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1. Introduction

Recent advances in exact sampling and asymptotic expansion theories have produced
genera!l formulae for the probability density functions (p.d.f."s) and cumulative distribution
functions (c.d.f-.-’s) of many commonly employed econometric test statistics and estimators.
These formulae are auspicious developments for applied researches who wish to report the
small sample properties of their statistics and estimators. Despite the promise of these
theoretical developments for the conduct of applied research, however, there bave not
been many explicit attempts to use formulae from the finite sample literature in empirical
work. There appear to be two major reasons why these formulae have not been used more
frequently in applied research. First, the exact finite sample formulae often involve very
complicated mathematical expressions.? Second, the reliability and accuracy of pumerical

results from asymptotic expansion formulae (and even exact p.d.f. and c.d.f. computations)

is open to question (see {13} and [18}).

Because of the difficulties involved with the computation of exact distributions and
unease over the reliability of approximations derived from asymptotic expansions, many
econometricians have resorted to alternative numerical algorithms (for example Imhof’s
[9] routine) in order to calculate density and distribution functions. These algorithms are
generally regarded as highly accurate. Unfortunately, the complexity and expense of these
routines has for the most part limited the integration of these routines into econometric
packages. Moreover, another level of computational complexity enters into the use of these
routines for testing in that they require additional solution algorithms in order to deliver

the appropriate critical values for Neyman-Pearson tests.
In the absence of simple, cheap, and accessible means for computing exact p.d.f. and

2For example, they typically have leading analytic terms that are multiplied by multiple infinite
series of invariant polypomials. Although the leading terms are easily computed (and recognizable
among the most commonly encountered multivariate statistical distributions), the infinite series
portion of the function normally presents computational difficulties in all but the simplest cases.
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c.df. values, econometricians and statisticians have resorted to longhand ways of sum-
marizing distribution functions. The conventional means for presenting this information is
a series of tables that report grids of probability values indexed against a set of parameters
that control t.h; shape of the distribution function (for example: sample size, degrees of
freedom, and the concentration parameters). In situations where the distribution function
depends upon only ope or two of these shape parameters, these tables are easily developed.
The ¢, F, and x? tables in .the back of econometric texts are familiar examples. In situa-
tions where there are several parameters that determine the shape and location of the
distribution. {for example, the Durbin-Watson statistic) or where some of the parameters
vary continuously, clever ways of summarizing tabular information have had to be devised.
Inevitably, these alternative methods sacrifice precision in the grid of reported values be-
cause of space limitations. The resulting sacrifice of infofmation_can be substantial, par-
ticularly if certain parameters take on a continuum of values and parts of the distribution

(such as the tail areas) are sensitive to small changes in these parameters.

There is some hope that with the continuing technological advances in mainframe
and personal computing, and the increased availability of sophisticated numerical software, -
applied researchers will be able to overcome many of these computational problems and
space constraints. Currently, we have the means with which we can carry out moderately
complicated c.d.f. and p.d.f. calculations, as well as the ability to store large volumes of
statistical tables in computer banks. As the advance in computing technology continues
to expand our capacities to store, to calculate and to retrieve information on p.d.f.’s and
¢.df.'s, a question arises as to which means will be the most efficient for introducing finite
sample results into applied work. The suggestion. that we should begin directly incorporat-
ing numerical routines (such as Imhof’s routine) into econometric packages has been advo-
cated by some researchers (for example, Sargan and Bhargava [22]). This approach has
distinct advantages over other options such as storing statistical tables on disk. On the
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other hand, the integration of direct numerical routines into econometric packages also has
its drawbacks as indicated earlier. Not the least of these are the substantial start~up costs
entailed with programming and storing the routines in one easy-to-use package. In addition

to these start-up costs, there can be non-trivial variable costs that are associated with each

use of these routines.

In this paper we develop and illustrate an alternative approach to computing probability
values for ¢.d.f.’s. This alternative is based upon Phillips’ ([15],{18] and [19]) earlier work
on functional approximation of p.d.f.'s. Phillips’ functional approximation approach seeks
to strike a middle ground between direct computation methods and the tabular form for
p.d.f.'s and c.df.’s. Its main attractions are that it requires very little storage space, it
is cheap to use, it is fexible enough to consider a variety of mathematical and monte
carlo information on the c.d.f., and it is easy to program. The formulae delivered by this
approach provide high accuracy and can be carried in a function routine designed to yield
outputs corresponding to a variety of possible user choices. Thus, the user may call for the
probability level that is associated with a calculated statistic, the critical region for a given

test size or even power function evaluations for well-specified alternatives.

The present paper draws its motivation from this general research strategy. Its im-
mediate purpose is quite specific: to illustrate the usefulness of these approximation tech-
niques by providing programmable formulae that can be used to mount exact tests of serial
correlation or unit roots for any sample size. The formula we extract belongs to a family of
extended rational approximants {called ERA’s). This family is developed for general pur-
pose c.d.f. approximation and is related to the family of p.df. approximants introduced in
[15]. This formula is ready to be hard-wired into existing econometric software packages.
Its implementation requires only a few lines of computer code and its CPU requirements are
negligible. It thus liberates the applied investigator from the detailed tables or numerical .
calculations that must now be used in order to perform these tests.
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There are of course practical questions and drawbacks raised by this alternative._ These
are addressed and extensively discussed in sections 2 and 3, and the Appendix of this
papel.'- Among the issues we will consider are: What form should a numerical approximant
take! Is it possible to produce highly accurate significance leve! values over wide families
of c.df.'s ! And, are there systematic methods available for straightforwardly computing

these approximants?

The plan for the remainder of this paper is as follows. Section 2 develops the algebra
and theory behind our ERA's. Its main purpose is to extend the theory of ERA’S to
cumulative distribution function approximants and to composite function approximants.
These latter approximants are designed to treat the multidimensionality of the shape
parameters that index c.d.f.'s. A detailed application of these ERA'S to the distribution
of serial correlation coeficients is given in section 3. Our final formulae are reported in

section 3.4. The appendix to the paper deals with computational issues.

2. CDF and Composite Function Approximation

2.1 Foregoing Research

The use of hard-wired computer function routines to efficiently compute statistical
significance levels is not new. Statisticians (such as Fisher) have for years sought simple
approximations to distributions that cannot be expressed in closed form. Hastings [7]
was one of the first in a series of investigators who systematically devised polynomial and
rational function approximants to some of the more commonfy used distributions (such as’
the standard normal distribution). These approximations are continually being refined and
improved. Many are now so simple that they can be programmed on hand calculators. Zelen
and Severo [26] contain collections of some of the most commonly employed approximants.
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Indeed, a number of these are currently hard-wired into econometric packages enabling
the user to automatically check for the significance of F and chi-squared statistics. There
are two main limitations to these simple distribution function approximants. First, they
are confined tc; relatively simple distribution functions that are indexed by one or two

parameters, Second, they are constructed in a largely ad hoc fashion and there is no

guarantee that they will have a uniform degree of accuracy over their entire range.

These limitations have been overcome in a series of recent papers by Phillips who in-
troduced a family of extended rational approximants and provided a theoretical framework
to justify their use in distribution theory. In particular, [15] introduced mechanisms for
approximating p.d.f.'s within Cg[~o0, +00}, the class of continuous, positive-valued fune-
tions that vanish at +oo. That article suggested the following family of (non-reducible)

ERA’s of maximal degrees m and n for p.d.f. approximation:

Yyotviz+...+9 mz™
l+vmuz+...+ Y menz®

eralz; 1) = alz) [m, n} (23 7) = o{z) (1)
where v is a vector of rational coefficients (the v ;), and s{z) is a coefficient function
chosen to embody relevant analytic (or experimental) information about the true p.d.f.
This family of ERA's works well for density approximation when s € Cg|—o0, +0c0] and
no poles occur in the denominator of (1). The main role of the rational coefficients + in
[m, n} is to build on the strengths of a(z) as a primitive approximant. As an arbitrary real
function, s(z) is flexible encugh to permit the direct use of leading terms from small sample
theory, numerical information on the p.d.f., and asymptotic expansion information such as

that provided by an Edgeworth expansion.

Phillips [15] studied the properties of these ERA’s in the uniform error norm and estab-
lished existence, uniqueness, depseness, and characterization theorems for a best rational
approximant. The critical result of that work is the proof of the following alternation
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(oscillaﬁtm) property of the best approximant which in normal (that is, nondegenerate)

situations is given by

THEOREM 1  (Error Alternation of the Best Approximant)  If the number of
alternations of the error curve e(z) = pd f(z) — era(z) (that is, the number of consecutive
points at which ¢(z) attains a mazimum with alternate changes in sign)is at least N =
n+m+ 2, then era(z; 7) is the best approzimant to pdf(z) in the family de fined by (1).
The importance of this theorem is that it extends the classical Tchebycheff approximation
theorem to density approximation over the entire real line. In so doing, it provides a simple

means for identifying the best approximant in applications.

