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HEADNOTE

This paper investigates a property of éstimators called stability.
The stability exponent of an estimator is defined to be a measure of the
effect of any single observation in the sample on the realized value of
the estimator. High stability is often desirable for robustness against
misspecification and against highly variable observations. |

Stability exponents are determined and compared for a wide variety
of estimatots and econometric models. They are found to depend on the
maximal moment exponent (i.e., the number of finite moments) of the esti-
mator's influence curve. Since it is possible often to construct esti-
mators with specified influence curves, estimators with different

stability exponents can be constructed.
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1. INTRODUCTION AND CONCLUSION

This paper investigates a property of estimators called stability. The
stability exponent of an estimator is a2 measure of the magnitude of the
effect of any single observation in the sample on the realized value of
the estimator. A number of reasons related to robustness suggest that
often it is desirable for an estimator to be relatively insensitive to
any particular observation in the sample, i.e., to have high stability.
In addition, it is useful for diagnostic purposes'to have knowledge of
the stability exponents of different estimators, in order to know which
estimators are likely to rely more heavily on some single observation.

The paper is organized as follows: Section 1 introduces the basic
idea contained in the paper, attempts to motivate it, and summarizes the
results in an informal manner. Section 2 presents definitions, assumptions,
and the general results. For purposes of illustration, the linear regres-
sion model with the least squares estimator is used as a running example
throughout this section, Section 3 discusses numerous additional applica-
tions of the general results. An Appendix contains proofs of the results
given in Section 2.

In words, the stability exponent of an estimator is the greatest
normalization factor such that the normalized deviation of the estimator,
due to the deletion of a single observation, converges to zero with prob-
ability one as the sample size goes to infinity, for any sequence of dele-

tions. More specifically, we make the following definition,



DEFINITION: The stability exponent of an estimator 8z{8 :n=1,2,...}

of some RJ-Valued parameter 8 1is defined to be

(1.1) A(8,P) = supl{g € R : na(én-én L) 0 as. [P, ViKY,
n
where @n K is the estimator applied to the sample of size n with the
*n

k:h observation deleted, 0 is a J-vector of zeros, a.s. abbreviates
almost surely, P is the underlying probability distribution generating

the data, and {kn} H {kn :k,<n, n= i, 2, ...} is any fixed sequence

of indices of deleted observations, one for each sample size,

Thus, the stability.exponent of an estimator is an asymptotic meas-
ure of the sensitiiity of the estimator to observations actually in the
sample2 (rather than to non-random hypothetical observations, as is measured
by the influence‘curve, see Hampel [25]). Under fairly general conditionms,
stability exponents lie between zero and one, with the extreme values being
at;ained by certain estimators. The results of this paper concern the
determination of the stability exponents of estimators in a fairly broad

class, and for an extensive array of different econometric models. Among
others, models for which the results apply include: 1linear and nonlineér
regression (with fixed or random regressors), linear and nonlinear simul-
taneous equations, panel data, and limited dependent variable (such as
logit, probit, truncated and censored regression, and self-selection).

The class of estimators considered in this paper is defined to in-
clude all estimators that can be written as solutions (for 6 ) to a sys-

tem of equations:



(1.2) .ﬁ r; (2, 8) =0,
i=1

where ri(-,-) is a specified function that defines the estimater, and
Zi is a random vector of observed variables comprising the ith observation
{see Huber Léiﬂ). Note that Zi may include variables in ZE for ft<i, For
example, in time series regression and simultaneous equations models, 2i
may include lagged variables, The number of estimators that can be written
in the form (1.2) is quite large. For example, the following estimators
are included: leést squares, maximum likelihood (including full-information
(FIML) and limited information (LIML) estimators of simultaneous equations
models), instrumental variables, M-, and various multi-stage estimators
such as Zellner's [38] seemingly unrelated regressions estimator, Heckman's
ng] estimator of censored regression and self-selection models, two stage
least squares (25LS), and_three stage least squares (35LS). These examples
are discussed below in Section 3.

Under suitable regularity‘conditions (outlined below), it is possible

t0 wWrite estimators in the class defined above in a linearized form:

(1.3) 6:9-1.1_
n,
i=1

Nt~

-1
A ri{zi’ ae) ]

vhere Bo is the estimand, I_ is a JxJ random matrix equal to the

n
identity matrix plus a matrix of small order one as n + = a.s., and A
is a JxJ non-random non-singular matrix, If r;(+,+) is independent
of i for i sufficiently large, then A'{r(é, 8y) is the influence
curve of 6n evaluated at z , as defined by Hampel [25].

It is shown that the stability exponent of én is directly related

to the maximal moment exponent {i.e., the number of finite moments) of



ri(zi, BU) , 1 =1,2, ... .. In particula;‘, if Ty and r, are sto-
chastically greater than or equal to, and less than or equal to,lri(zi, 90)!
for 211 i =1, 2, ... , rTespectively, then the stability exponent of
§n lies in the interval [1-1/p, 1-1/q)] , where r, and T have
maximal moment exponents equal to p and q , Tespectively., If p equals
q , the stability exponent of & is established, Otherwise, the stabil-
ity exponent of én is given by a more complicated expression involving
the tail probabilities of the random vectors ri(zi, 90) s, 1 =1, 2, (on .

Thus, the qualitative result is obtained that the stability exponent
of an estimator depends on the maximal moment exponent of its linearized
form (or influence curve)--the greater the maximal moment exponent the
greater the stability exponent., Further, there is no upper bound beyond
which additional moments no longer increase the stability exponent of the
estimator. Since ri(-,-) is chosen by the investigator, it is often
straightforward to obtain estimators with a specified linearized form (e.g.,
see Krasker and Welsch [37, 38] and Stefanski, Ruppert, and Carroll [48]),
Hence, estimators with different stability exponents can be constructed.

