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0. ABSTRACT

A new series representation of the distribution of Hotelling's general-
ized Tg statistic is obtained. Unlike earlier work, the series represent-
ation given here is everywhere convergent. Explicit formulae are given for
both the null and the noncentral distributions. FEarlier results by Constan-
tine [1], which are convergent on the interval [0,1), are also derived quite

simply from our formulae.
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1. INTRODUCTION

Let S1 (m X m) and S2 {m X m) have independent Wishart distribu-

tions with o, ., n, degrees of freedom, respectively, and the same
population covariance matrix = . S1 may be noncentral and we denote the
noncentrality matrix by 2 . The generalized Tg statistic [1] is then
defined by:

2 -1
T = Tg/n, = tr(5,S,")

Since its introduction by Lawley [12] and later by Hotelling [8, 9] in
connection with wartime problems of multivariate quality control, the
distribution of this statistic has attracted a good deal of theoretical
interest among statisticians. A fundamental contribution was made by
Constantine [1], who found a zonal polynomial series representation of the
distribution of T . However, Constantine’s series converge only for

0 =T<1. In subsequent research, Davis [2] discovered a linear homogene-
ous differential equation that is satisfied by the demsity of T in the
null case (1 = 0) . This approach has facilitated the numerical computa-
tion of percentage points of the null distribution; and in a series of
articles [3, 4, 5] Davis has provided tabulations of the upper 5% and 13
points of the distribution of T for dimensions m = 3 through 10. Pillai
and Young [19] and Pillai and Sudjana [20] have alsc worked on the problem
and found scme specialized results for the case where m =< 4 and ny is

small. Additional contributions have been made by Krishnaiah and Chang {10}



and Krishnaiah and Chattopadhyay [11]. Readers are referred to the articles
by Pillai [17, 18] for a detailed review of the field.

When m = 2 Hotelling [9] derived a very simple formula for the null
distribution of T . This formula may be written as a Gaussian hypergeomet-
ric series and is everywhere convergent in T [1].l Hotelling's formula
has been the source of conjectures by Constantine {1], Pillai [17] and
. others concerning possible general forms of the density. However, until the
present, no progress has been made on the analytic derivation of the exact
density in the general case even for the null distribution of T .

The purpose of the present paper is to offer a fresh approach to the
problem of the distribution of T . We shall give general formulae for the
exact density (pdf) of T in both the null and the noncentral case. Unlike
earlier work, the series representations that we obtain are everywhere
convergent in T . Our results, therefore, provide a solution to the long

standing problem of the distribution of T in the general case.

2. THE NULL DISTRIBUTION QF T

Since T 1is invariant under the transformations S. - 2—1/25 2_1/2

1 1
~1/2 ~1/2 - . .
and S2 =+ Z SZE we set the common population covariance matrix
Z=1. HNow let Sl = XX' where the m x n, matrix X 1is
N M, I } . We write T = tr(s S—l) = x"{I @ S_l)x where
m,n mn 172 n 2
1 1 1
% = vec{X) and wvec{ ) denotes vectorization by columns. Conditional on

There appears to be a minor error in the expression given by Constan-
tine [l] and later by Davis [2]. The correct formula has an additional
factor of (1/2). [15] provides a new derivation of this formula.



52 » T 1is distributed as a quadratic form in normal variates. In the null

case M =0, Q=~MM'/2 =0 and we have the density:

mnl/2~1 n1/2
T |5,
(1) PAE(TSy) = ——p ofo(-(1/2)(T ® 5,), T)