Practical procedures for implementing ERA's in the family (1) have been considered in
both [15] and [18]. The practical techniques used to construct the ERA's in those papers
largely rely on modifications of the multiple point Padé that remove unwanted poles (and
zeroes) in conventional Padé approximants. These methods produced impressive precision in
the several examples that were attenipted. In particular, they demonstrated hbow ERA’s can
yield substantial improvements over alternative procedures such as Edgeworth approxima-

tions even when low order rational functions are used (usually [3/3]'s and [4/4]'s).

2.2 C.D.F. Approximation

We now introduce a new family of approximants that facilitate the direct approximation

of cumulative distribution functions and tail probabilities. This family has the form:

Yot vz +...+kynz”
2ol T V1T 4. F Yo 2

Era(z;~) ==-S(z){n/n](z; 1) = S(2) " (2)

where n is even, S(x) is a primitive c.d.f. (perhaps of the form fZ . a(t)d(t)), with the
Properties that S€ C,St1aszf oo, $ | 0asz | —co, and S(x) > 6 for all z. In the
Proofs and numerical work that follows, two different normalizations will be used. The first
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Y i=1 (3)

which is useful-in the theoretical development; the second is:

Yont1 =1, (4)

which is more convenient in practical work. The parameter space of these rational coefficients

based upon the first normalizatior and pole elimination condition is

2n+1
I ={v: Z 7% =1 and the denominator of (2) > 0for all z € (~o0,00)}  (5)
Fumn-41

and is a subset of R2"+!. If we wanted to insist on the correct asymptotic behavior in (2)
as z 1 o0, we could impose an additional restriction in (5), viz. that 7o = 7 2n.

We now proceed to develop some useful notation and definitions. We denote by
0C7[~00, 0] the class of continuous functions F over (—oo, 00) for whick F { 1 as z 1 oo,
Fl0asz | —oco, and F(z} > 0 for all z. We denote the uniform error norm by Jle(z)}
= sup, | ¢(z) |. Following the developments in [17], we may now develop a theory of best
approximation to c.df.'s in oCy[~00,00]. The following results form the basis for this

theory.
THEOREM 2  (Existence and Uniqueness) If edf(z) € oCy[—00,00| then there
ezists a unique best approzimant to cdf(z) in the class of ERA’s defined by (2) and (5).

PROOF

The proof follows the existence proof given in [18]. Uniqueness follows from the

arguments in [1], pp. 56-57. 1§

THEOREM 3 (Densgness) Suppose edf(z), S(z) € oC 7 [—00, 00}, S(x) > 0 for all
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z € (—00,0), and let ¢ > 0 be given, Then there exists an ERA in the class defined by
2) and (5) for which llcdf(z) — Era(z)| < e.

PROOF _

We start by considering the function defined by the difference between the cdf and the
primitive, edf(z)— S(z). This function is contained in Co[—00, 00}, the space of continuous
real fupctions defined over (—co, cc) that vanish at plus and minus infinity. The following

three functions also are contained in this same space

2
S(z)[1 + z‘]",S(z){—i—l—;—:T}, and S(z)

1+ (z—-1)
T “

Let B be the set of all functions generated from these primitive members by pointwise
addition, pointwise multiplication, and multiplication by real numbers. Note that B is
an algebra of real valued functions that vanish at infinity. It is therefore a sub-algebra
of Co[—00,00]. In fact, B is dense in Cp[—co,00]. To prove denseness we mote that if
{z1,22)} € (—o0,00) with z; 7 x4 then either S(z;)[1 + 2{] # S(z2){t + 28] or S(z)[1 +
2§]7! = S(22){1 + 2£]71. In the later case we deduce that either .S'(:r:l)lﬁ."’-l £ .S‘(::g)llﬁsél

[+2] f1+=3]
or S(z,)ll—"i%‘zlﬁﬂ o 3(22)%?31. Thus, B separates points of (—oo,00). Moreover,

because S(z){1 + z%]~! > 0 for all z €(—o0, ) it follows that at each point of (o0, c0)
there is a function in B which does not vanish. Thus, using a generalization of the Stone -
Weierstrass theorem ( [23], pp. 166-187 ) B is dense in Cg[—00, o). We also note that B isan
algebra with respect to pointwise S-multiplication (where S-multiplication is defined by the
operation: b;by(z) = S(z)b;(2)82(z), for by = S(2)81(z) € B and for by = 5(z)bs(z) € B).
Now let A be the set of functions generated from the primitive members (8) by pointwise
addition, multiplication by real numbers and pointwise S-multiplication. A is an algebra
of real valued functions on {—o0, 0o) that vanishes at infinity. £ is also a sub-algebra of B.
But, because A separates points of (—o0, c0) and contains a function that does ot vanish
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there, 4 is dense in B. It therefore follows that A is also dense in Cp[—o0, o).

To prove the theorem we note that given ¢ > 0, there exists an a € 4 for which
fled f(z) — S(z) - a(z)]] < €. Because S(z)— a(z) is an extended rational function of the

form {2) the theorem now follows. §

THEOREM 4  (Error Alternation)  Suppese cdf(z), S(z) € ;Cl"’[—oo, o), with
S(x) > 0 for all z € (—o0,00). Let

‘T°+‘r]z+.--+7n—-u3ﬂ—,‘
l+van1ZT+ ...+ Y op—pa™ ¥

ERA(z;7) = S(z) (7)

be the best approzimant in the family of [n/n] defined by (2). Then (7) is completely

characterized by the property that the number of alternations of the error curve

e(z) = ed f(z) — ERA[z) (8)

isat leasgt N=2n—v +42.

PROOF

By the number of alternations of ¢(z) we mean the number of consecutive points of
the interval (—oo, 00) at which ¢(z) takes on its maximum absolute value with alternate
changes in sign. Because S(z) 1 1 as z tends to infinity, we note that any degeneracy in
the rational fraction [n/n](z} must follow the pattern p > v if ¢(z) is to be bounded at
infinity. Hence, when degeneracy occurs in the best approximant the numerator will be at
least as degenerate (in degree) as the denominator. Under these conditions on degeneracy,
the classical proof of error alternation applies as in [1]; and a necessary and sufficient
condition for best approximation is that the number of alternates of the error curve be at

least N = 2n — v + 2 as stated in the theorem. [

2.3 Composite Function Approximation
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The functional approximation theory developed above is essentially univariate in charac-
ter. Most practical problems, on the other hand, are inherently multidimensional, either
because we are dealing directly with multivariate distributions or because we wish to allow
for parameter -va.riation in a univariate distribution. The second source of multidimen-
sionality will be our main source of concern, although the methods discussed below do
apply in the former context. Since most influential procedures rely on univariate statistics
whose distributions are parameter dependent, this choice of emphasis is thought to be more

appropriate for the practical application of our methods.

We begin by considering a general approximation problem in which a given c.d.f. in
007 |—00, 0] is parameterized by a scalar T, which we will regard as the sample size in
what follows. We denote the parameterized distribution by ¢d fr(z) and define T over thg
integer point set T, = {T | T > T,} for some (usually small) value of T,, Approximation of
¢dfr(z) is now a bivariate problem over the product space R X T, and the family {(2) might
be extended to allow for bivariate rational functions in <x,T>. But this form of extension
of the theory is not the most promising. In fact, best uniform norm approximants to
multivariate continuous functions do not always exist and when they do they are usually not
unique. Moreover, the characterization theorems of univariate problems (such as Theorem
4 above) do not generalize to multivariate situations. The main difficulty is the lack of
Tchebychefl sets of multivariate functions. These issues are discussed in detail by Rice

[20), chapter 12.

Fortunately, there i3 an alternative and more natural approach to handling the multi-
dimensionality of the approximation problem. This is to usg the concept of a composite
functional approximant. The idea of a composite functional approximant can best be
explained in the context of the approximation of edfr(z). First, let Sr(z) be a primitive
c¢.d.f. that is indexed by T and suitable for use in equation {2). Next, let
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Era(z; 7(T)) = St{z)[n/n)(z; +(T)) (8)

be the best uniform approximant to ¢d fr(z) for a given T, where 4(T) denotes the relevant
vector of rational coefficicnts that vary over the integer point set T,. We call equation (8)
the first stage ERA for cd fr(z).