It should be noted that stability results depend on the maximal moment
exponent of the.linearized estimator, not on the maximal moment exponent
of the estimator itself. The latter has received considerable attention
in the econometrics literature, e.g., see Kinal [35], since common estimators
of simultanecus equations models have fewer than all moments finite even
with normal errors. These results have no clear&implications for stability
since they deal with moments of the estimator rather than moments of the
linearized form,

The examples of Section 3 provide a variety of models, estimators,

and stability characteristics of these estimators. We briefly summarize



the results here: In the linear regression model with fixed regressors,
the least squares (LS} estimator has stability exponent that depends on the
maximal moment exponent of the errors. On the other hand, Huber [_él]
M-estimators have the maximum stability exponent of one in this model, re-
gardless of the distribution of the errors. In the linear regression model
with random regressors, the LS estimator has stability exponent that de-
pends on the maximal moment exponent of the errors and the regressors,
whichever is smaller. In contrast, Krasker and Welsch's [37] bounded in-
fluence regression estimator has stability exponent equal to one for all
error and regressor distributions. Resuits for the LS estimator and
M-estimators in the nonlinear regression model parallel those in the linear

model, except the dependence on the maximal moment exponent of the regressors,

when applicable, is replaced by that of the derivative of the Tegression
function (with respect to the parameter vector) evaluated at the true
parameter.

The instrumenta! variablks (V) estimator of a single equation from
a system of linear equations has stability expoment that depends on the
maximal moment exponent of the errors and the instruments. In comparison,
Krasker and Welsch's [38] weighted instrumental varialieg (WIV) estimator
for this model has a bounded influence function, and hence, has stability
exponent equal to one--the maximum--regardless of the distribution of the
errors and instruments. |

The stability exponents of maximum likelihood (ML) and pseudo-ML
estimators depend on the maximal moment exponent; of their score functions.
In logit and probit models, this corresponds to the maximal moment exponent
of the regressors. In the censored regression model, it corresponds to

the maximal moment exponent of the errors and regressors. Heckman's [27]



two-stage estimator of this model has the same stability properties as the
ML estimator. Similarly, the ML estimator and Zellner's L§§} feasible
Aitken estimator for the seemingly unrelated nonlinear regressions model
have the same stability properties. Their stability exponents depend on

the maximal moment exponent of the errors and the derivatives of the regres-
sion functions (with respect to the parameter vector) evaluated at the

true parameter. Following the examples of Section 3, the calculation of
stability exponents of othér estimators for other models is straightforward.

Clearly, if ri(zi, 60) » 1i=1,2, ... are uniformly bounded,
then all of their moments exist and the maximum possible value for the
stability exponent is attained regardless of the true distribution of the
data, Bounded influence estimators, referred to above, are characterized
by this property. In contrast, other estimators have stability exponents
that depend on the true underlying probability distribution, since the true
distribution determines the maximal moment exponent of ri(zi, eo) s
i=1,2, ... . This is illustrated by the examples of Section 3.

For reasons discussed below, high stability often is a desirable
property of estimators. Hence, it may be of interest to determine whether
an estimator has high stability for a given problem. Two factors are
pertinent here. First, the stability exponent of an estimator generally
depeﬁds on the true distribution of the data, and second, in practice this
true distribution (or 8 parametric family containing it) is never known
precisely. Thus, one can be certain that an estimator has high stability
in the context at hand, only if it has a high stability exponent for all
distributions close to the postulated true distribution or true parametric

family of distributions, This leads to the following definition:



DEFINITION: An estimator is stability-robust at a distribution P (with

respect to some given topology) if the infimum of its stability exponent
over some neighborhood of P 1is positive, Further, an estimator is

strongly stability-robust at P if itsstability exponent equals one, the

maximum, for all distributions in some neighborhood of P

Clearly, bounded influence estimators are strongly stability-robust,
Conversely, in i.i.d. (independent idenfically distributed) models it is
not hard to show that for any estimator of the form (1.,2) (i.e., any
M-estimator) and any distribution P , fhere is a distribution P' arbi-
trarily close to P (in terms of the weak topology on the marginal distri-
butions) for which the maximal moment exponent of ri(zi, BO) is less than
or equal to one. (See Hampel [24] for a justification of the choice of the
weak topology.) That is, the estimator has stability exponent equal to
zero at P' . Thus, an estimator is not stability-robust at any distribu-
tion, if it has an unbounded influence function,

To extend this converse result to the case of models with i,n.i.d.
(independent non-identically distributed) observations is not too difficult.
But for models with dependent observations one needs fo find an appropriate
topology or measure of closeness of distributions of the whole seguence
of cbservations, Zi » i=1,2, ... . This is much less straightforward
than the i.i.d. or i.n.i.d. cases, but several possibilities have been ex-
piored in the robustness literature (see‘Andrews [6, 7] and Papantoni-
Kazakos and Grey [45]). For the neighborhoods considered by Andrews, the
same converse result as above holds.

The above conditions for stability-robustness of an estimator can

be compared to Hampel's [24] classical qualitative robustness concept,




In i.i.d, location and linear regression models, estimators of form
(1.2) are gqualitatively robust if and only if their influence function is
bounded (and their estimating equations have a unique solution in the limit),
That is, the conditions for qualitative robustness and stability-robustness
are equivalent. Thus, we see that for M-estimators the stability property
considered in this paper is closely related to the classical robustness
properties of qualitative robustness and bounded influence.

