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0. ABSTRACT

This paper derives the exact distribution of the Wald statistic for
testing general linear restrictions on the coefficients in the multivariate
linear model, This generalizes all previously known results including those
for the standard F statistic in linear regression, for Hotelling's T2
test and for Hotelling's generalized Tg test. Conventional classical as-
sumptions of normally distributed errors and nonrandom exogenous variables

are employed.
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1. INTRODUCTION

One field in which econometric distribution theory would appear to
be in a particularly well developed state is the linear model with normally
distributed errors. In this model we have an established battery of exact
statistical tests for practitioners, the most well known of which are the
commonly used t and F ratio statistics, Hotelling's T2 test and Hotel-
ling's generalized Tg test. Other test statistics for which distributional
results have been obtained in this model are the likelihood ratio statistic,
Pillai's statistic and Roy's largest latent root test. [6] contains a de-
tailed review of analytical results in this field including both exact
formulae and asymptotic expansions. All the above mentioned statistics are
used for testing linear hypotheses about the coefficients in the multivariate
linear model,

In spite of the extensive research in this field (exemplified by Chap-
ter 10 of [6]) there are still major unsolved problems. One of these, which
is particularly interesting to econometricians, is the distribution of the
Wald statistic for testing general linear restrictions on the coefficients.
In special cases where the coefficient matrix in the restrictions takes on
a Kronecker product form (corresponding to the GMANOVA and classical MANOVA
models in multivariate analysis) the Wald statistic reduces to the general-
ized Té statistic and known results for the distribution of this statistic
apply. However, when the coefficient matrix is not of the Kronecker product
form none of the presently available results are applicable. Important prac-
tical examples arise in applied demand analysis in econometrics where the
Slutsky symmetry condition leads to simple linear across equation restric-

tions which cannot be formulated in a Kronecker product representation.



The purpose of the present paper is to provide a unified and compre-
hensive general solution to the distribution of the Wald statistic in this
multivariate linear model setting., More specifically, the paper derives the
exact probability density function (pdf) of the Wald statistic for testing
quite general linear restrictions on the coefficients under the null hypo-
thesis that the restrictions hold., The analytical methods employed here
rely on the matrix fractional calculus that was developed and applied by the
author in some other recent work [7], [8].

As special cases of our general solution we derive the distributions
of the conventional regression F statistic, Hotelling's T2 statistic

and Hotelling's generalized Tg statistic,

2. THE MODEL AND NOTATION

In the multivariate linear model

(1) yt=A.X +u , t=1, ..., T

Yy is a vector of n dependent variables, A is an nxm matrix of param-
eters, Xe is a vector of nonrandom independent variables and the u, are
i.i. N(0,2) errors with 0 positive definite. The hypothesis under con-

sideration takes the general form

(2) HO : DvecA=4d

where D is a qxnm matrix of known constants of rank q , d is a known
vector and vec (A} stacks the rows of A .

From least squares estimation of (1) we have:



(3) A = YT, e* = Y - PIY/N

where Y' = [y., ...,y;], X' = [x;, ceesXg] , Py o= X(X'X)'IX' and

N=T-m . We take X to be a matrix of full rank n <T and define

M=t
The Wald statistic for testing the hypothesis (2) is
(4) W= (D vec A*-d)' {D(R* ®@ M)D'}"1(D vec A*-d)

Ne'BL

(]

where £ = D vec A*-d is N(0,V) under Hy, with V =D(R@MD', and
B = {IJ(C(%)M)D'}"1 where C = Y'(I- PX)Y is central Wishart with covariance
matrix @ and N degrees of freedom.

We define y = 2'Bf and write y in canonical form as

(5) y = g'Gg

where g = V-1/2£ is N{O, Iq) and G = \/’]'/:Z{D(C@M)D'}-l\ll/2 .

In the MANOVA model (see [6] for example) D = I Q@R where R is
rxm of rank r <m ; and in the GMANOVA model we have D = S@ R where

§ is sxn of rank s <n.