We now construct a composite rational approximant to edfr(z) by replacing 4(T) in
equation {8) with a suitable vector of coefficient function approximants defined in terms
of T. In our applicatioﬁ we choose to approximate 4{T) over a finite point set such as
T,={T € 2| To £ T < T°. Note that T; has an upper bound. Such a bound is
appropriate when it is known that the primitive approximant is adequate for T > T?. We
will treat this case explicitly in the following section under asymptotic refinements.

Let 47 be a vector of suitable approximants to the coefficient function (7'} over the
point set T, Then,

Erar(z) = Era{z; 7r) (9)

will be called the second stage ERA for cd fr{(z). Determination of 4 will involve a choice
of coeficient function form and numerical computation based upon the first stage results.
The most suitable choice of form of vr will be problem specific. Several possibilities, all of
them simple to employ, will be considered below. Our application in Section 3 will illustrate
the operational features of these different choices.

The simplest way to reproduce first stage ERA accuracy in equation (9) is to use spline
functions for the elements of 4r, each constructed with a sufficient number of knots to
achieve the desired accuracy. The process can be demonstrated by taking an arbitrary
element, sa} 7{T), of the first stage coéfficient vector: Let us assume that the first stage
ERA, and hence 7{T) are known on the mesh of integers T, = {To <N < T <
Txn = T°}. Define ordinates y; = 7{T;} (f =0, ..., N') on this mesh and let d; = T;y; —T,-'
denote the grid spacing. We may now solve the following system of equations that ensure
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continuity in the first derivative of the spline and yield coefficients m; (y = 2,...,N — 1)

that are needed in formula (12) below:

Am=2z (10)

where A is the symmetric triadiagonal matrix

"2(d; + d3) ds )
da 2dy +dz) ds

PTTy Yy e

i dnez 2Adn—2 +dn_1)d
and
m' = (my, ma, ..., mn—1)
2 =(z,z9,..., 2N-1)
where
z=86 ”"":{J__ i g Y ;:__”:'". (11)

We set mg == mpy = 0 and then the natural cubic spline function that interpolates the

values {y;} at the points {T;}(f =0, ..., N) is given by:

Tis —Ty:
otdT) = (T = Ty + 2T

d; + Tjp1 — T)mj +(d; + T = T;)mja}
(T"'TJ')U‘J+1 _T)( J J+1 ) Jﬁd(‘ ti 2 1+1 (12)
4

over the interval [T}, Tj4+1]. We use the index ¢ in equation (12) to indicate that s4(T) is
the spline approximant to 4{T). Replacing 41 by sf(T) in equation (9), we now have a -
second stage ERA that reproduces first stage accuracy.
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The representation (12) for the cubic splice is the one most suited for computational
purposes [8]. In cases where there are many knots it is worth using an efficient algorithm
{relying on the triadiagonal nature of the matrix A) to solve (10) (see [2], pp. 14-15). The
choice of the natural spline function (12} with mg = mp =0 allows for linear extensions of
(12) to the regions {T' < Ty, T > Tn} outside the mesh. This choice may be conveniently
changed to accommeodate other end point information by appropriate modification of the
equation system (10). |

Choice of the mesh, {T;}, will also play an important role in the performance of the
spline function approximant. Intuition and experience from the practical application we
will report later suggest that use of a fine equispaced mesh in regions where the coefficient
functions v(T) display mest variation (typically small T) will perform best. This may be
combined with the use of a coarse mesh in those parameter regions where the behavior
of 7(T) shows little variation. When 4(T') is defined so as to ensure compatibility with
asymptotic theory, our experience suggests that (7} displays a slow monotonic approach to
its natural asymptote as T becomes large. In this region a coarse grid yields an economical
and effective spline which can be rez;dily spliced into the asymptote for suitably large values
of ~.

An alternative method of generating coefficient function approximants 47 for (9) is to

use polynomial or rational functions. More specifically, we introduce the general family

o + ain + ...+ agn”
o 13
[ /311(’?) 1+ ﬂilﬂ + ﬂicq' ( )

of rational coeflicient _function approximants for 4{(T). In equation (13), == TV is a
suitably chosen power of T. Note that when s = 0, equation (13) reduces t; a simple
polynomial approximant. Typically v can be chosen to accomodate the asymptotic behavior.
of the approximant and the spacing of the coefficients. We have found g = T ttobea
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good choice in our applications.

As before, let the integer point set T be the domain of approximation. On such a
finite point set we may consider the possibility of extracting a best approximant to v{(T)
ip the family defined by equation {13). When we restrict our attention to these polynomial
approximants, the Tchebycheff theory of best uniform approximation directly applies (see
[20]). Thus, given +;(T) defined on T, there exists a unigue best uniform approximant
in the family (13) with & = 0. Let [r/O];; denote this approximant. Then the usual
characterization tileory for polynomial approximants also applies. Specifically, the error
function 4(T) — [r/0]ir will possess an alternating set of r + 2 points of T (see {20], p-
33 for the details). We now use the not:;tion [r/0]r to denote the vector of best uniform

approxmants to the elements of 7(T') over T. Then the second stage ERA given earlier

by equation (9) has the explicit form:
Erar(z) = Era(z; [r/0]r) (14)

and is called the best composite (or best product) approximation to cdfr{z) over z €
{(=o0,00) and T € T. Best product Tchebycheff approximations were first introduced by
Weinstein [24] in the context of polynomial families. Extensions to rational functions were
made in Henry and Weinstein [8] and the concept of best composite approximation was

introduced in [4) as a principle of unification.

A theoretical difficulty prevents the automatic extension of best composite approxima-
tion of the form (14) to general rational functions such as {13). The difficulty arises because
of the absence of an existence theory for a best approximant o v;(T’) over T within the
family (13). In fact, best uniform rational approximants on finite point sets do not neces-
sarily exist and the alternation theory for rational approximants also fails. Some examples
which illustrate these failures are given in [20], pp. 130-131. Fortunately, although the
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theoretical development is impaired by these difficulties, rational functions still provide
excellent approximations on finite point sets. As with interval approximation, these often
provide substagtial improvements over polynomial approximants of the same degree. In this
case some of the improvement is purchased by the presence of discontinuities in the regions
which bridge the discrete points of the domain of approximation. In view of these problems,
the search for an adequate approximant in the rational family (13) is l;ss formalized than
in the case of polynomials. Our approach, therefore, is to select an approximant because
of its performance rather than because of characteristics which distinguish it as best in the
Tchebycheff sense. Let [r/s];r be such an approximant to vi(T) which is well defined for
all T € T. Then the second stage ERA

Erar(z) = Era(z; [r/é]1) (15)

is a composite rational approximant to cd fr{z).

2.4 Preservation of Asymptotic Properties

Composite functional approximants such as (9), (14), or (15) may be formulated in such
a way as to preserve the validity of asymptotic approximations, including second, third, or
higher order approximations. The simplest procedure involves the refinement of Edgeworth
asymptotic series to improve their performance in regions of the distribution where they
possess inberent weaknesses ([19] provides some recent illustrations). To fix ideas, suppose
we have a statistic ar for which T# (a1 — a) has a limiting normal distribution and admits

a valid Edgeworth series under general conditions at least to O(T—!). We may then write
Yar - =¢(2 bo(2 1,2 —1
P(Tier—o) < )= o(Z 41 1p(2)+T75:(2) )+l (18)

where o represents the asymptotic standard error, ® is the c.df. of a N(0, 1) random
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<ariable, and p; and p2 denote the appropriate Edgeworth polynomials. Then
Edr{z) = & (Tt =) | by iz °))+ T1p(rtZ=2) . “))) (17)

is the associated approximation to the distribution of ar.

Now let S7{z) = Edr(z) be the primitive approximant in equation (8). The resulting

first stage ERA for the distribution of ar bas the general form:

Erar(z; A(T)) = Edr(z)[n/n](z; AT)). (18).

As usual, n is an even integer (say n = 2m). We note that since expression (18) is a best
approximant, [n/n} is a bounded rational function over R and has no real poles. Hence, we

may decompose [n/n] into partial fractions as follows:

ey S [ EAT) &)
oo 2T = e+ - + -2 ) (19

where cg is a real scalar, ¢; = ¢jy + §¢;2, dj = djy + id;s, and the bars are used to denote
complex conjugates.