As mentioned above, several reasons related to robustness suggest
that high stability is often a desirable property for estimators. We now
discuss these reasons. First, economic data are rarely so "clean" that
it is prudent to put great weight on a single observation., For example,
the 1mprec151ons of economic data are manifested by the continual revi-
sions made to macroeconomic time series, and the subjective nature of some
wicroeconomic survey data.

Several factors contribute to this imprecision: There is pure
meﬁsurement error at the data collection stage. The correspondence between
observed or "constructed" variables and the variables that are relevant -
from the perspective of economic theory is usually imperfect, and sometimes
considerably so. The precise definitions of variables may be problematic
even from a theoretical perspective, as exemplified by the money supply
and market shares (in a nebulous market). Finally, recording errors made
in stages of data collection, transmission, and analysis are inevitable.
Such errors are often beyond the control of the ecoqpmetrician who might
not have any input into the collectiofn and transmission stages. In fact,
the econometrician might have only scant knowledge of the degree of impre-
cision of the data. In such cases, it is unwise to let any single obser-

vation have great weight in determining an estimator's value.



The imprecision of econometric models also adds to the desirability
of high stability. Economic theory cannot yield complete model specifi-
cations, so even in the presence of a simple true model, a specified
model is likely to be just an approximation. Moreover, the existence of
2 simple true model is usually questionable. In most cases, econometiric
models are approximations, at best, of much more complicated socio-
economic phenomena, In this context, an observation that appears to be
highly informative,may'Be so, only because of a spuriously precise specifi-
cation of the model. For example, in a linear regression model an obser-
vation that is an outlier in the space of regressor variables can be highly
informative. That is, it can greatly reduce estimator variances. If it
is recognized, however, that the extension of the regression function to
the outlying observation may be nonlinear with unknown functional form,
then the informative content of tﬁe observation is drastically reduced.

In such a case, the effect of the observation on the computed variance of
an estimator with low stability exponent is spurious #nd deceptive. Such
an observation also can cause a significant bias for an estimator with a
low stability exponent. An estimator with -a higher stability exponent is
more robust to such specification difficulties because no single observa-
tion is given excessive weight,

A third reason for interest in high siability is that, in some
models, estimators that are highly sensitive to a single observation per-
form quite poorly even if the model is specified correctly and the vari-
ables are measured without error. This phenomena:;ay occur if the obser-
vations are highly variable. In this case, any single observation is
potentially a randomly generated outlier with little informative content,

and hence, should not be given disproportionate weight, For example, in
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a regression model or simultaneous equations model with fat-tailed errors,
the least squares (LS) estimator has a low stability exponent, because an
putlving error realization can dramatically alter the value of the estimator,
As expected, the relative efficiency of the LS estimator is quite poor in
this situation. On the other hand, various robust procedures have high
stability, and consequently, perform quite well even with highly variable
ocbservations. The statistical literature on robustness has analyzed prob-
lems of this sort in some detail, see Huber {321.

The above arguments for high stability are not always applicable,
of course, and so, estimators with high stability are not always prefer-
able, For diagnostic purposes, however, it still may be useful to know
which estimation procedures are more likely to weight some single obser-
vation heavily. Hence, even in this case, estimator stability is of interest.

Note that stability comparisons can be made between different esti-
mators for the same model or between estimators of different models. If
an econoretrician is more familiar with one model than another, stability
comparisons of the latter sort may yield useful qualitative information
about the second estimator's sensitivity to single observations in the
sample,based on knowledge of the first estimator's sensitivity.

The stability exponent of an estimator is based on the deviations

-~

§n - en,k , k=1, ..., n. In the literature these deviations have been
found useful for other related purposes. In analyzing the behayior of
the least squares estimator in the linear regression model, Cook [l6, EED
and Belesley, Kuh,. and Welsch [10]use these devi#tions to help detect in-
fluential observations. Also, these deviations are proportional to the
deviations of an estimator from its jackknifed pseudo-values. Tukey [50}

has suggested a nonparametric estimator of the variance of the original
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estimator, én » based on the latter derivations (see also Miller [44]).
The relationship between the stability exponent and the influence curve, a
very important tool of robust statistics, has been discussed above. A finite
sample analogue of the influence curve suggested by Tukey {511, viz., the
sensitivity curve, is also related to stability, If we denote the sensi-
tivity curve of én formed using all n observations except the k7,
by SCn’k(z) s then SCn’k{z) evaluated at the deleted observation Zk
is proportional to the deviation §n - gn,k . That is, Tukey's finite
sample sensitivity curve (constructed with an observation deleted) eval-

uated at points in the actual sample is the basis of the stability exponent.

2. GENERAL RESULTS

2.1. Asymptotic Framework and Estimator Assumptions

The general asymptotic framework considered in this paper consists

of an infinite sequence {Z} {Zi :i=1,2,...} of random vectors of
arbitrary dimensions. A sample of size n corresponds to the cbservation
of the first n "terms in this sequence. For increased generality, the
ith ternm Zi is allowed to include elements of the random vectors Zg R
fof £ <i ., Thus, Zi may include lagged variables, The distribution
of the sequence {Zi} is denoted P . All probabilistic statements below
are made for {Zi} distributed according to P ., Thus, "almost surely"
means "almost surely under P ," |