3. THE NULL DISTRIBUTION OF W

It is convenient to work first with the canonical variate y . The
conditional distribution of y given C 1is that of a positive definite
quadratic form in normal variates. Many different series representations
of this latter distribution are available and most of these are reviewed in

{4] and [5]. One of the most elegant representations of this distribution



is, in fact, not reported in either [4] or [5] but was given by James [3]

in terms of a hypergeometric function with two matrix arguments. Explicitly,

we have
q/2-1
6 dE(y|C) = Y F (- i1, )
(6) pdf(y|C) ZQ/ZP(Q)(det 172 ofol= ¢ Y
2
where
(7 OFO(- %G‘l, y) = I etr(- %-G-IHEHH')(E) .

0(q)

In (7) 0(q) is the orthogonal group of qxq matrices, etr( ) = exp(tr()) ,
E11 = elei where ey is the first unit vector and (dH) represents the
normalized Haar measure on Ofq) . (7) also has the following series repre-

sentation

m 11\
j=o 3t Cp g

in terms of top order zonal polynomials C(j)( ) where (j) denotes the
partition (j, 0, ..., 0) of j with only one non zero part. Formulae for
C(j)( } are known and are given in [3].

From the definition of G we deduce that:

q/2-1 = 7y 1/2 _ B
(9 pdf(y|e) =2 de;%i?”w L— &~ Pcow, ¥)
)

where D = v 1/?p . Now



etr(- ln‘lc)(det ¢y (N-n-1)/2

2
pdf(C) = .
"N/ 2p G"—j(det oy V2
n\2
Hence
pdf(y) = J pdf(y|C)pdf(C)dC
C>0
q/2-1
_ 1.-1 = 1/2
(10) = 4 I etr(- =0 C)det(D(C@M)b")
2N /209 (MY der 3V2 oo 2
2/ n\2
(det C) (N‘"'l)/zopo(- -}ﬁ(c @MD', y)dc ‘
Using the theory of matrix fractional calculus developed in [8] we
now write

(11) det('n‘(c ® M)ﬁ')“zopo(- BERWD, y)

- det(Dz @M )2 | et~ L5raz @ wBUHE, 1 () etr(CD)

2 11 — Z=0
0(q)

where Z 1is an auxiliary matrix of dimension qxq and 5Z denotes the

matrix differential operator 3/3Z . The right side of (11) may be regarded

as a linear (pseudodifferential) operator representation of this function.

An absolutely convergent power series representation of the operator may

also be used, instead of (11).

From (10) and (11} we deduce that



q/2-1 3 172
(12)  pdf(y) = 2(qu)/2ré)rn(§)(det —¥7? Cj;o[det(n(az@)n)ﬁ)

-OFO(- %ﬁ(az @MD", y)-etr{-(%ﬂ—l - Z)C}Lzo(det o (N-n-13/2,.

The integral over C in (12) is absolutely and uniformly convergent for
all Z satisfying Re(Z) < el where € is any positive quantity less than
the smallest latent root of 9'1/2 . We may, therefore, take both the oper-

ator and the evaluation at Z = 0 outside the integration, yielding:

yCI/2-1
2(q+nN)/2r(%)(det o2

-

1/2,

pdf(y) =

{det(ﬁ(az ® M)ﬁ')l/zol-‘o(- %ﬁ(az @ WD’ y)

q/2-1

(13) =
29 zr%

det(ﬁ(az ® M)“ﬁ') OFO(— -;-B(az ® mD', y)det(I - 292)'“”] )
Z=0

We now employ the simply proven result that if T is a nonsingular matrix
and X = TZT' then
(14) 3Z = T'3XT .
. C s - 1/2 . .
In particular, writing X = TIZT' with T = (2Q) in {13) we obtain

q/2-1 -
(14)  pdf(y) = det(L(aX ® I)L')l/zoFO(-L(ax ® L', y)det(l-—}() Wz]
T % X=0

where

as) L=v¥%el29u/2 - prewn Vieiew/? |



The distribution of the Wald statistic W is therefore:

(16)  pdf(w) = det(L(aX®IJL')I/ZOFO(-L(axG)I)L',w/N)det(I-x)"N/z] .