The decomposition of (19) implies a2 new parameterization of the approximant in
terms of co,cjx, and djy (9 = 1,..,mik = 1,2).—This reparameterization is useful in
the development of composite approximants that preserve asymptotic behavior. We will
therefore have occasion in what follows to replace the coefficient vector (T) with the
alternative coefficients {‘c (Tj, d(T)}. Coeflicient function approximants for the components
of ¢(T) and d(T) may now be developed in any of the families considered in the previous
section.

- Let us suppose that Edr(z) delivers sufficient accuracy as an approximant of cd fr{z)
for T' > 79 and that the first stage ERA (18) appliesoverz € Rand T = {Tp < T < T°}.
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Spline function coefficient approximants would now take the form:
cor = 84 (T), cixr = 88 (T),

dikr = 8lmyjk(T) where (G=1,.,mk=12) (20)

over T € T and would be hooked into the following set of linear extensions:
cor == 1, ¢jir =0, diir =0, djsr = ¢

where (1 =1,...m;k=1,2) (21)

over T € (T°, oo) where ¢ is a small positive scalar. With this second stage, the composite

approximant
Erar(z; 4(T)) = Era(z; cr,dr) = Edr(z)[n/n]{z: cr,dT). (22).

preserves the asymptotic behavior of Edr{z)as T { oo and modifies the primitive Edgeworth
series (approximant) in the domain {Ty < T < T°}. Similarly behaved composite ap-

proximants may be constructed using polynomial or rational coefficient approximants.

2.5 Higher Order Composite Approximation

The process of constructing composite functional approximants that was outlined in
Section 2.3 may be extended to problems of higher dimension. Consider for example a
distribution that is indexed by two variables, cdfr(z; a), where a is a scalar parameter in

R. Given a and T, we let

Era(z; 7(a, T)) = St{z; a) [n/n}(z; ¥(e, T) (23}
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pe the best uniform approximant to ¢dfr(z; ). Equation (23) extends equation (8) by
allowing the primitive approximant, St(z; o), to be parameter dependent (as, for instance,
an Edgeworth series approximant would be) and by functionalizing the rationa! coeflicient

vector ¥ =4(a, T) on both a and T.

We now develop a sequential composite approximant for 4 with approximants at each
Jevel. Thus, when o and T are fixed we have ¥ = 7{«, T) as given in equation (23). Then,
as we allow a to vary, we have a conditional mapping from a to « given T, which we may
write as v = -77(0:).- This mapping will be continuous at ap provided that edfr(z; ag) is
pormal for [n/n} approximation. By this we mean that the best approximant to cd fr(z; ao)
is not of degenerate degree. The continuity of 7r(a) at a = ag then follows from Theorem
1 of [8]. In fact, if the degree of [n/n](z; ¥(a, T)) is constant over the domain of a, then
4r{(a) is continuous throughout this domain (Theorem 2 of [8]). In view of the continuity
of 7r{a), we may now develop best uniform approximants to ~r(a) in the following family
of rational functions of a :

go+ qmoa+..+gpaf
14+ gpt1a+...+ gppqa?

[e/d)(a) = (24)

When the degree of [p/q] is sufficiently large, the error on the approximant will be sufficiently
small to ensure that tiie composite approximant St(z; a)([n/n){z}; ~(a,T)) has a non-
vanishing denominator. Each of the rational coefficients g; in (24) is conditioned on T, say
9i = gi{T). Now if T varied continuously and y7(a) was nondegenerate and of order [p/g],
we could extend the above argument to the next dimension. Because, however, T is defined
on a finite point set in our problem, we may construct a suitable approximant to ¢;(T) using
the spline function formulae given in section 2.3. Call the resulting approximant g;7. When
a sufficiently fine mesh is chosen for this construction the composite coefficient function

gor + iTO + ... + gpT P
I+ gpnra+..+ gprgral

lp/alr () = (25)
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will be continuous in « for all T € T, say. The third order composite functional ap-

proximant to cdfi(z; a) is then given by:
Erap(z; v(e, T)} = Sr(z; o) [n/n)(z; 7(=z; [p/g)r(a)))- (26)

Higher order approximants of this type clearly involve a substantial increase in com-
putational burden. Yet the extraction of third order approximants such as (26) is well
within the reach of present computational equipment; and, once found, these approximants

can be employed in applications at a pegligible computational cost.

3. DISTRIBUTION OF THE SERIAL CORRELATION COEFFICIENT

3.1. Objectives and Potential Applications

As in [17], we use the autoregressive model
Yi = QY- + U (t =._..—-101,..) ' (27)

in which the u; are i.i.d. N{0,0%). Our focus will be upon the c.df. of the noncircular

serial correlation coeflicient

T =l,T
& = (Z yf_l) (Z i!t!!t-l) (28)

t==] txz]

obtained from the application of least squares to (27). Our objective will be to develop an
approximant to the c.d.f. of & which delivers sufficient accuracy for all conceivable sample
sizes of relevance in empirical work (we have chosen T > 4), which is computationally
inexpensive and which is computer ready for incorporation in regression software,

The approximant we report below in Section 3.4 meets these criteria. It belongs to the

composite function family considered in Section 2.3 and yields an error-corrected Edgeworth
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approximation which preserves the latter's asymptotic behavior. Our approximant has been

developed for the case of & =0 in {27), so that it has the following direct applications:

(i‘) tests for the absence of correlation (o == 0} in consecutive observations based on the

statistic & defined in (28);

(ii) tests for a unit root (& == 1) in the autoregression (27) based on the statistic & =
r, zf_,)“‘(z;r;, Z4x¢—1 ) With 2, = y; —yi—1. Other specific hypotheses such as a = ag

in (27) may be tested with the same statistic but with z; defined as y; —~ aoyi—1;

(iii) tests for the absence of serial correlation in regression disturbances through the

use of BLUS residuals;

(iv) tests for the presence of a unit root in regression disturbances through the use of

the BLUS vector for regression error first differences.

Power considerations suggest that some of ithe above tests (in particular the unit’, root
tests (ii) and (iv)) will be dominated by other tests that are more powerful for certain
alternative hypotheses and sample sizes. The tabulations of power recently reported by
Sargan and Bbargava [22] indicate that the Berenblut-Webb statistic with exact critical
values computed by numerical integration provides such a test (of a unit root). In other
contexts these test rankings are less definitive. For example, in unit root tests against
alternatives in the neighborhood of unity, say 0.9 < a < 1, the computations in [22]
show very little difference in power amongst a variety of different tests. Power against such
alternatives is also very low because the distributions of the associated serial correlation
coefficients are so close in the neighborhood of unity. Moreover, Anderson [3] showed that
(27) is a model for which uniformly most powerful (UMP) tests concerning a do not exist.
He also showed that endpoint (at t = 1 and t = T) modifications to the density of data
generated by (27) do allow such tests to be developed. Durbin and Watson [5] utilized
these endpoint modifications in deriving their theory of the UMP invariant properties of
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the Durbin-Watson test. These modifications were also used by Sargan and Bhargava
[22] in their development of UMP invariant tests of the random walk hypothesis for least
squares regression errors. For moderate to large sample sizes these modifications will kave
negligible effects. But for small sample sizes (say T' < 10) the effect of the modifications
on power rankings may be more important (as, indeed, are circular modifications to the
statistic (28)). These effects have not as yet been properly explored. Finally, we may remark
that the e#act tests (iil) and (iv) above continue to apply in regreésion models where the
regressors are stochastic and independent of the errors. In this respect they differ from ard
are more general than the conventional bounds and exact Durbin-Watson tests as well as

the Berenblut-Webb test used in {22].

Notwithstanding the above remarks, functional approximants similar to the one we
develop below for the distribution of & in {28) may, of course, also be developed for other
statistics of importance in models such as (27). Thus, our example may be taken to be
illustrative of potential applications as well as operational with regard to tests such as
(i}(iv). We note also that the approximant may be further extended to allow for variable
a by using the method of Section 2.5. .These extensions are not needed, however, for the
tests discussed above.

3.2, Formation of the First Stage ERA’s

Earlier experience from [18] suggested that an Edgeworth approximation to O0{T1)
might provide a suitable leading coeflicient function in this problem. For the c.df. of &
the Edgeworth approximation to &{T™!) is given by [14]:

Edr{z) = & (T%z + L (a4 Tz=)). (20)
4T%

This particular representation of the Edgeworth approximation is chosen because Edr(z),
satisfies the requirements stipulated for S(z) in equation (2), namely that Edr(z) € C, { 1
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aszfoo, |0asz | —o0,and > 0 for all z € (—co, c0). Compared to similar applications
where the Edgeworth can be a poor initial approximant (see [13]),. in this particular situation
the Eégeworth-;rields a good initial approximant for modest sample sizes (see Figures 2 and
4). For small sample sizes between 3 and 14, bowever, the accuracy of the Edgeworth
spproximation may not be suitable for empirical work. In this range the Edgeworth
typically understates the true size of the test. For instance, wWhen a = 0, T = 5, and
the true size is .05, the Edgeworth is off by more than twenty percent. Although this is
pot nearly as large a rpercentage error as that which results from using the asymptotic
distribution, we shall show below that substantial improvements in accuracy and the

uniformity of errors are possible if ERA’s are used to refine the Edgeworth approximation.