The sequence {Z,} is assumed to be weakly dependent over time,
That is, the dependence between random vectors dies ocut as the difference
in subscripts of the variables becomes infinitely large. (For the case

of cross-sectional data, the observations are often independent and this

requirement is satisfied.) More precisely, {Zi} is assumed to be strong
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mixing., This is a realistic assumption for many economic time-series (and

cross-section) situations. It is considerably weaker than other assump-

tions, such as independence, m-dependence, or auto-regressive moving

a§erage (ARMA) structure (see Withers [55], but cf. Andrews [5, B]), that

often are used in econometTric models. Moreover, strong mixing does not

imply stationarity orlany assumption related to identical distributions.
Strong mixing is defined as follows: Let {Q; :i=1,2,...} bea

sequence of random vectors. Let ‘Bil denote the c-fielé generated by

Qs Qs +-+»Q, for l<i<i<w . That is, ‘Biz is the collection of all

events determined by Q;» Qi+1""' Q - {Qi} is strong mixing if a(s) + O

as n-+= , where a(n} are the strong mixing numbers of {Qi} defined by

(2.1) a(s) £ sup sup |p(anR) -P(AYP(B)] .
221 AEB, ,,BEB,

Note, if {Qi} are independent, then o(s) =0, ¥s >1 ; if {Qi} are
m-dependent, then o(S) = 0 , Vs > m ; and if {Qi} have ARMA structure
with absolutely continuous innovations, then o(s) declines to zero at an

exponential rate as S + « (see Withers [55]). We assume:

Al) {Zi} is strong mixing with strong mixing numbers «(S) that satisfy
a(s) = o(s_a/(“'l)) as s+ =, for some a >1 (where o =1 re-

quires a(s) £ 0 for s sufficiently large).

We consider the case where the investigator postulates a model that
purports to describe.some feature of the true distr{%ption P of the data.
This model is assumed to depend u#on an unknown parameter vector € ., An
estimator én is used by the investigator to estimate 6 . It may be the
case that the parametric model is correctly specified, i.e., it correctly

corresponds to some aspect of the true distribution P . In this case,
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a "true" parameter vector eo is unambiguously defined. Alternatively,
the parametric model may be misspecified. Depending upon the type of mis-
specification, & "true' parameter vector 60 may Or may not be well-
defined. Fortunately, the possible difficulties in defining a2 true param-
eter vector can be disregarded in the present analysis, provided the esti-
mator considered converges to some fixed point (which might depend upon
the estimation procedure itself).3 Thus, the results allow one to deter-
mine the affect of different forms of misspecification on the stability
exponent of the estimator,

Once an estimator has been chosen, the parametric model specified
by the investigator has no impact on the analysis of the stability exponent.
Hence, the assumptions imposed below are stated in terms of the stochastic
behavio; of the estimating equations under the true distribution P , and
make no mention of the parametric model, The assumptions we use are not
the most primitive possible. That is, we do not place separate assumptions
on P and on the estimating equations, but rather, on their interaction.
Although the use of primitive assumptions is desirable in many contexts,
their use in the present context would detract from the main point of the
paper and weaken its focus. More primitive assumptions than those given
can be deduced in given examples either from the existing literature or
from first principles.

We now turn to two simple examples that we carry through this section
to illustrate the more general framework and results. Section 3 discusses
other applications of the results of this section. The first example con-

sidered here is the classical linear regression (CLR) model,

(2.2) Y; = xieo +u, i=1,2, 0., n,
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where Yy is the observed dependent variable, X; is the observed RI-vector
of fixed regressors, uy is an independent, identically distributed (i.i.d),
mean zero, uncbserved error, and 6o is an R’-valued unknown parameter

vector. In this case, .'Zi = (yi, x{)' . We suppose that the regressors

n
are uniformly bounded, and that the JxJ matrix H = lim 1 ): xixi exists
: e Ti=]

and is non-singular. Note that this is only a partial description of the
true distribution P , since the exact sequence of regressors and the error
distribution are not specified. The parametric model specified by the in-
vestigator may or may not correspond to the true distribution P described
above.

The second example we consider is the random regressor linear
regression (RRLR) model. This model is identical to the CLR ﬁodel
except the regressors are assumed to be random, not fixed. We assume the
regressors are i.i.d. and in&ependent of the errors, and H E Exixi is non-
singular, Clearly, Al is satisfied in both of these models with o = 1 ,
Note that the rather restrictive assumptions placed on these models are for
purposes of exposition; the general results given below allow them to be
reiaxed considerably.

The class of estimators considered for the general model includes
all estimators that can be written as (measurable) solutions for & to
a system of equations of the form

n
(2.3) ] 7(2,,8) =0,
i=1
for some R°-valued (measurable) functions r;(e*) , 1=1,2, ..., that

are defined on some neighborhood of the true parameter 80 . For notational
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convenience we abbreviate ri(Zi, 8) by ri(e) . The jth element of
ri(B) is denoted rij(e) . Section 3 shows that many well-known estimators
of econometric models can be written as such.

For the two models used as examples in this section, we consider

the least squares (LS) estimator. For this estimator,

_ _ . . LS
(2.4) ri(zi, 8) = (yi-xiﬁ)xi = rg {g) .

Results concerning the stability of an estimator én . are of inter-
est only if the estimator satisfies certain minimal conditions regarding

its performance. One such condition is the following:

Bla) {ri(e)} is sufficiently well-defined that a (measurable) solution
gn to (2.3) exists (though is not necessarily unique) for =n suf-
ficiently large a.s., and én FLuacs By @.S.>» for some &, .

-

b) Further, -»-eo a.s., for any fixed sequence of positive

n,k
*“n

integers {k } with k <n, Vn.

Conditions that imply almost sure convergence of the estimator §n

usually also imply almost sure convergence of ﬁn x the estimator that
>
n

ignores the (kn}th observation. Most estimators considered in economet-
rics satisfy these conditions under fairly broad assumptions on the under-
ilying model. Such assumptions can be found in the literature. In particular,
the LS estimator for the CLR and RRLR models satisfies Bl, see {3, 39, 531.