X=0

This is a simple and very general expression for the exact density which is
very useful in analytic work., As later sections of the paper show, all
presently known results for this statistic, including asymptotic results and
special case distributions such as those for Hotelling's T2 and generalized

Tg » can be deduced quite simply from (14) and (16).

4. THE ASYMPTOTIC DISTRIBUTION OF W

In the neighborhood of X = 0 and to the first order of approxima-

tion

(17) det (1-X) "V o etr(nx/2) .

Making this replacement in (16) we deduce the following first order asymp-

totic approximation to the distribution of W :

WQ/Z—I(N/Z)Q/Z )
(18)  pdf(w) = T3 OFO(-(N/Z)Iq, W/N

wq/2—1 e-w/z
&

that is, the density of the Xi distribution.




5. HOTELLING'S ‘T2 STATISTIC

When D = F@g' for some m-vector g and qxn matrix F of full

rank q < n the null hypothesis has the form
(19) H, : FAg =

so that the restrictions apply to the same linear combination of the columns

of A ., In this case the Wald statistic becomes

FA* ,
N[c 172 }(FCF [ e 2]

g'Mg)

(20) W

i

Nx's~1x

where x = (FA*g-—d)/(g'Mg)l/2 and S = BCF' is wq(N, FQF'} . Hence,

W Hotelling's T2 statistic and, in particular,
F=9 N) = Fq,N-qs1
Specializing (14) to this case, we note that

= (FaFrgtMg) V2 (k2 @ oM/ %

so that {(14) becomes

-1 )
(21)  pdf(y) = [r(%)] yq/z_l[det(EaXE')I/ZOFO(-EBXE', y)det(I-X)‘“/Z]xzo

where E = (FQF')'1/2F91/2 . Notice that EE' = I, We therefore intro-

«srse 0O

duce an (n-gq) xn matrix K such that P' = [E' [ K'] is orthogonal,

Transforming X = PXP' = Z so that 23X = P'3ZP we find



10

-1
(22)  pdf(y) = [r(%)] yQ/Z“l[(det 3211)1/20Fo(‘3z11’ y)det (I - zll)'N/z]

le=0

where 211 is the leading qxq submatrix of Z ., Using the rules of frac-

tional differentiation proved in an earlier article [8], we have

(23)  (det 3z, ) 2der (1 -2, )7V2 - et(1-2,)" WD/

11)

and

(24)  F,(-32 y)det(I-le)-(N+1)/2

11°

0

Zy:°

[ detcn +yHe1eiHr)'(N+1)/2(g§)
0(q)

(1eyy” D72

Hence from (22), (23) and {24) we obtain

q/2-1, [N+l
y rq( Z )

o

o™

paf(y)

2-1
=y

(25) . - :

Upon transformation, we deduce that

N-g+1 -
F = -—{%—-y = Fy Negel
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6. CONSTANTINE'S DISTRIBUTION FOR THE

2
0

GENERALIZED T, STATISTIC

Let D=F®G' where F is an fxn matrix of rank f <n and

G is an mxg matrix of rank g < m . Suppose the null hypothesis has

the form

(26) H. : FAG = 0 ,
The Wald statistic may in this case be written as:

(27) W = tr{FA*G(G'MG) "t (FA*G) ' (FaF*) "1}

-1
N tr(§;57")

where S1 = FA*G(G'MG)_I(FA*G)' . 82 = FCF' . Writing S1 = KK' where

K = FA"*G(G'MG)_I/2 has columns which are i.i. N(0, FQF') under H. we

0
see that S1 has a (possibly singular) central Wishart distribution with
covariance matrix FQRF' and g degrees of freedom, 82 is independent
Wishart with the same covariance matrix and N degrees of freedom. Thus

W in (27) is proportional to Hotelling's generalized Tg statistic. We
will consider the distribution of y = W/N , corresponding to Constantine's
[1] statistic T .