(2m) L P(mn1/2)

where
(2) Fo(—(1/2)(I8S,), T) = [ etr{—(1/2)T(I®S,)hh’}(dh)
0°0 2 v 2
mny
Here V 1is the Stiefel manifold (h ¢ R ' h'h =1} and (dh) repre-
sents the normalized invariant measure on V . Using (1) and (2) we deduce

the unconditional density of T as follows:

mn, /2-1
T 1
POE(D) = m{ny+n,)/2 3, >0 J.v
2 F(mnl/2)Fm(n2/2) 2
(nl+n2-m—l)/2
setr(~(1/2)8,(1+TQ)) |32| (dh)ds,
mn1/2—1
F ({(n.+ n,)/2)T -(n,+n,) /2
m 1 2 172
(3) f | 1+1Q| (dh)
P(mnl/Z)Pm(n2/2) v
where
m
{(4) Q = .E hihi
i=1
and hi (i =1, ..., nl) are the m-vectors taken from the partition of
h'! = (h!, hé, e, hn ) inte ni compomnent vectors.

1



Formula (3) is an extremely simple representation of the exact null
distribution of T . It may be used to derive in a straightforward way the
series discovered by Constantine {1] in 1966. We first give the following

useful integral:

LEMMA 2.1
(n,/2) C (1)
1 £ Kk m
(3) J C (Q){gh) =
v * (mn1/2)k

PROOF. We note that:

Ivck((lnl ® Z)hh')(dh) ~ Ck(Inl ® Z)/Ck(Imnl)

(n,/2),6,(2)

© T & Tn /D,

But the left side is also equal to:

f (cr((I @ Z)th'))X(dn) = j (tx(2Q))(dh)
v A"

C (2)
(7) -3z 5

=% | C _(Q)(dh)
] Cn(Im) v~
Equating coefficients of CK(Z) in (6) and (7) we obtain the stated

result. |:|

To obtain Constantine’'s [1] series from (3) we now simply expand

—(n1+n2)/2
}I+TQ| in its usual zonal polynomial series (which is valid for

0=T< 1) and integrate over V by using (5). This gives:



mn1/2—1
Fm((n1+n2)/2)T ©

k n.,+tn n
(-T) 17091 (g
(8) pdf(T) = Tlan /20T (a7 2% KT (mm, 72y, ZK[ 7 JE[E_]KCE(Im)

which is convergent for 0 =T <1 .

Formula (3) may alsoc be used to obtain an alternative series represen-
tation of the density which is everywhere convergent over T = 0 . Given
h ¢ V we introduce an moy X (mnl—l) matrix K for which H = [K,h] is

orthogonal. We partition K conformably with h as

K' = [K!, Ké, c e Ké ] where the component matrices Ky are
1 n,

m X (m,-1) . Define P =3 "K.K! . Since K.K! + h.h! = I

1 1 7"ii i’i ii m
(i=1, . nl) we deduce that:
(9) P = nllm -Q
and
(10) lc_(p)] = n'Cc (1)

K T 1k m

We now write

w(n1+n2)/2 —m(n1+ n,)/2 —(nl+n2)/2
| 1+1Q| = (1nyT) “ |I-(T/(1+n1T))P|
and thus:
mn1/2—l
Pm((nl+n2)/2)T
(11} pdf(T) = a(n +0,)/2

P(mnl/Z)Pm(nz/Q)(1+n1T)

- (T/(1+an))k nl-t-n2
‘T g T Z 3 i IVC”(?)(QE)



The series is everywhere convergent in T = 0 by majorization in view of

(10).
LEMMA 2.2,
L DS
(12) Ivcx(P)(Qh) " i T2 o, e/ [0, (1)
t

where the a, , are Constantine’s coefficients given in [1].

PROQF. We use the binomial expansion [1]:

k
C,(B) =0 C (I - (1/n))Q)
k ok t
= 0B (1) S e, 6 @/C (I))C (T)
and the result follows by integration from (5). |:l

We deduce the following explicit series representation of the density of T :

mn1/2—1
Fm((nl+n2)/2)T

(13 pdf(T) - ,
T'(mn, /2)T (n./2) (1+n T)m(nl+n2>/
1 m* 2 1

(T/(L+n. TS (n+n (1) Epkt
a L 5 |12 =k A S 5 (n,/2) ‘¢ (1
%=0 T |77 |, Pem0 D Zrok, s 0,/ £l

€ T

which, like (11), is everywhere convergent in T = 0 .