We now state several definitions used below,
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DEFINITION: The maximal moment exponent gf_g.random-variable {(rv) X is

given by

(2.5) g = sup{é > 0 : Eixlﬁ < w}

1f Elx]5 =« (<e) for all & > 0, the maximsl moment exponent of X

is defined to be 0 (=) .,

Thus, every rv has a unique maximal moment exponent g , and
g € [0,=] . For examples, a normal rv has a maximal moment exponent equal
to =, anda t rv with d degrees of freedom has a maximal moment ex-

ponent equal to d .

DEFINITION: The maximal moment exponent of a random vector or matrix is

defined to be the smallest maximal moment exponent of any of its elements.
For a random vector or matrix X , let |[X| demote X with all
of its elements replaced by their absolute values, and ||X|| denote the

Euclidean norm of X .

DEFINITION: A rv X is said to be stochastically less (greater) than or
7

equzl toaTv Y, andwewrite X 2 Y (XFY), if F(x > Fy(x)

(FX(xJ <F(x)) , ¥x€R, where F, and F, are the distribution func-

Y
tions (df's) of X and Y , respectively. The same term is applied to
random vectors and matrices if the above condition is satisfied element by
element,

Next we construct a random vector, Ty » that is stochastically
greater than or equal to |ri(90)| for a1l i . Let Fy(w) be a J-vector
with jth element given by %nf P(Irij(eo}l <w), for j =1, ...,3

i>
and wE€ R, Let Ty be a ra;éom J-vector whose elements have univariate

df's given by the vector Fu(w} .
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DEFINITION: The maximal moment exponent of T, is denoted by p .
The maximal moment exponent p turns out to be the key determinant of the
stability exponent A(@, P) in many situations. It also arises in several

regularity assumptions that are used in deriving the results,

One of the more primitive assumptions usually needed for assumption
Bla to hold, i.e., for convergence of én to €y, is that the expecta-
_ tion of the defining equations evaluated at 85 is zero, or approaches
zero, as the sample size increases. We need to make this assumption

explicit:

.Tl
B2) o' Y Eri(e) R0, w<l-1/2A (e},
i=l

where " A" is the minimum operator. In the CLR and RRLS models

Eris(eo) 0 , so B2 is satisfied. Crowder [19] has shown that if

n
%-I Eri(eo) is uniformly bounded away from zero, and the strong law of
i=l

large numbers (SLLN) applies to {ri(eo)} , then §n # B0 a.s. Thus,
in the presence of B3 below (which guarantees that the SLLN applies), B2
is almost an implication of Bla.

The next assumption requires that |r;(8,)] for i =1, 2, ...

2a-1

are stochastically dominated by an L random vector (where o is a

measure of the dependence of the sequence {Zi} , see Al):
B3) Elrulza'l < w , where = is a J-vector of infinities. Equivalently,
P> 2a-1.

(Note that B3 rules out the case where some element of T is point mass
at infinity.) In general, if B3 does not hold,then either §n is strongly

consistent, but it is somewhat more difficult thar usual to prove (e.g., see
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[261), or gn is not strongly consistent (as exemplified by the LS esti-
mator when the errors in the CLR or RRLR model have undefined meanj. In
consequence, B3, cr conditions that imply B3, is a common assumption in
the literature (e.g., see assumptions 3 and 5 of Burguete, Gallant, and
Souza [14, pp. 162 and 167]).

The LS estimator in the CLR and RRLR models satisfies B3 since

T]IJ‘S Sg I'ﬁ]‘?UP‘XiI and E|u1| < » in the CLR model, and i Sg |u1-x

l
io) U 1

and E[uloxll < = 'in the RRLR model. Note, since p is not necessarily
greater than or equal to 2, §n is not necessarily asymptotically normal,
We now construct a random matrix, Dr , that is stochastically

greater than or equal to

391[6)] for all i . Let F (w) w€ER,

), for

£,j=1, ..., J . Let Dr bea JxJ random matrix whose elements have

be a JxJ matrix with (2,3) element inf P(la: 7673 . (8
i»1
“univariate df's given by the matrix FDr(w) . Dr is used to state a uni-

form smoothness condition on ri(a) at eo . We assume:

Bda) A = lim &
T

o 1

E—aae-r.(eo) exists and is non-singular.
1 i

ﬂt-—l‘:!

b) Ellpr||” <=, for some n satisfying n >2 and n>a,

{Note that the assumption n > 2 can be relaxed in the results that follow.)
Assumption B4a is common in the literature (e.g., see assumption 6 of {14,
P. 169]) because it is necessary for asymptotic normality (with a non-
singular covariance matrix) using the standard /_ normalization factor.
The estimators considered here are not necessarily asymptotically normal,

but this particular assumption is still used. It does restrict the form

of heterogeneity of the observations somewhat. For the LS estimator in
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the CLR*and RRLR models, Bda corresponds to the assumptions above that
1 B
lim —-Z xix; and Exixi exist and are non-singular, respectively. B4b

N izl

holds in the CLR model since the Xy are uni formly bounded, and in the

RRLR model if E(xixl)z cw

ar (6 ) PR A a.s, is comuonly used in the liter-

The result 36

:Sl'—-
uM:J

1

ature when showing asymptotic normality of an estimator én . We also use
this result, and impose the following additional smoothness condition on

ri(e) to ensure that it holds:4

n+6

B5a) sup EW, ij e, forsome §>0, for j=1, ..., J, where
w2 - 32 . . -
wij = Eteo 'sgng(rij(e)- rij(eo))ll » ©y is some neighbourhood gf
8, 3 and
1 8|2 .
Hizl Wij(eo)” =0(1) as n+=, a,s,, Yj=1, ..., J.

