' = (hj, h}, ..., h} ) . Second from

1
{15} and (20} we have:
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lc,mnll) (mﬁ
(22) jv C (P)(dK) = {:Zb ( 7). 7). c (1)

mnl-l,mn1

where P is defined in (18) and the summation over «' 1is over all parti-

tions of k 1into f_mnl-l parts.

4. THE NONCENTRAL DISTRIBUTION OF T

since T = tr(XX's;!) we start with the joint demsity of (X, S,) :

| m(n1+n2)/2 mn, /2 -1 (n,-m-1)/2
2 m Pm(n2/2) etr{-(1/2)(X-M)(X-M)'}etr{-(l/Z)Sz}(det 52)
m(n1+n2)/2 mn1/2 -1
(23) = |2 T rm(n2/2) etr(-R)etr{-(1/2)XX* }etr(-XM")
(n,~-m-1)/2

sotr{-(1/2)S,}(det 5,) °

T 1is invariant uﬁder the simultaneous transformations X + HXK , 52 - HSZH'
where H € O(m) and K€ O(nl) . Hence, making these substitutions in (23)

and integrating over the (normalized) orthogonal groups we have:

m(n;+n,)/2 mn,/2 -1
(24) {2 w rm(nz/z) etr(-Qetr{-(1/2)XX'}
(EU i (nz-m-l)/z
*oF1 2, FXX', @ etr{-(l/Z)Sz}(det 85) .
g-1/2

Transform X - X =Y in (24) giving

2

m(n1+n2)/2 mn1/2 -1
2 rm(nZ/Z) etr(-ﬂ)etr{-(1/2)52YY'}

(n1+n2-m-1)/2

F(m)(“l, 58,0Y", Q)etr{-(l/ZJsz}(det Sp) |

‘o1 2 2
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We now write

y = vec(Y) = th/Z

where T = y'y = x'(I()S-l)x = tr(XX'S'l) and h€V . The measure
2 2 l,mnl

mn1/2-1
dT(dh) and we deduce:

changes according to dy = (1/2)T

-1 mn, /2-1

- m{n,+n,)/2+1 mn,/2 '
172 1 I'm(n2/2)] etr(-m)T *

pdf(T) = [2
' i -.' n f : (n,+n,-m-1)/2.
T Js >Oetr{-(%)(1+TAA')SZ}OF{“‘)(Tl; Is,mr, n)(det s,) 12 o5, (eh)

'
l,mcn1 2

[ m(nym,) /2 1 mn, /2-1 .
(25) =]2 P(mn1/2)rm(n2/2) etr(-02)T I J etr{-(i)(I+TAA')Sz}
' y v 5,0

l,mn1 2

n (n,+n,-m-1)/2
.Opgm)(-il—; 75, AT, Q)(det s,) -2 as,, (dh)

where A =1Th, ¢ ... & hn ] the mxn, matrix formed from the n, component
- L ] 1 N

m-vectors -in the partition of h' = (hi, ...,h;l) .

Performing the integration over S, >0 in (25) we obtain

' mn1/2-1
(26) pdf(T) = Tm((n1+n2)/2)/T(mn1/2)rm(n2/2) etr(-QT
n,+n, n -{n,+n,}/2
I IFF“)( -2, = (AR A, Q)det(I+TAA‘) 172 an)
\Y

l,mn1

Once again this is a very convenient general form for the density.
Constantine's [2] series for the noncentral case may be deduced quite simply

frqm (26). We use the easily established expansion:
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- Y
27 det(I-Z)“angm)(a, y+p; B, -Z(1-Z) l)-: z z (a)KLK(B)CK(Z)
k=0 k (y+p)Kk!CK(In9

where B >0, Hzlf <1, v>-1, p= (ml)/2 and LI( ) denotes Con-

stantine's generalized Laguerre polynomial of matrix argument. (27) was

given by Muirhead in [12] (exercise 7.20, p. 290) although his result is

in error in that his exponent'fbr det(I-Z) should read "-2" as given above.
Now let . Z = -TAA* fer 0<T<1, B=Q, a= (n1+n2)/2 , and

Y+p = nl/z . We find from (26) and (27) the series:

' _V mn1/2-1
pdf(T) = rm((n1+n2)/2)/r(mn1/2)rm(n2/2} etr(-2)T

(nlznz)KL:(Q)

o0 k
IR ) - @
k=0 & (nl)c 1y "V ¥
7z K( m sy

K

which is valid for 0 < T <1 . Using (21) we have imnediately

mn1/2-1
(28) pdf(T) = Tm((n1+n2)/2)/F(mn1/2)rm(n2/2) etr(-Q)T

© k .+
] E( = Z)KLI(Q) . ¥ = (-m-1)/2

= mn
k=0 k!( 21)
k

the series obtained by Comstantine in [2] for the noncentral case by a dif-
ferent method.

To obtain an everywhere convergent series representation of the density
of T we use the following generalized operator representation of the F

1'1
function in (26):
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n, +n n
mi{1 72 71 ; -1
(29) 1F£)( =%, — TAA'(L+TAAT) Y, 9)

- F(mo(n1+n

V]

N -1
, 3 AW(I+aW) T, @ etr(TAA'W)]w )

In (28) W is an mxm matrix of auxiliary variables, 3W denotes the
matrix operator 3/9W and the 1F1 function is an absolutely convergent
power series of zonal polynomials in the operator Ty = BW(I+3W)"1 . The:
zonal polynomial CK(cw) may be interpreted as a Fourier integral oper-
ator defined by:

Jm(m-1}/2;, (m+l K)

m 2 °
m(m+l) /2

(30) C (g, )£(W) =
kW (2=1)

.Jne(z) O{etr(CwZ)f(W)}(det z)~ (m+1)/2
>

-1
c (z7h)dz

provided the integral converges, In (30) f£(W) is a complex analytic func-
tion of W, T (t,k) is the coefficient defined by Constantine [1] and the
integration is taken over Z = X + iY with fixed X > 0 and Y ranging

over all real symmetric matrices, In the present case we have

2m(m'1)/2rm(%§l, K)etr(SW)
Cc(gyletr(SW) = (zﬁi)m(m+1)72

-J etr{S(1+8) 12} (det z)~ ™1)/2

c (z hHaz
Re(Z)>0 K

which converges for all S > 0,
The calculus underlying (30) has been explored by the author in other
work [14] in the context of possibly complex and fractional operators such

u - .
as (det W)™ , 1In particular, matrix operators such as (det BW)u are
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developed in [14] as a generalization of the scalar Weyl calculus.

Thé only other reference to matrix methods such as these that the

author has been able to find is Garding [7]. In {7] Garding works with
symmetric matrices W and a matrix generalization of the Riemann Liouville
integral definition of a fractional operator. Both here and in my other

work [13], [14] I have found that the Weyl definition of a fractiomal oper-
ator provides a basis for matrix generalizations which appears to be more
suited to problems of multivariate statistical theory. One of the reasons
for this is that Weyl operators applied to elementary fumnctions (such as

etr( ) and det( ) ) yield elementary functions, whereas Riemann Liouville
operators applied to the same elementary functions no longer in general yield
elementary functions. This gives the Weyl operator a significant advantagé
in the simplification of multivariate integrals., The fact that, in general,
Weyl operators require stricter convergence criteria because the domain of
integration is unbounded (whereas it is bounded for the Riemann Liouville
operator) has not been found to be a limitation in this work so far, In large
part this is due to the fact that the operators are applied to simple func-
tions of the type etr(SW) and the domain of definition of S usually as-
sures convergence. The reader is referred to {l14] for a detailed develop-
ment.

From (26) and (29} we obtain

mn1/2-1
6D pet(m) - rm((nlmz)/z)/xf(mlfzjrm(nz/za etr(-0)T
n.+n. n _ -(n,+n,)/2
Jopmif1 2 1., g etr(TAA'W)det(I+TAA') * 2 (dh) .
171 2 27 "W v T iw=0

l,mn1
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We select an mn1><mn1-1 matrix K such that HH =1 where
1
H=1Ih:K]. Partitioning X as K' = [Ki - K P K? ] where the
L » - L] 1
component matrices l(i are m><mn1-1 , we have
| n, n,
(32) Q=AA'= Jhh!=nI - JKK =nl -FP
i=1 i=]
(compare (18) above). Then
-(n,+n,)/2 -m(n,+n,)/2 , -(n1+n2)/2
(33) det(I+TAA') = (1+n1T) det(I-(T/(1+n1T))P)
-m(n1+n2)/2 -(n1+n2)/2
= (1+n1T) etr{(T/(1+n1T))PBV}det(I-V)
_ V=0