In figure 1 we have plotted the ¢.df. of & for various sample sizes. This figure
shows that the c.d.f. changes smoothly with T and that for large values of T there is
a good deal of curvature that needs to captured in the approximant. Also,-we note that
because the distribution of & is symﬁetric, we need only consider constructing the ERA

so that it approximates the c.d.f. over the positive real line.?

Following the approach to
composite function approximation outlined in section 2.3, our first task is to construct a
series of first stage ERA’s that are indexed by the sample size T. As a practical matter,
we must first decide on the mesh of integers, T, over which we will construct our first
stage rational approximants. Three practical considerations entered into our selection of
Ty. First, it is expensive and computationally burdensome to compute c.d.f. values for
all feasible sample sizes;‘ Oﬁ the other hand, because the second stage ERA's are being
fit over a mesh, the grid must be.ﬁne enough to pick up any rapid changes that occur

in the composite function. Second, after a sample size of 40, the Edgeworth yields an

approximant that is accurate to four decimal places. Third, the Edgeworth approximant

3The reader may wish to prove that the distribution is indeed symmetric in this noncircular
case,
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is very inaccurate for sample sizes less than four. These considerations led us to set Tp =
4 and T° = 36. We then selected sixteen intermediate sample sizes for our mesh (T =
5,6,7,8,9,10,12,14,16, 18, 20,22, 26, 28,30, and 32). The mesh is finer for small sample

sizes because the c.d.f. changes most rapidly for sample sizes between 5 and 10.

[ Figure 1 Here]

The next practical consideration in constructing the first stagé ERA is the question
of how to choose the degree of the rational approximant. As a general rule, parsimony
is important in specifying the first stage coefficients because the number of second stage
computations rapidly increase with the number of first stage coeflicients that are estimated.
We elected to fit a [2/2] rational function because of the smoothly changing nature of the
c.d.f.. Our experience suggests that in general the best way of proceeding is to select the
degree so as to minimize pole problems in the denominator (that is, choose n even and not
too large), and yet allow sufficient flexibility in the denominator in order to trace out sharp

changes of direction and preserve (near linear) asymptotic bebavior as z 1 co (see figure 1).

The final practical issue in the development of the first stage ERA's centers on the
estimation strategy for the rational function coefficients (the 4’s). in Phillips {15, and [18],
multiple-point Padé methods were used to estimate the coefficients. These approximants
were constructed by selecting 2n + 1 points of interpolation to estimate the 2n + 1 rational
coefficients. The main computational drawback in this approach to estimating the rational
coefficients is that the points of interpolation must be chosen by trial and error (see [18])
so as to smooth out the error curve. In other words, the multiple-point Padé technique
does not take into account how the error function is behaving at pomts intermediate to
the points of interpolation. Although this may not be a serious problem in the first stage
approximation of funct.ions that are smoothly changing over their domain, when we come:
to estimate second stage ERA's based upon our first stage values of the coefficient function
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(that is, ¥ = ~(T)), the selection of points of interpolation at the first stage turns out to
phave important conseguences for the shape and regularity of the coefficient functions. In
part,ii:ular, the. .a.rbitrariness of the formal Padé procedure leads to coeficient functions that
cap have rapid changes. This led us to explore an alternative first stage procedure that
systematically produces a near-best approximant and yields coefficient functions that have

sJowly changing behavior. This latter property is what facilitates second stage estimation.

In the spirit of trying to incorporate more information about the behavior of the
error curve into the estimation of the rational coefficients, our procedure relaxes the Padé
requirement that we only interpolate the approximant at 2n 4+ 1 points. Instead, we chose
to fit the function over a much finer grid of points. This refirement obviously no longer
guarantees that there is just one set of rational coefficients associated with the points of
interpolation. We are therefore forced to specify a criterion for selecting rational coefficients
that will produce an oscillating error curve similar to that possessed by a best approximant.
Our preferred procedure works as follows. First, we compute the exact c.d.f. values over a
01 grid between 0 and 1.5 using an extension of the Imhof density algorithm.* Next, we fit
the rational coefficients using a number of alternative estimation tecbniques. Finally, we
select a set of first stage coefficient estimates based upon two criteria: (i) whether they had
a smoothly, equioscillating error curve; and, (ii) whether the coefficients changed smoothly

enough so that a second stage ERA could easily be fit to the first stage coeflicients.

The main computatjonal differences among these alternatives are based upon the norm
in which they minimize the error deviations of the rational approximant. The methods that

we have extensively tested depend upon the following representations of the basic ERA:

—_—— o

4 See [18]. Although this algorithm makes efficient use of symmetric matrix eigenvalue routines,
we have found that repetitive use of this program can be extremely expensive. Fortunately, our
computations here involve fixed and not variable costs.
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cdfir(z) = Birla)n/n)(z) + le) = Edr(z) 1 o + e(z), 50)

1+ Q(z)
edfr(z) _ Pla) 1
o) = Bire) ~ T4 0@ * By < &1
vrle) = —url2)Q(a) + Pla) + (T el @)

Given at least 2n + 1 cbservations on the c.d.I., the rational coeflicients in (30) and (31) can
be estimated by nonlinear least squares or generalized least squares, and the coefficients in
(32) by ordinary least squares, generalized least squares, or least absolute error regression.
As a practical matter, the main differences among these alternative techniques arise from
the properties of their error terms. Alternatively, the differences can be viewed as arising
from the different functions that the right hand side has to approximate. Our experience
has been that no matter which equation is used as a basis for fitting the first stage ERA’s,
all of these techniques generate error curves, e{ z; %), that are smoothly oscillating about
zero. Occasionally, poles will occur at points that may be within or outside the domain
of approximation. For a pole within the domain, we suggest oversampling the grid near
and at the pole so as to force the minin;um error techniques to improve the ERA in the
neighborhood of this point and eliminate the pole. For poles that occur outside the domain
of approximation, the domain of the approximation can be extended. In our application,
these techniques enabled us to construct first stage ERA’s without poles.

In experimenting with fitting our first stage ERA’s via these alternative methods, we
also found that their error curves generally possess at least 2n + 1 point of alternation
(the requisite number for an error curve to qualify as a best approximant). The techniques
diflered, however, in the magnitudes of their error curves at their points of alterpation.
This is not surprising‘in view of the fact that the estimation methods used to éstimate the
rational coefficients in (31) and (32) are minimizing criteria that have heteroscedastic error
terms.
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Following our constructive approach to fitting the first stage ERA’s, we experimented
«ith a variety of alternative heteroscedasticity corrections to (30), (31), and (32) in an
attempt to equi_librate the magnitudes of the error alternants. In the end, the most effective
means by which we flattened the error curve was to oversample on the grid of ordinates
at points Where the error curve was highest (in absolute value). Oversampling tends to
penalize these minimum norm techniques for not fitting these regions of the c.d.f. as well
as to effectively “pull” down the error curve at these points. Although this discussion
suggests that a major amount of tinkering may be necessary to generate a first stage error
curve with the desired equioscillation property, in practice we found that starting from
an equispaced grid, it took only one or two trials in order to produce a nearly optimal

approximant.

For computational and practical reasons we chose to develop and report first stage
ERA's that are based upon nonlinear least squares applied to equation (31).5 Figures 2
and 3 graph the basic function th.at the nonlinear least squares routine is trying to fit. For
small values of T, this ratio has an undulating character that can not easily be captured by
a low degree polynomial. It appears, however, that as T increases the ratio becomes better
behaved and that there is less work for nonlinear least squares to do in fitting a rational
(or polynomial) approximant. Figure 3 shows, however, that this smoothing does not mean
that the ERA no curvature to cai)ture.