3. THE NONCENTRAL DISTRIBUTION OF T

Since T = tr(XX'S;l) we start with the joint density of (X, Sz)

-1

(nz—m—l}/2
T (n,/2) etr{—(l/2)(X—M)(X—M)’}etr{—(l/2)52}|S

m(nl+n2)/2 mnl/2
2 2|

m(nl+n2)/2 mn1/2

-1
(14) = {2 rm(nz/z)] etr(-0)etr(—(1/2)XX’ Jetr (-XM’)

(n
retr(=(1/2)5,1 (s, |

2~m—l)/2

T 1is Invariant under the simultaneous transformations X - HYJ ,

82 - HSZH' where H ¢ O{(m) and J ¢ O(nl)

tions in (14) and integrating over the (normalized) orthogonal groups we

Hence, making these substitu-

have:

m(n1+n2)/2 mnl/2 -1
(15) 2 I (n,/2)| etr(-@)etr{~(1/2)XK’)

(n.,,-m=1) /2

2

ol
(m)|71 1., _
oF1 [2 ;XX ﬁ]etr{ (1/2)52}|32|

1/2

We now transform X - S; X =Y in (13), giving:

m(n1+n2)/2 mn1/2 -1
2 Pm(n2/2) etr(—ﬂ)etr{~(l/2)52YY’}

(n1+n2~m—l)/2

. gl El. ls YY', 0letr({-(1/2)s8,1]s,]|
01 A 22

We write y = vec(Y) = th/Z where h ¢ V and then



T=vy'y =3x'(I @ Sgl)x - tr(XX'S;l) . The measure transforms according to
mn, /2-1

dy = (1/2)T 1 dT(dh) where (dh) represents the invariant measure on

V . We deduce that:

[ m(n.+n,)/2 mn, /2
pdf(T) = |2+ 2 1

-

n (n,4n,—m-1) /2
1 (m)["1 T 17
. J etr{Q[é](I+TQ)sz}1Fl [—5, 75,0, ﬂ]|32l ds, (dh)
Yvls,>0

-1 mnl/2~l
Pm(n2/2) etr(~-)T

m(nl+n2)/2 mn1/2

-1
mn1/2—l 1
(16) = |2 F(mnl/Z) etr (~0)T J J etr{-[i](I+TQ)52}
v 82>0

(n,+n,-m-1) /2
|1, T 12
‘of1 [‘5' 75,% “]Iszl ds,(dh)

where Q 1is given by (4).

Performing the integration over 82 >0 in (16) we obtain:

mn
Pm((nl+n2)/2)etr(—Q)T

T(wa /2T _(n,/2)

/271

(17)  pdf(T) =

()™ M -1 B ‘
°leFl [ 5= —5; T(I+TQ) Q, a||1+1q] (Sh)

which generalizes (3) to the noncentral case.
Constantine’s [1l] series for the noncentral case may be deduced quite

simply from (17). We use the easily established expansion:

o (a) LT(B)C (Z)
B —a (m) . _ _ --1 _ K K K
(18) |1-z]7%, ) [a, v+p; B, -Z(I 2)} kEO ey (r+p) k1€ (T3



where B > 0 , "Z" <1, ¥>-1, p= (ml)/2 and LZ( )} denotes
Constantine’s generalized Laguerre polynomial of matrix argument. (18) was
given by Muirhead in [13] (exercise 7.20, p. 290), although his result as

stated contains an error in that his exponent for |I-Z| should read "—a"

as given above.