For the LS estimator in the CLR and RRLR models B5 is automatically satis-
2

: . 3 = s .
fied, since T AR where g is a matrix of zeros,

2.2, Stability Results

First,we present a result that gives a linearized form of the estimator
: En . Lt also  shows that the smoothness conditions on ri(a) are sufficient
to yield almost sure convergence of 3n and 6

rate of convergence than 0.

n'kn to 80 at a faster
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THEOREM 1: Under assumptions Al and B1-B5,

n
1 ) A'lri(ao) , where 1 s a JxJ random matriz
ic1 :

equal to the identity matrix plus a matriz of small order one as

{(a) 6 =8 -1

n-+« a,s,, and

(b) for all sequences of positive integers {k } with k <n,
lim n"(én L -8) =0 a.s., WY <1-1/(2a(p/a)) .
T n
- 10 )
COMMENTS: 1. The linearized form of 6_, viz., 8, -=] A""r_(e.) ,
n 0 nio i*o

highlights the importance of the rv's ri(eo) , 1=1, ..., n, in de-
termining the stochastic properties of the estimator én . In particular,
the linearized form suggests that the stability of én may be related to
the tail behavior of r;(80) » i=1, ..., m. It is shown below that
this is the case.

2. 1f ri(°,-) is independent of i for i sufficiently large,
as is often the case, then the influence curve of §n is A'lr(z, Bo) .
Thus the linearized form of én is determined by its influence curve.

3. Part a is a rather trivial consequence of Al and B1-B3, It is-
stated explicitly only because of the importance of the linearized fornm
for understanding the properties of the estimator.

4. Part b of the Theorem shows that the rate of convergence of §n
to ao depends on the number of finite moments of ri(eo) , i=1,...,n
(as measured by the maximal moment exponent p of the stochastically domi-
nating random vector Ty }. In addition, there is a tradeoff between the
maximal moment exponent of Ty and the degree of dependence over time (as
indexed by o« , see Al). Note that the dependence of the rate of converg-
ence, v , on the maximal moment exponent p of Ty and the degree of

dependence, v , only exists below a cut off point. If p > 2a , then
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the maximal rate of convergence is obtained, and additional moments are of
no consequence. This contrasts with the results obtained below for the
stability exponent of én . In the latter case no such cut off point exists,

5. In the CLR and RRLR models, the linearized form of the LS esti-

n
mator is 90 - %-I H'luixi » o equals one, and p equals the maximal
i=1 .

moment exponent of u, and u,x; , Tespectively. In both models, if uy
has two or more moments, the maximal rate of convergence is obtained, i.e.,
the upper bound on v is one-half.

6. The proof (see Appendix) makes use of McLeish's [43] three

series theorem for strong mixing rv's, and a result of Loeve [40]).

We now establish two lower bounds on the stability exponent of an

L.

estimator & = {en tn=1,2,...}:

THEOREM 2: Let Al and B1-B5 hold. Then
(a) A(B,P) >1-1/p, end

(b) A(B,P) > suple ER: [1-F;j(n1“5)] <=, Vi=1,...,3} (>1-1/p) ,
n=1

where F;j(x) = 2‘12 Fij(x) , and Fij(-) ig the df of rij(eo) .
COMMENTS: 1., The lower bound of part a is more readily interpretable than
that of part b, but part b is a stronger result. That is, the lower bound
of part b is greater than or equal to that of part a.

2. The lower bound of part a is a linear function of the reciprocal
of the maximal moment exponent p of T . The lower bound increase§
strictly and continuously from 0 to 1 as p increases from1l to « , This
result differs from rate of convergence results for almost sure convergence
(see Theorem 1). The latter exhibit a cut off point beyond which additional

moments do not increase the rate of convergence.
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3. For the LS estimator in the CLR model, p equals the maximal

moment exponent of the error u; . For example, if wu, has t-distribution

1

with d degrees of freedom, then the lower bound given bv part a is
1 -1/d, and it ranges continuvously from 0 for the Cauchy (d = 1} to

1 for the normal (d = =) , With regard to part b of Theorem 2,

* l-g, _ 1-¢, . . . :
Fnj[n ) = Ful(n /(?i:[xijl)) in this case, where Ful( ) is the df

[1-F (nl”E/(max|xij]))] <=, ¥j, if and only

of u, . Note, u
1 i<n

1

ne-18

n

n 1
i J-F @H] <o, A,
1

i=1
2.6 ] 1-F, "] = EP(|u1]1/(1-g) >n) € [Efu, |V 9, _r-_|u1|1/(1-51 ‘],
n=1 1 n=}
using Loeve's [40, p. 242) moments inequality. Thus, in this case, the lower
bound of part b reduces to 1 - 1/p , as in part a.

4. In the RRLR model, p equals the maximal moment exponent of
Uy Xy . If X3 has as many or more moments than u then the situation
- is exactly as above in the CLR model, If Xy has fewer moments than U,
however, then the variability of the regressors determines the value of '

p and the lower bound 1 - 1/p is less than in the CLR model (with the
same error distribution). For the RRLR model, F;j (nl'e) = Fnj (nI-E) ’

Vj , and an argument similar to that of comment 3 shows that the lower bound
of part b reduces to 1 - 1/p .

5. The condition n > 2 in assumption B4b can be relaxed in this
Theorem. Specifically, (a) under the assumptions of Theorem 2 except that
of n>2, for ;ny PE (2-1, p] , if n>2a (p/a) , then
AB,P) > 1 - 1/F , and (b) under the assumptions of Theorem 2 except those

of n>2 and p > 2a-1 (see B3), for any P>0, if nz_zn(;/a)

and p>1, then A(B,P) > sup{f € R : ) [l-F;j(nl-EJ] < » gnd
n=l



£ < 201-1/(2aB)) .
n
6. The proof makes use of a Taylor expansion of Z T (én) , the
i=1

first Borel-Cantelli Lemma, a moment inequality of Loéve [40], and Theorem

1b (to show various terms are o(l1) as n-+« a.,s.)..