The exact distribution of y may be deduced from our general expres-

sion (14) with the matrix L given in this case by:

(28) L = (FaF') Y 2rl/2 & (armey 1 2gml/ 2

This leads to
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q/2-1
(29)  pdf(y) = det (EaXE')8/? F (CEaXE'®1I, y)det(1-x) /2 .
r($ 0o X=0

Transforming auxiliary variates as in the argument following (21) we obtain
(30)  pdf(y) = [r(ﬂ)]_lyqu-l (det 32..38/2 F (-3z. ®I, y)det(I -z..) V2
pdf(y ) 1177 ofol-22; ®L, ¥ -2y o
11

This provides a natural generalization of the density (22). Applying the op-

erator (det 'cizll)g/2 we have

q/2-1 N+g
(31) pdf(y) = ( ) f( 3 lOFO(-azllox, y)det(I-le)'(N+g)/2}z .
2 11"
/21 N+g
2

n

/2~ 1
a ( ) i((;f) [ det(r vy 8/ 2(an)

(32)

where Vl £g denotes the Stiefel manifold h'h =1 where h is fgx1 ,
LS

(dh) denotes the normalized Haar measure on this manifold and

(33) Q= izlhih{

where the hi are fx1 vectors taken from the partition of
= (h!', h 2, ...,hé) into g component vectors.

The integral in (32) may be evaluated as follows
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(34) %r(-fz&)v [ get(r+yqm®+®)/2(an)
1,fg

fg/z w
: 2" I det(1 +yQ)~ N*8/24n J e T (872172,

0
,fg

where (dh) represents the unnormalized Haar measure on V1 fo * Now note
L]

1/2

that if x is any fgx1 vector we may write x = hr where T = x'x

and h 1lies in Vl £g ° The measure changes according to
»
ax = 20582/ 24 (an) |

Under this transformation we may write (34) as

(35) ———-mz— J det I-+yR/tr(R)) (N+g)/2e-x'xdx

wag/z

where R = 'ilxixi and the partition of x' = (xi, xé,..., xé) correspends
to that of 1£ given earlier.

We now assume that g > f and will show later how this condition
may be relaxed. Writing X = [xl, Xos aees xg] we transform X -+ (R,V)
by using the decomposition X' = \J’Rl/2 » where R = XX' and V 1lies in
the Stiefel manifold Vf,g , the collection of all f frames of ortho-

normal g-vectors. The measure changes according to

36)  dx = 1728 (det r) (8- F-1)/25r0av)

where (dV) denotes the invariant measure on Vf g
3

(35) then takes the form
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£
o £2
r2%] 2f 73 I det(I +yR/tr(R))'(N+B)/Zetr(_R) (det R) (g-f—l)/ZdR I (V)
2 & R>0 Vf .
NETS
(37) = 24 [ etr(-R) (det RB) (g-f-l)/zdet(l+yR/tr(R))'(N+g)/2dR .
21 {£) R>0

Taking 0 <y <1 we may expand

o k
det(1+yR/tr R)"(N8)/2 . 7 (D 2(553) C (R) (tr R)
k=0 K K

[ etr(-r) (det R EE1/2¢¢p R e, (Rydr
k R=>0

- —15) rd4, K)[T(k)-lj sk-1c ((1+s)'11f)(det((1+s)If))'g/zds
. K 0 K

=1[7 k-1 -fg/2-k
(g)KcK(If)[r(k)] JOS (1+s) ds

(38) ly(fﬂ) E __1:115__ Z (ﬂiﬂ) (E) C (1.)
2\2 )\ L, KT(Fe/D, t\2 ) \2) «F

It follows from (34) and (38) that
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(39) | det(1+yq) /2
Vv

for 0 <y«<1.