Now let Z=-TQ for 0=T<1l, B=0, a= (n1+n2)/2 , and

v+p = nl/2 . We find from (17) and (18) the series:

mnl/2—l
pdf(T) = [Fm((nl+n2)/2)/P(mnl/2)Pm(n2/2)}etr(-Q)T

n1+n2

ki
@ (-—T)k [ 2 ]ELK.(Q)
oz £y [“1] -IVCK(Q)(@)
C (1)
K K m

k=0 ™
2

which is valid for 0 5T <1 . Using Lemma 2.1 we have immediately:

mn1/2—l
(19> pdf(T) = {Fm((nl+n2)/2)/F(mn1/2)Fm(n2/2)}etr(wﬂ)T
) k n,+n
{(=T) 12 ¥ _ e
.kfo [mnl] En[ 5 ]KL”(Q) , Y = (nl m—1) /2
klj—=x
12 )k

This is the series given by Constantine in [l] for the noncentral case when

0=T<1.

To obtain an everywhere convergent series we proceed as follows. Using

(9) we write TI+TQ = (l+n1T)I ~TP and (16) becomes:
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m(n;+n,)/2 -1 mn, /2-1
2 P(mnl/Z)Fm(n2/2) etr(—)T I I
s >0
2
n (n,+n,-m-1) /2
etr{~(l/2)(l+n1T)Sz]etr{(1/2)T52P]0F{m){El; 25,0, n]|sz| 12 as,, (ah)

This expression is invariant under the simultaneous transformations
(Q ~L'QL, P~ L'PL ) where L e O(m) . Thus, transforming 52 -+ LSZL'

and integrating over the normalized orthogonal group we obtain:

[Zm(n1+n2)/2 -l mn, /2-1

(20) pdf(T) = P(mnl/Z)Fm(n2/2) etr(—Q)T

(n1+n2—m—1)/2

. etr(—(1/2) (1+n,T)S,) ]S, |
[, gem-amamonte

- (1/2)%¢, (@) 9 e (5,005 (2,0)
P e D (T z G
Kk, 2=0 5, A FHAN(Dy/ )A A I8 genen 2

ds, (gh)

n,+n
1 72 _ mn, /2-1 k+f
Fm[ 5 etr(-Q0) T 1 o (T/(1+n1T))

F(wn, /DT (5,72) o T)m(nl+n2)/2 X §=0 K721
1

(21)

G, (D) [n +n ]
A K, A1 2 K,A
LI E 9 ’ A c ’ (P:Q) (—dh)
< ) (nl/E)ACA(Im) Bered 04 2 PRL o}

H

K,A
CQ

its two matrix arguments. These polynomials and the constants

In the above formula is an invariant polynomial in the elements of

£,h _ LKLA - rig T
3 CQ (Im, Im)/cﬁ(lm) were introduced by Davis [6, 7]. 1In (20} and

(21) @ 1is a partition of the integer f = k+! intc < m parts « is a

g

partition of k into =m parts and X 1is a partition of £ into = m



parts. The notation @& ¢ k+X , which is defined in [6], relates the three

different partitions in the summation.

Writing P = nlIm — Q as before we now use the binomial expansion

given by Davis [6, equation (6.6)]:

£, A .k, A

Gy’ (I = Q, @ =nCr (I - (1/n )Q, Q

k _k K,A 8
= nl{2r=0 = b

p.A
p,TEPA P.A;TGT (_(l/nl)o.; Q>/CT(I)}CQ(I)

(22) = nT{ZE_ Z b (—l/nl)rﬂi’ACT(Q)/CT(I)}Cg(l)

In this summation p and + are partitions of the integers r and r+/d

K, A0
PLAT

3 1

3

respectively, into =<m parts and the b are constants introduced in
[6].
Using (22) and Lemma 2.1 in (21) we deduce the following series

representation of the density of T :

n,+n

rm 5 etr(~0) Tmnl/zﬁl
(23) pdf(T) = on n m(n,+n,)/2
T _1 r 2 (1+n, T 12
2 m| 2 1
(T/ (1, 1)) G\ (@ Y e S
.Z: E A E 5”’ ._..1..'._.._-2
, 4=0 k12! A (n1/2>ACA(Im) e P > o
r k-t
(-1)'n . o
AR v el AN A b [ AR
l r+£ p,TGP'A PiyAs T

When G = 0 the series In 2 terminates at £ = 0 and (23) reduces to the

null density given in (13).