Figures 2 and 3 Here

In figures 4 (a) and 4 (b} we have plotted examples of our first stage ERA error
curves, These error curves have alternating properties that are much closer to the best

approximant's than those that bave been obtained using Padé or other conventional uniform
_-.__“"—-—-—

$Nonlinear least squares applied to equation (31) was favored over nonlinear least squares applied
to equation (30) because the muitiplicative scaling factor of the primitive approximant adversely

3ﬁ'e_ﬂed the convergence of the nonlinear least squares algorithm. We also found that estimating the
tatio of the c.d.f. to the primitive approximant produced more satisfactory error curves.
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approximant methods (see for example [20] and [10]). In figure 5 we have plotted for
comparison the error curve on the primitive approximant against that of the_ first stage
ERA. Note that the original downward bias in the Edgeworth has been corrected and the
absolute accur;cy of the Edgeworth approximant has been considerably improved.
Figures 4{a), 4(b), and 5
3.3. Formation of the Second Stage ERA’s -

When all of the first stage ERA’s have been found, work on the second stage ERA can
begin using the techniques discussed in section 2.4. Our first step was to transform the
first stage rational function to the following form:

ai(T) z + ax(T)

[2/2](z; AT)) = co(T) + 14 B\(T)z + 84T} z2

(33)

which is more amenable to the preservation of asymptotic behavior as T { oo. However,
the form of {33) does not preclude the occurrence of poles in the second stage ERA’s. In our
trials, we encountered several (noninteger) poles using the above formulation. To overcome

this difficulty, we therefore rewrote equation (33) in partial fraction form {cf. (19) above)

as:
/2] (2 oT), d(T)) = e} + 72 4 B (69
(1 =cn+ice, dy=dy+idy)
_ 2(T)z + JT)
- Cn(T) + 22 - 2d“(T]lz + (d"(T)z + dlz(T)z) (35}

{(H(T)= :ﬂl:(?) =cn, f(T)= ;:((;;)

and we used these representations to develop our second stage ERA's. Both the spline and
the composite rational function techniques discussed in Section 2.3 were used to construct
coefficient function approximants. The representatioﬁ (34) was found to be the most
adequate for the composite rational functions and the representation (35) was used for
the splines.
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To find the spline function approximants to the coefficients in (35) we computed the first
stage ERA's at T = {4,5,6,7,8,9,10,12, 14, 16, 18, 20, 22, 26, 28, 30, 32,36, 50}. These com-
putations provided a native data set for the coefficient functions {¢,(T), f1(T), Jo(T'), du(T),
dy2(T)}- For each of these coeflicients a cubic gpline was calculated from the data using
equation (12). The resulting functions are displayed in Figures 8 (a) to 8 (¢). The native data
points are represented in these graphs by a cross. In each case, the functions stabilize after
T 2 10 and the approach to the asymptote as T' grows large is smooth and well-behaved.
The second stage ERA based upon these splines as coefficient functions reproduces first
stage accuracy on. the native data set and comes extremely close to achieving first stage

accuracy at intermediate values of T.

In fitting the second stage ERA's to the coefficients in equation (34), we chose to
estimate [5/2] and [8/2] rational functions that employ powers of T-%. Our choice of the
order of the second stage ERA’s was dictated by a desire to reproduce as well as possible
first stage accuracy. Once again, nonlinear least squares was used to produce estimates of
the rational coefficients. Plots of second stage fits that are comparable to those in figures
4 (a) and 4 (b) are provided in figures 7 (a) and 7 (b). In figure 7 (c) we have plotted for
comparative purposes the error curves for several sample sizes that were not part of the
mesh over which we fit the first stage ERA's.

Figure 7 {(a), 7 (b), and 7 (c)

3.4. Final Formulae

Based upon our extensive trials we have selected the following two rational approximants.
These rational approximants satisfactorily reproduce first stage accuracy and are ready to
programmed into regression software.

Table 1 Here

Note that these formulae are in a form that delivers probability values for an estimated
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value of a. It is also interesting to consider the opposite problem, which is to find a critical
value of a given a desired size of the test. As it stands, it is impossible to solve equation
(2) explicitly for the critical value of a. However, a numerical routine can perform this
calculation quiie simply and would require only a few extra lines of computer code for its

implementation.

3.5. Density Approximation

Phillips {15] develcped the necessary formulae and procedures for directly approximat-
ing probability depsity functions. These technicues are similar in principle to those devel-
oped here for the c.d.f. and they have been shown to yield very accurate approximants to
the exact p.d.f. of the serial correlation coefficient. One natural question that is raised by
our choice of approximating the c.d.f. here, is whether the derivative of our ERA c.df.
approximant yields an accurate implicit approximant to t‘he p-d.f. (The parallel question
could be posed for p.d.f. approximants, Does the integral of the p.df. ERA discussed in
{15] yield a good approximant to the c.d.f.?) In view of the denseness property (Theorem 3
above), the ERA can be made arbitrarily close to the c.d.f. by increasing the degree of the
ERA. But since the c.d.f. is in this case smooth as well as continuous, and since the ERA
is also smooth, the derivative of the ERA should be close to the actual p.d.f. if the c.d.f.
approximant is close enough, Further, we note that the derivative of the c.d.f. error curve
is the error curve for what we will call the implicit p.d.f. approximant and that the best
c.d.f. approximant has at least N points at which the derivative of the error curve vanishes.
Thus, the error curve of the implicit p.d.f. approximant will have at least N + 1 points of
alternation. Our main interest is in the performance of the implicit p.d.f. approximant in
the cases of low degree rational approximation that aré most relevant‘. for practical applica-
tions. Here we have some systematic evidence from our own applications. In particular,.
Figure 8 displays the error curves of several of our implicit p.d.f. approximants. Despite the
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Jow order of the ¢.d.f. approximant, these graphs show that the implicit p.d.f. approximant
does very well in approximating the p.d.f. (for comparison, see the p.d.f. error curves in
[18])."

Figure 8 Here

4. Conclusions and Extensions

This paper has extended Phillips’ ERA techniques in two important directions. First,
it bas extended the algebraic theory of ERA's to cover distribution function approxima-
tion. Second, it has introduced composite functional approximants that are capable of
bandling the parameter multidimensionality frequently encountered in applied problems.
In Section 3 we used these techniques to approximate the distribution of the serial cor-
relation coefficient. We found that we could satisfactorily approximate the c.d.f. of the
autoregressive parameter using ERA’s that employed either cubic splines or composite ra-

tional functions in the formulation of the second stage ERA.

In conclusion, we want to underscore the constructive nature of the ERA's discussed in
this paper. Their flexible form provides substantial leeway in the selection of the theoretical, ‘
pumerical, and Monte Carlo information that can be embodied in the approximant. In
general, it appears that the more work the leading coeflicient function can do in fitting
the ¢.d.f., the less the work that is required of the rational coefficients. There are also
several other tradeoffs that exist in the construction of ERA's. First, the degfee of the
approximant must be selected so as to balance the desired secondl stage precision against
the computational burden of fitting composite coefficient functions that do not have poles.
Our trials suggest that for most practical applications, even very low degree ERA’ will
provide the accuracy necessary for statistical tests (often [2/2]'s and at most [4/4]'s). A
second practical consideration that arises in the construction of these ERA’s is the selection
of the discrete parameter grid over which the ERA’s will be fitted. Although the precise
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selection criteria will depend upon the particular application, our experience has been that
it is most important to select a more concentrated grid over those parameter regions where

the ratio of the ¢.d.f. to S(z) changes rapidly.

The c.d.f. ‘approximation techniques developed in this paper have a wide number of
uses and many extensions of our own application are now possible. The most straightfor-
ward extension would be to functionalize the serial correlation coefficiernts on a as well as
T. This higher order composite function would allow the investigator to conduct power
computations directly for some of the tests described in Section 3.1. Another extension
would be to treat the problem of serial correlation with a fitted mean and to functionalize
the ERA on the intercept parameter. Similar ERA's may be constructed for higher order
serial correlation coefficients. These ERA's would enable exact tests to be performed in the
Box-Jenkins model identification process. In particular, composite function ERA’s for these
serial correlation coefficients could deliver critical values for any sample size and chosen test

size.

Finally, although the methods we have used in this paper are not the only techniques
that are available for the constructive development of distribution approximants, they do
have the advantage over many other methods because they readily integrate information
from diverse analytic and numerical sources about the true distribution function. Our
theoretical results also provide a rigorous basis for the development of approximants in
the ERA family. Recently, Nankervis and Savin [12] have successfully used r%onse surface
regressions from experimental Monte Carlo data to correct the distribution of the ‘t’ statistic
in an AR(1). Their approach invoives an empirical search for an appropriate response
surface representation of the mean and standard deviation of their statistic as a function of
the parameters of the model. The response surfaces are then used to correct conventional
inferential procedures based upon the ‘¢’ distribution. The goal of this research is therefore
closely related to our own: to provide accurate and easily implemented corrections to the
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distributions upon which we rely in econometric inference.