Using (39) in (32) and noting thét q=fg , we find that

fg/2 1 f(ﬂ_g N
2 N+
N) Z k'(fg/Z) ) (_EE)K(g)KCK(If) » 0<y«<1.
2

(40)  pdf(y) =
R GO

Upon notational translation this is precisely the result obtained by Con-
stantine [1]. This series converges as stated in the interval 0<y<1l.
An alternative everywhere convergent series representation of the density is
derived in a companion paper that the author has currently under preparation,
When g < f the argument following (35) is reworked as before using
det(Ig-+yX'X/x'x)-(N+g)/2 in place of det(If-+yXX'/x'x)-(N+g)/2 . We also

note that in this case

) fox)
f(Z) rg(ﬂ:g:f)

The density of y when g < f is then given by (40) after the notational

changes

£f+~g, g+ f, N> Neg-f .,

This also corresponds with Constantine's result in [1].
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7. HOTELLING'S DISTRIBUTION FOR THE

GENERALI ZED Tg STATISTIC WHEN f=2

For the special case in which f = 2 Hotelling [2] found an every-

where convergent power series representation of the density of y . This

representation may also be deduced from our general expression (32),

In fact, taking £ =2, q=2g and g > 2 (otherwise the results

of Section 5 apply) we have

We expand det(I +yQ) = (1-+y-+y2 det Q) and transform variates as in Sec~

tion 6 to obtain

(e

r(g) 1‘2(%)41rg A
2 -(N+g)/2
. I etr(-R) (det R)(g'f'l)/z{l +i§f-—995_5§} dr
R>0 Y (tr R)
= etr(~R)

o T

] (g-£-1)72[" -t ¥ (-1)Ify*
(det B Lf’ D T\

j .

J + +7 -

) (det R)z' N} /2+5-14 ap
(tr R)<J

Term by term integration is justified by the absolute and uniform convergence

of the series, We find



pdf(y)

n

rz(ﬂ%g)yghl(l+y)-(N+g)/2

Z

P(g)rz(g)rz(g)

17

I)J 1+Y) (Eig) J etr(-R) (tr R)-Zj(det R)(g-S)/2+de

2JR>

rzgﬂgg)yg'l(l+y)‘(N*g)/2

. 1 retr(- {1+s) R)s
R£0 r(23) 1,

N+
(4

P(g)rz(g)rz(g)

__E)yg-1(1+y)-(N+g)/2

(4

T(g)rz(g)rz(g)
)jT2(§+j)

r(2j)

rz(%%g)yg-l(1+y)'(N+g)/2

|

2

2

Neg

TZ(g)rzcg)

0

oo

Z

2j-1

J

j
C2 (Y (1)
I+y/ \'2 /,

J

ds (det R)(g'3)/2+de

'zo £;%%j(fé;)j

I 371 (145)78*H s
0

zglzﬁﬂéﬁ)G%Q

P (Neg-1)y% L(14yy - (N+8)/2

_) g-1 -(N+g)/2 (gi) ) _ -
(1+y) nT ol 2 Y
'Zo 3! (4(1+y))

(N+E:1)Yg-1(l+y]

28r(g)T(N-1)

~(N+g)/2

g-1 N+g g+l - )
A5 55 5 ey

280 (g)T (N-1)

T(g)T(N-1) (2+y)

2 r(Nt3;1)lL_ . (1

N+g 271

,1- (N+8)/2
[{2+Y) ] F (1 N+g,
212 2

[4(1+y)

N+g.
2 ]
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2 (T (N-1 (1 y/2) N8 2T 27 27 N2y

This differs from Constantine's [1] formula on page 223 by a factor of 1/2,
In fact, Constantine's expression is in error as can be verified by inte-

grating (41) to unity,

8., THE REGRESSION F STATISTIC

When f =1 the hypothesis (26) becomes the linear hypothesis in

multiple regression. In particular let F = e G =R' and a' be the

)
1 )
first row of A ., Then {26) is simply H0 t Ra =0 ., The distribution of

y given by (32) reduces immediately to

-1
pdf(y) = [B(g %)] y8/2 1 (1ayy~ (00 /2

so that

as in standard regression theory.

9, CONCLUSION

This paper provides a comprehensive and unified treatment of the dis-
tribution of the Wald statistic for testing general linear hypotheses in the
multivariate linear model. All presently known null distributions may be
obtained from the general formulae (14) and (32} given here. The noncentral

distributions are left for subsequent work.
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