12



13
Like (13), the series (23) is everywhere convergent in T = 0 . To see
this it is simplest to work with the equivalent series (21). Noting that

P = nyI ~ we find that (21) is majorized by the series:

n,+n
Pm[ 2 Z]Etr(‘n) Tmnl/z_l - (nl"r/(1+nlr))k(r/(lmln)’2
m- 2 179
(1+n1T)
C, () [n +n ]
A kAL 2 PN
L] 2 z B ' C H (I , Q) (‘d‘_h)
K, A (nl/z)ACA(Im) e 2 2 @4V %] m
Using

K, A K,
G’ (T Q) = (637 7C (T )/C, (1D)C, (Q)

[7, equation (5.2)] and Lemma 2.1 we write (243 as follows:

n1+n _
rm[ = |etz(-) LSt ; (an/(1+n1T))k(T/(1+n1T))ﬂ

F(ma, /2)T_(1,72) m(n, +n,)/2 2y 4=0 k121 (an /2)
(14n;T) 2

C. () 2 In.4n
A g, A 1 2
2 c iy 2 Ug) { 3 ]gcg(lm)

m Jekeh
2- .
] otr () Tmnl/ L . (an/(l+n1T))k(T/(l+an))2
" Tan /DT (n,/2) A(n Tn3 /2 Ok, 4=0 TR
m* "2 1" 1
(1+n,7) 4
C, () 2 (n.+n,-m-1)/2
A K,A i 72
D e T R € J etr(-5)|s] C_(S)ds
A G Gexer P $>0 2



et Rt . (n,T/(14n, 1)) (T/ (140, 1))
Fan, /DT_(ny77) (o +0,)/2 2k, £=0 K171 (any/2)
(L+n,T) 2
CA(Q) ] l(n1+n2—m—1)/2
s 2 etr(=8)|s C (S)C.(S)dS
K,A CA(Im) 330 K A
wn, /2-1 2
_ etr(-0) T * w (T/(l+p T)
" Tan, /2)T_(n,72) m(noin) 72 Sk, 2=0 “ZT(mn,/2)
m 1 72 1
(1+n,T) 2
¢, (@) | I(n1+n2;m~-1)/2
S Ao I etr{-1(1+n, T)S}|s c.(S)ds
YT Jgo, 1 A
B Fm((nl+n2)/2)etr(~ﬂ) Tmn1/2—1zm Tﬁ s ¢ (a n1+n2
VA IRCWEY 2=0 E!(mn1/2)£ NS \

Since (mnl/Z)E > (nl/2)A for all m the final series above is majorized

by
41,
Tm((nl+n2)/2)etr(—ﬂ) Tmn1/2—1zm If 5 5 A .
F(mnl/Z)Fm(n2/2) =0 £ TX El A
2jA
) Fm((nl+n2)/2)etr(-ﬂ) Tmnl/Z—lF n1+n2 El- 0

F(mnl/Z)Fm(nz/Z} 171 2 2

which is convergent for all T = 0 . It follows that the series representa-

tion of the density given by (23) is everywhere convergent in T = 0 ,

14
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4, CONGLUSION

This paper provides a mathematical solution to the long standing
analytic problem of the exact distribution of Hotelling's generalized Tg
statistic. The formulae presented here are primarily useful for analytic
purpeses in that they extend and unify existing distributional results.

The Ty statistic is a special case of the Wald statistic for testing
general linear restrictions on the coefficients in the multivariate linear
model. The exact distribution of the latter statistic has recently been

obtained by the author in [16] using operator methods. Methods similar to

2
0

statistic. Such an approach was adopted in the first version of this paper

those of [16] may also be used to treat the distribution of the T

[14} and was the original stimulus for the present investigation.
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