Appendix on the Computation of Best Approximants

This appendix describes a new method for constructing the best (uniform) extended
rational approximant to a real-valued, univariate, continuous function. The method is
based upon least squares techniques that use information from both critical and collocation
points of the error curve to update estimates of the approximant. Although we have
pot found it necessary to apply this technique to the distribution function of the serial
correlation coefficient, in practice this technique could readily be used to further improve

the performance of our first stage ERA’s.

1. Existing Algorithms

Existing rational approximation algorithms are either based upon the equioscillation
alternate property of the best approximant or they directly minimize the maximum alter-
nate error via nonlinear programming techniques. The relative performance of each of these
algorithms has been studied by a number of investigators {most notably [10]). The general
conclusion that can be drawn from these experiments is that for small grids of functions
values, the direct methods are more reliable because they continually minimize the maxi-
mum error of the approximation. One drawback to these direct algorithms, however, is
their slow convergence to the best approximant. Indeed, they often require an average of
between five to fifty times as much computer time as the methods that are based upon the
equioscillation theorem.

The computational complexity of the direct algorithms has prompted a number of
attempts to improve the reliability of the more simple methods. The principal reliability
problems of the simpler algorithms, however, have yet to be adequately handled. These
problems are generally twofold: the algorithms can produce approximants with poles or
approximants with too few oscillations. Both of these problems appear to stem from the
fact that these techniques do not use much information about how the function is changing
relative to some reference set of critical or collocation points (see [11]). It would seem,
therefore, that if any progress is to be made in improving the behavior of these simple
algorithms, it must be dore by introducing more information about the behavior of the
error curve into the approximant. The following algorithm uses the interpolation techniques

discussed in section 3.2. *

2. A Least Squares Algorithm

Consider an initial approximation to edfr(z) that has (at least) the required number of

alternations for it to be a best approximant. For this initial rational approximant, there are
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2 set of equations that define the collocation and critical points of the approximant’s error
curve. These points form a reference set, M,, to the best approximant’s t = 1,...,n+m+2
(at Jeast) critical points and j =1, .., n+m+1 collocation points. Using the equioscillation
theorem, we know that the best approximant's reference set, M*, is defined by the following
equations: '

for critical points: cdfr(z;*) — Erar(z;*) = M~1)' (A1)

for collocation points: edfr(z;*) — Erar(z;*) =0. (A.2)

\When these equations are multiplied by the denominator of Erar(z} we obtain the following

system of equations in terms of A and the rational coefficients (for any reference set M,):

~Q(2:)ed fr{(z;) + Edr(z:)P(zi) + M—1¥ Q(=:) + M=1) + ¢

cd fr(z) = {-—Q( z;)ed fr(z;) + Edr(z;)P(z;) + ¢;

where the terms {¢;,¢;} represent errors in the approximation of the true set of critical and
collocation points M* == {z;*, ...,z,*} by M, = {z1,...,2»}. Writing these equations as a

system of v == 2(m + n + 1) + 1 equations, we have
y=WA+2Z¢+Xp+e (A.3)

where R . _
—zi{ys —wiA) —z3(y = wid) ... =z(nn —wy))

Z = : : :
"zv(yu) —zf,(y‘,) s —z:,‘(y,,) J
_Edr(zl) 1 Edr(zy) 23Edr(z;) ... a7 Edr{z)]

Edr(zy) zyEdr(zy) 22Edr(ze) ... 2lEdr(z.)]
-1
ed fr(zy) 1
y=| wW=|
cd fr{(zy) 0

Apart from the nonlinearity of the A appearing in Z, equation {A.3) has the form of a
linear regression equation. This suggests that if we start with “an initial reference set M,,
that is close to M*, we can produce a new rational approximant (and a new reference set)
based upon the following procedure. Holding the A in Z fixed, apply least squares to (A.3)

50 a3 to minimize the squared error on the old reference set. This produces new values of
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the rational coefficients and X, as well as a new reference set, My, that can then be used as

input into subsequent revisions of the approximant.

Two natural questions arise here: Why is this a sensible procedure? and, Why should
this algorithm converge! The answer to the first question rests in the way the algorithm
includes information about the behavior of the rational approximant's error curve. To see
this, consider the two approximation methods that are nested within this procedure. On
the one hand, when only the critical points are used to solve (A.3), this algorithm is a
version of the generalized Remes algorithms and the solution to (A.3) is exact. On the
other hand, when only the collocation points of the rational approximant are included in
equation (A.3), we have a multiple-point Padé approximant as a special case.

The second question posed above has yet to be evaluated formally. It does appear,
however, that some of the local convergence results for generalized Remes algorithms can
be applied to this algorithm. In practical applications of the least squares method, the
algorithm usually converges very rapidly to the best approximant (provided the algorithm
has a sufficiently good initial approximant). As is the case with all algorithms based upon
the linearizations contained in equation (A.3), however, the algorithm is not entirely reliable
in that given a poor initial approximant, the algorithm can produce an approximation with
poles or an approximation that has too few alternants. One of the atiractive features of
this algorithm, however, is that the least squares approach suggests ways in which these

degeneracies can be overcome.®

3. Numerical Examples

This section illustrates how to apply the algorithm and reports some preliminary results
on its performance. The results described here are, however, by no means a complete
evaluation of the algorithm. There are many factors that control the performance of the
algorithm (such as the size of the initial reference grid, interpolation formulas, and the
choice of Edr(z}) and a great deal of work remains to be done before the significance of

each factor is known.

One final issue that must be resolved before the algorithm can be implemented is the

question of how to treat the nonlinearity of A in Z. A wide range of strategies for coping

® This may explain why in practice the Remes algorithms fail to converge for very simple
functions. For example, whep a Tchebychefl reference set is used for /z on the unit interval,
Remes algorithms invariably have trouble converging because most of the critical points for the best
approximant are bunched near the origin. Other methods of generating an initial approximant (such
as multiple-point Padé) have similar defects in that they also tend to overlook information about
how the function is changing.
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with the nonlinearity are possible. Oxly three such possibilities are considered here. The
frst way of proceeding is the naive way of simply setting A equal to some constant. The
second way is to set A equal to the maximum error on the preceding iteration’s rational
apprdximant. The final way is to use the least squares estimate from the previous iteration.
These schemes will be denoted Al, A2, and A3.

Example 1

In this first example we approximate ¢® over the unit interval by a [2/2] rational
function. Edr(z) =1 has been set equal to ore for all z, N = 101 and {z,, 2, ..., T1j1} =
{.00,.01, ...,1.00}. The initial approximant is obtained by applying least squares to (A.4).

This yields the following rational approximant (whose error curve is plotted in Figure 1}:

a, = 1.00000635  a; = .542098 as = .108358
b, =1.0 by = —.457717 by == 0648001
with critical points
{—.635, .317, -—.342, .275, -—.860, .865} x 10°

This least squares approximant is extremely close to the best approximant. Using the

iterative least squares procedures described above, we obtain the following results

"~ Method Al
Iteration Maximum Error x 100000
1 -.519 395 -.414 371 -.538 560
5 -.458 446 -, 447 437 ~.454 447
10 - 477 A77 - 477 AT7 -477 477
Method A2
[teration Maximum Error x 160000
1 -.582 429 -.430 366 -.484 A72
5 -.477 477 - 477 A77 - 477 A77
Method A3
Iteration Maximum Error x 100000
1 -.571 423 -.428 368 -.493 A87
5 -.451 .448 -.447 .442 -.449 447
10 =477 A77 - 477 477 - 477 AT7

In each case, the algorithm converges quickly to the best approximant.’ Although the
method that uses the upper bound estimate of \ appears to be the most rapid method, this

"The average amount of CPU time on a DEC 20 for each iteration is about .25 seconds.
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is not always true. For example, if the fixed-lambda method uses a more accurate estimate
of the best approximant's lambda, then the fixed-lambda method generally will converge
at a faster rate.

Example 2

The second application of this method is to the probability density function (p.d.f.)
considered by Phillips {18]. Although Phillips did find a very accurate approximant to
the p.d.f. using Padé techniques with a {4/4] ERA, the final approximant left room for
improvement. In particular, its error curve osciflated 14 times (four more than necessary
for a best approximant) and had a maximum error of .125 x 10~3. Although the error
oscillations were of roughly similar magnitude, there was enough variation to indicate that
there was room for further improvement. The application of our least squares technique to
his problem yielded the following results. The critical points of the initial, equispaced grid

approximant are:
{.116, —.108, .094, —.068, .045, .061, —.052, .040, —.031, .014, —.00'1’}z103

Note that this initial approximant alternates two more times than is necessary for the
best approximant. By applying the fixed-lambda method (A = .00009), we obtain the
following results.