which, in view of (10) and (19), has a convergent series representation for

all T>0,

From (31), (32) and (33) we have

\,. mn1/2-1 -m(n1+n2)/2
(34) pdf(T) = Pm((n1+n2)/2j/P(mn1/2)Tm(n2/2) etr(-Q)T (1+n1T)

n.+n., n ~-(n,+n,}/2
. { R (——1-—2—-3-—21- cw,n)J etr(TQH) etr{(T/ (1+n,T) )p av} (&) det(I-v) © 2
0(mn,)

where 3V denotes the matrix operator 3/8V and V is an mxm matrix of

auxiliary variables. Now

(35) ° J et (TQW) etr{(T/(l-mlT-) )PBV} (dH)

O(mnl)

Jo(mnl)etr{T(Inlébw)HEllH'}etr{(T/(1+U1T))(IHIC)3V)H522HI}(9§)



16

where E = ele' with e

11 1

1 the first unit vector and 522 =1 - E .

mny 11

(35) may be expanded as an absolutely convergent power series in the form [5]

p K, A Kyh
(36) k,};;:O K,l;é&.lcw (TIn1®w,(T/(1+n1T))In1®BV)C(p (EH,Ezz)/klﬂ,!Cw(Iml) .

A {s an invariant polynomial in the elements of its

In this expression C;’
two argument matrices, Such polynomials were introduced by Davis [5], 6]
to extend the zonal polynomials. x , A and ¢ are partitions of k ,
5 and f = k+Z respectively into < mm; parts and the notation @ € k<)
which is defined in [5] relates the sets of partitions in the summation,

From (34), (35) and {36) we deduce the following general formula for

the density of T :

m

/2-1 —m(n1+n2)/2
(37) pdf(T) = Pm((n1+n2)/2)/P(mn1/2)rm(n2/2) etr{-)T

1 (1+n1T)

(m)(“l*“z ! ) p K A(
i ,F =5 Ty 8] ) T oM T ®W,(T/(1+n,T))I_ @3V
[1 A2 2T W e ek @OV P 1

KsA
Cw (E%},Ezz) /k!.?.!Ctp(Iml)det (I-V} .

V=0
W=0

-(n1+n2)/2]

This series is everywhere convergent in T > 0 and thereby extends the Con-
stantine series given in (28). Some further reduction of (37) may be possible
using expansions for invariant polynomials of temsor products of matrices
(such as I®W and I@®3V) into sums of .polynomials in the comppnent matrices
(W and 3V ); but since the formulae for the coefficients in these expan-
sions are generally unknown we prefer to leave (37) in its present form.

Note, however, that it is easy to deduce the null distribution (15) from
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(37) by setting 2 =0 and using (14) and the fact that

€y U 12/6, (g ) = ((““‘1'13/2)1/('”‘1/% :

4. AN ALTERNATE APPROACH TO CONSTANTINE'S SERIES

There is an interesting alternate approach to (28) which makes use of
the polymomials introduced by Hayakawa [8]. We note that the demsity (25)
remains invariant if we replace the matrix A in (25) by HlA for any

orthogonal H1 € O(m) . Moreover, (25) may be written in the form

mn,/2-1

m(n1+n2)/2 - 1
(38) 2 r(mmllz)rm(n2/2) etr(-Q)T

‘Iv I52>0 IO(m) Jo(nl)etr{-(1/2)Sz}etr{—(l/Z)A'HiSZHIA}‘

1,mn1

(ny,+n,~m-1}/2 ‘
1/2 1/2 172
.etr{'r 12y 51/ Mﬂz}@ﬂ@z) (det S,) ds, (dh) .