The next result provides an upper bound on the stability exponent
of an estimator én in terms reiated to the maximal moment exponent of
ri(ao) y 1i=1,2, ... . Further, it shows that the stability exponent
of §n actually equals ;he lower bound of Theorem 2 part b. This result
Tequires a stronger condition on the asymptotic weak dependence of the pro-
cess {zi} than strong mixing, because the second Borel-Canteili ~(2BC)
Lemma is used in its proof. The 2BC Lemma usually is stated for indepen-
dent sequences, but it also holds for some strong mixing processes (see
Lemma 4 in the Appendix). One might think that the 2BC Lemma holds for
all strong mixing processes, since strong mixing processes satisfy a re-
lated result, viz., Kolmogorov's zero-one law, see Andrews [9]. It is
shown in Lemmz 4, however, that this is not the case., Hence, we need to
strengthen the assumption regarding asymptotic weak dependence.

A sequence of random vectors {Qi} is @-mixing if o(s) + 0 as

&€+ « , where ¢(S) are the w-mixing numbers of {Qi} defined by

(2.7} w@(s) = sup sup |P(ANB) - P(AYP(B) |/P(A)
21 AEB) piP(A)>0:BEB,
= sup sup |p(B|A}.-P(B)]| ,
£>1  AEB.  :P(A)>0;BEB

1,8 45 ,=

where ‘Bi;L is the o-field generated by '{Qi, Q;,ps +++»Qy} . Note that
@(s) <1, for all s . Sequences of independent and m-dependent rv's

clearly are ¢-mixing, Billingsley [13] prbvides additional examples, The



@-mixing condition, however, is considerably stronger than the strong mix-
ing condition. For example, stationary Gaussian sequences of rv's are
@-mixing if and only if they are m-dependent, see [33], whereas they are
'strong mixing under the weak condition that they possess a continuous,
positive spectral density, see [36]. Thus, the @-mixing assumption may be
stronger than is reasonable for some economic applications.

For present purposes, we do not require the full strength of the
Y-mixing assumption (i.e., @(s) + 0 as s += ) for {Zi}.lde only re-
quire strong mixing and the additional assumption that {s) <1 , for
some s =1, 2, ... . This condition is intermediate between strong mix-
ing and Y-mixing. Precisely how much more general it is than @-mixing is
undetermined as yet.

For the next result we assume:

(A1") {Zi} are strong mixing with strong mixing numbers as in Al, and

P-mixing number ©(s) <1, forsome s =1, 2, ... .

For the upper bound on the stability exponent of ﬁn given below,
we need to construct a random vector, T that is stochastically less
than or equal to Iri(ao)_| for all i . Let FL(w) be the J-vector whose
jth element is :1:{ P(Irij(_eo)l <w) for j=1, ..., J and WER,

and let T be a random J-vector whose elements have univariate df's given

by the vector FL(w) .

DEFINITION: The maximal moment exponent of T :|.s denoted by q .

Note that the maximal moment exponent p of L "is necessarily less

than or equal to g .
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THEOREM 3: lLet Al' and B1-B5 hold. Then,

(&) A(8,P)

| A

1-1/q, provided p > 2uq/(q+l) , and

infiTt €R: § 1 -F;j(nl-g)] = », for some integer j in {1,...,J1}
n=1

(b) AE,P)

= sup{f € R : E [I-F;j(nl'g)] cw, ¥Yi=1, ..., J},
n=1

- * . .
where Fnj 1s as in Theorem 2,

COMMENTS: 1. Part a holds for all q <« , If q =, wpart a2 is shown
to hold (see Section 4) provided T is not identically 0 . In consequence,
the right-hand-side in part b is less than or equal to one provided T
is not identically 0 .

2. In some cases (e.g., when the observations are identically dis-
tributed), p equals q , and the stability exponent of an estimator is
given by the maximal moment exponent of the linearized form of the estimator
--the more moments, thergreater the stability., In particular, there is no
cut off beyond which the existence of more moments is of no consequence.

If p is less than q , then the stability exponent of ﬁn lies in an
interval determined by p and q , and its exact value is given by the
somewhat complicated expression of part b,

3. For the LS estimator in the RRLR model, 7, 7 fu x| & Ty »

and so, q =p and the stability expoment of § is 1-1/p . In the CLR

model, T, %g |u1|-nin[xi| . If the regression function has a constant ternm,
i»1

for example, then q is less than or equal to the maximal moment exponent

of Iull , which is p . Hence, q = p and the stability exponent of

§n is 1-1/p . For example, if the errors have t-distribution with d

degrees of freedom, then the stability exponent of én is 1-1/d in the

CLR model., Further, the stability exponent of the usual estimator
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of the error variance, 0? , is 1 - 2/p in the

~ 2
¥y - x{819)

A
m
Z|
[N
ol
It e~

CLR model. Thus, the variance estimator is less stable than the LS esti-
mator of the regression parameters, This corroborates results found in the
literature comparing the robustness of these two estimators.

4, The condition n > 2 of assumption B4b can be relaxed in this
Theorem. Specifically, (a) the assumptions n > 2 and p > 2uq/(g+l) can
be replaced in Theorem 3 part a by n > 22 (p/a) for some PE(20q/(g+1), p] ,
and (b) under the assumptions of Theorem 3 except those of n > 2 and
p>2-1, if n> 2A(p/a) for some p > 0, then A(an, Peo) <inf C,

'where C = {E€R: Z [I—F;J, (nl-E)] = o« for some j , and
n=}

g'< 2(1-1/(2a(p/2)))} . (Note that the infimum of a null set is defined

to be infinity,)

3. EXAMPLES

This section contains a number of examples where the general results
of Section 2 apply. The models and estimators are described as briefly as
possible. In consequence, sufficient conditions for strong consistency
(assumption Bl) are not always given in their entirety. Such conditions
can be found in the references cited. In all cases, the defining functions
of the estimators, viz., ri(e) , i+=1, ..., n, are assumgd to be chosen
to satisfy the conditions B2-B5.