Method Al
Iteration Maximum Error x 1000
1 095 =107 D082 =067 072 -.081
.050 -.029 048 -.050
5 084 -.083 082 - 087 088 -.090
103 -.050 004 -.088
10 085 -.084 .082 -.085 087 -.086
083 -.083 026 -.087

After one iteration, the approximant reverts to the minimum number of oscillations for the
best approximant. After only 11 iterations, we obtain an approximant that is very close to

the best approximant.
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TABLE 1

Final Formulae

Erar(z) = Edr(z){c. + 2hzt I }

2% — 2dy 2 + (d}, + di,)
Edr(z) = (T%z + (a4 Tz')).
4T}
() = <df (N(0,1))

A. The Spline Coefficient Function

The s>line coefficient funciions are defined (for 4 < T < 50) by

. Ty =Ty
o8(T) = {(T ~ Tlyjun + (—’—’—'—‘;—ﬁ -

(dj + Tj41 = T)my +(d; + T — Tj}mjsq}

(T = T})(Tya = T) a5

over the interval T; < T < Tj41. The constants for each coefficient function are given by
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Spline for ¢, == ¢,(T)

Y
0.1025405D + 01
0.1007800D0 + 01
0.1004400D + 01
0.1002800D + 01
0.1001800D + 01
0.1001200D + 01
0.1000900D + 01
0.1000500D + 01
0.1000200D + 01
0.1000200D -+ 01
0.1000100D + 01
0.1000100D + 01
0.1000100D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.9999985D + 00

D

0.1000000D + 01
0.1000000D ++ 01
0.1000000D + 01
0.10000000 + 01
0.1000000D + 01
0.1000000D + 01
0.2000000D + O1
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.1400000D + 02
0.0

Spline for fi = fi(T)

- Y
—0.2426631D - 01
—0.3746400D — 02
—0.3787600D - 02
—0.1790900D — 02
—0.1164300D — 02
—0.6563100D — 03
—0.4005600D — 03
-0.1480000D — 03
—0.5030600D — 04
—0.1544600D — 04
0.1818000D — 05
0.8654800D — 05
0.1125800D — 04
0.1180300D — 04
0.1325600D — 04
0.1232400D - 04
0.1145500D — 04
0.9990400D — 05
0.5661994D —~ 05

D
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.2000000D + 01
0.2000000D 4 01

0.2000000D + 01

0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.2000000D + 01
0.2000006GD + 01
0.2000000D + 01
0.4000000D + 01
0.1400000D + 02

0.0
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M

0.0

0.2212108D - 01
—0.3254305D — 02
0.18968145D — 02
0.6972678D — 04
0.4249483D - 03
0.3048018D — 04
-0.3914813D — 05
0.1351783D - 03
—0.8679855D — 04
0.6201592D — 04
—0.1126514D — 04
—0.16955368D - 04
0.1899865D — 04
—0.5081197D — 05
0.1328135D — 05
-0.2233420D — 08
0.6958635D — 08
0.0

M

0.0

—0.3409020D — 01
0.1299414D - 01}
—0.5658917D — 02
0.1421050D — 02
—0.7369129D — 03
0.1316174D — 04
—0.5943876D — 04
—0.7706692D — 05
—0.3989470D — 05
-0.2730429D - 05
—0.7296141D — 06
-0.7015145D — 06
0.7213256D — 06
—0.1154174D - 05
0.3178721D — 06
—0.2281411D — 07
© 0.1203126D - 07
6.0
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Spline for fz = fz(T)

Y
—0.2237575D — 01
—0.6880260D — 02
-0.1757200D - 02
—0.1076000D — 02
-0.5128900D - 03
—0.3194200D - 03
—0.1952500D — 03
—0.9449900D - 04
—0.5347800D — 04
—0.3573100D — 04
—0.2505000D — 04
—0.1867600D — 04
—0.14450000 ~ 04
~0.9288800D — 05
—0.7485200D - 05
—0.6224200D - 05
—0.5260700D — 05
—0.3876700D — 03
—0.1631507D — 05

D

0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + O1
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + O1
0.2000000D + 01
0.2000000D + 01
0.2000000D + D1
0.4000000D + 01
0.14000000 + 02
0.0

Spline for dyy = d1;:(T)

Y

0.4089132D + 00
0.5067900D + 00
0.3380800D + 00
0.3421300D + 00
0.3056000D + 00
0.3010500D + 00
0.2910600D + 00
0.2810900D + 00
0.2741300D + 00
0.2652600D + 00
0.2589600D + 00
0.2522000D + 00
0.2456300D + 00
0.2335400D + 00
0.2355900D + 00
0.2312100D + 00
0.2275000D + 00
0.2225400D + 00
0.2036835D + 00

D

0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + O1
0.1400000D + 02
0.0
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M

0.0

—0.1476514D - 01
-0.3174731D - 02
0.8132645D — 03
—0.7868675D — 03
0.11636560D — 03
—0.9439481D — 04
0.36181430 — 05
—0.9672759D — 05
0.1618934D — 06
-~0.1573814D — 05
-0.3271356D -- 06
—-0.3396431D — 06
—~-0.5155203D — 07
—0.1768957D — 06
-0.5476412D — 07
--0.5029780D — 07
-0.2534953D — 07
0.0

M

0.0

—0.5119480D + 00
0.4362711D + 0G
-0.1965766D 4+ 00
0.1065551D + 00
—~0.3776378D — 01
0.1186003D — 01
—0.1683196D — 02
—0.6122438D — 03
0.1267171D — 02
—0.6014412D — 03
0.4485934D - 03
—0.9079323D -~ 03
0.2893250D — 02
—0.3401137D — 02
0.1066299D — 02
0.1409421D — 03

2.0.3347571D — 04

0.0



© 00> enwm ]

For T > 50,

Spline for dy2 = d5{T)

Y
0.90930720D + 00
0.6928200D + 00
0.5299400D -+ 00
0.4673700D + 00
0.3949800D + 00
0.3473300D + 00
0.3049200D + 00
0.2469900D + 00
0.2086300D -+ 00
0.1832600D + 00
0.16398000 + 00
0.1505800D + 00
0.1404300D + 00
0.1256200D + 00
0.1142500D + 00
0.1088400D + 00
0.1041600D + 00
0.9549900D — 01
0.7798729D — 01

€o == 1,

D

0.10000000 + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.10000000 + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.20000000D + 01
0.2000000D + 01
0.4G00A00D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.1400000D + 02
¢.0
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M
0.0

0.4110085D — 01
0.1572408D + 00
—0.6820309D — 01
0.5685174D — 01
~0.9963870D — 02
0.1464374D — 01
0.1385714D — 02
0.6168405D — 02
—0.5743319D — 03
0.2263923D — 02
0.3386396D — 03
0.1256519D — 02
-0.1880125D — 02
0.2820215D — 02
~0.4607346D — 03
0.1177235D — 03
0.1393219D — 03
0.0

fi=fo=d;; =0, and dyp =¢



B. The Second Stage ERA Coefficient Function
The second stage ERA's were fitted to

e1s(T) + i 12(T) e11({T) — § ¢42(T)
z—dy(T)—6d1o(T) " z— dy(T) + 1d12(T)

[2/2)(=; oT), d(T)) = c(T) +

according to
Co = 15/ 2]
cyy = —I-[SI 2]
vT
cyp = —l“[°/ 2]
vT
dyy = ——[5/2]
1=
vT
d12 = _1‘!5/ 2]
vT
Numerator
€, ot €12 dy, dy2
0 -.003753486 .00303693 —.000220875 1.84872 841728
1 0823311 —.0610821 —.0109917 —14.9849 —10.3950
2 —.711465 482070 274271 23.1109 60.1172
3 3.01684 -1.85280 -2.32525 84.8834 —199.104
4 —8.22756 3.45125 0.52452 —-315.163 309.302
5 491787 —2.48854 -19.1841 297.993 -144.937
6 15.1337
Denominator
€y C11 €12 du diz

1 —7.38542 —5.13001 —6.21730 ~7.02527 =7.12108
2 11.1815 6.53295 9.11970 11.0877 11.5276

The following expressions convert these coefficients into those in equation (33):

€o = Cp

i
d + d,

ay = 28s¢11 ap = —(432 - ﬂf)%cﬂ +

B = —28.dy, A2 =

oy f
28,

+
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FIGURE 6(e): Spline Founction for d12 = dlz(T)
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