But from Theorem 7 of Hayakawa [8]

(39}

etr{-(T/z)A'HiszﬂlA-+T1/2A'Hls;/2MH2}(g§i)(ggz)

JO(HD j0(n1)

-1/2 -1
_: P (2 2, 2 TS,)C, (A'A)

E k:(g) € 1y )
K

k=0

where the polynomial Pz( s ) 1is given by {(see (34) of [8]):
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40) etr(-Q)PK[z-l/zM‘, 2711s,)

k
- (=1 1/2. . '
= mm1/2 Juetr(rZ iMJ)etr(~UU )CK((T/Z)USZU )dU

T

shere U 1is a real n1><m matrix .

Since CK(A'A) = CK(AA') = CK(Q) and (nl/Z)KCK(Im) = (m/Z)KC(Inl) it
follows from (38), (39) and (21) that

m(n +n,)/2 -1 m, /2-1
(41) paf(T) = |2 T(m,/2)7 (,/2) | etr(-e)T
(n1+n2-m-1)/2 ® T/2)k

-I etr{—(1/2)52}(det $,) Ip (274w, s )as, .
Sz>0

k=o <1 (M/2), ¢

Note that if we had been working with the conditional distribution pdf(T|52)
instead of the marginal density we would at this point in the argument have -
obtained Hayakawa's Theorem 10 in [8].

For 0 <T <1 it is readily verified that the series in (41) may be

integrated term by term. To perform the integration we note that

(n1+n2-m-1)/2

Z1/2,,,
(41 JS >Oetr{-(l/z)sz}(det 5,) P (27 %W, 8,)ds,
2

-(n;+n,)/2
= Fm((n1+n2)/2)PK(2_l/2M‘,aW)det({1/2)I-w) 172

W=0

-¥here W is a matrix of auxiliary variables, Moreover, using (40) we can

write (41) as
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(-1)krm((n1+n2)/g)etr(n)
mn1722-m(n1+n2)/2

(42) I etr (-2 2iMnetr(-Uu)
u

™

-(nl+n2)/2

-C_(U3WU')dU det (I-2W)
K W=0

-1/2

cthanging variables according to Z = 2{U'U) ‘W(U'U)"U2 the operator

1/2

changes as 282 = (U'l) QW(U'U)I/2 and (42) becomes

m(n,+n,)/2
(-2)k2 12 Tm(Fn1+n2)/2)etr(Q)

mn1/2
m

(43)

' 1/2 -(ny+n,)/2
. CK(BZ)I etr(-2 iMO)etr(-UU")Ydet (I-ZU'U) du
)

Z=0

We now write U = VR1/2 where R =U'W and V'V=1

m The measure changes

according to dU = Z'm(det R) dR(dV) and we find after integration
of V over Vm’nl in (43)
X m(nl+n2)/2
(-2)"2 etr(ﬂ)rm((n1+n2)/2)
(44)
Tp(ng/2)

-(n1+n2)/2 (nl-m-l)/2 n,
«[C (aZ)j etr(~R}det (I-ZR) (det R) F W -Rq jdR
K R>0 y/

01 -0

Summing over partitions k of k into <m parts as in (41) we have

-(n1+n2)/2

(45) J ¢ _(52)det (I-ZR) (tr 92)Fdett1-zR)
K

n.+n
- E( L 2) C (R} .
©

K

Z=0

-(n1+n2)/2
=0
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We also note that

(.nl"m"]-)jz

n
(46) jR>Oetr(rR){det R} CK(R)OFl(T%;—RQ)dR

n
= Pn(jé)etr(-Q)LI(ﬂD s, YT = (nl-m-l)/Z

using Constantine's definition of LI(Q) in [ 2].

Substitution of (43)-(46) in (41) now yields the Constantine series:

mn1/2-1
pdf(T) = Tm((n1+n2)/2)/r(mn1/2]Tm(nz/z} etr(~-@)T

4 k n,Mm
. (~T) 1 2) ¥ o
ké@ k! {mn, /2)k E\ 2 KLK(Q] s <T<1,

5. CONCLUSION

This paper provides a mathematical solution to the long standing prob-
lem of the distribution of Hotelling's trace, Tg . The formulae presented
here are primarily useful for analytic purposes in that they extend and unify
existing distributional results. Moreover, it is hoped that the method of
derivation will itself find application to a variety of other unsolved prob~-
lems in multivariate distribution theory. Some indication of the possible

range of application is given by the author's other work in [13], {14] and

[15].
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