It is possible to include sbme two and three stage éstimators in the
class éonsidered in Section 2, e.g., Heckman's [27] two stage estimator of
the Tobit model--Example 3.7 below, Zellner's [58) feasible Aitken estimator

for the seemingly unrelated nonlinear regression model--Example 3,8, 2SLS,

and 3SLS.



To see that many multi-stage estimators can be written in the form of
(2.3), proceed as follows: Suppose part of the parameter vector eo s
call the part J‘O » 1s estimated in a first stage via the solution to

n

) ;) = 0, and (a not necessarily disjoint) part, call it By » 15

i=1 n :

estimated in a second stage via the solution to }: r.‘Zi(in’ B) = 0, where
i=1 -

n is the first stage estimator. In place of B, consider an zlternative

o~ &
parameter vector By (16, 86)'. Now, a single stage estimator, e, »

of the desired form can be defined by taking

- rli(‘\} ~ by
(3.1) ri(e) = , for e = .
r2i(1as) B,
This estimator satisfies Al or Al', and Bl1-B5, if the separate stage esti-
mators do, (The matrix E%r. ('é'o) in B4a is triangular, and hence, is

non-singular if the diagonal blocks are non-singular.) Thus, the results

of Section 2 apply. The extension for three stage estimators is straightforward.

In the exa;nples that follow we assume independence of the observa-
tions, because this is the usual assumption made in the references cited.
In most cases, this assumption can be relaxed by replacing it with an as-
sumption of strong mixing, Strong consistency is proved, then, using the

strong law of large numbers for strong mixing rv's (see McLeish [43]).

3.1. Classical linear regression (CLR) modei--Classical M-estimators (Ref-

erences: Huber [31], Yohai and Maromnna {57]}. The model is the CLR podel
described in Section 2. We adopt slightly different notation from that

of Section 2:
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(3.2) Y5

1"y
~~
<
b
-
-t
-

= I = - ) 1
—X!180+ui » 1—1,...,1‘1, Z Sy 3 3 eo'(son 00) .

The estimator én is defined by

e ]

n
g,
a ™
b

-

v((y; - x}8)/0)x; ) for

(3.3) r.(6) =
: (wztlyi - x{B}/0) - c

where ¢ is a given constant, ¥ is a bounded, smooth, odd function, and
the true parameter % solves sz(luilfco) = ¢ . The estimator én has
-the maximum stability exponent, viz., one, whether or not the errors u,

have any moments. This contrasts sharply with the LS estimator, see Sec-

tion 2.

3.2. Random regressor linear regression (RRLR) model--General M-estimators

(References: Krasker and Welsch [37], Maronna and Yohai [42]). The model
is the RRLR model described in Section 2 with the notation of Example 3.1,
The estimator 5n is defined by

w(xi’ (yi - IiB)IU)xi)

(3.0 0 = (
x(ly; - xj8l/0)

where, for each X $Ixi, *)}) is bounded, odd, and non-negative on R* ’

x(*) is nondecreasing and bounded, Elxilsup]$(xi, u)] <« , and the true
u

parameter o, solves EX(J"iI/UO) = 0 . The stability exponent of §n
rdePEnds upon the maximal moment exponent of 3Ixi, ui/ao)xi . If ¥ is
taken such that this is bounded uniformly for x; and u, (as.{n [373,
for example), then the general M-estimator is a bounded influence estimator,

and has stability exponent equal to one--the maximum.
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3.3. Linear, limited information simultaneous equations model--Instrumental

variables (IV} estimator (References: Heiler [28], Sargan [47]1). The model

is the same as the RRLR model but the regressors and errors are not neces-

sarily independent:

= 1
{3.5) s xiB + u,

i i=1s ssey N, Zi=(yi’ x:!l’ wi)' »

0

where W, 1is a random vector of instrumental variables that is indepen-
dent of the error u, but not of the regressor X . The estimator §n

is defined by

(3.6) ri(e) = (yi'xie)wl .

The stability results for the IV estimator §n are the same as for
the LS estimator in the RRLR model with the maximal moment exponent of the
instruments replacing that of the regressors. 1In particular, if the in-
struments or the errors have fewer than all moments finite, the IV esti-

mator has stability exponent less than one.

3.4, Linear, limited information simultaneous equations model--Weighted

instrumental variables (WIV) estimator (References: Krasker and Welsch

[38]). The model is as in Example 3.3 with a slight change in notation:

(3.7) y;=x{Bg+uy; , i=1,..0,n, 2 = (v, %, w) , 8p=(BY, ap)' -

The estimator §n is defined by

1/2
Aminf1, o/[|@y. -x18) /o] !B ) 1}e(y. - x!B)w,
(3.8) ri(e) _ i~ i i S R 1

2 '-1 . -B
5 vec[y(c /wiB wi) wiui ]

, for & = (

g
a



where ¢ and o given constants, the parameter vector o =S vec B, S
is a known [J(J+1}/2] XJZ selection matrix such that S vec B is the vec-
tor obtained by vectorizing the lower triangle of the symmetric JxJ matrix
B, v(t) = E min(nz, t) for n ~ N(0,1) , and the true parameter vector
@, = S vec B0 solves B0 = EY(CZ/wiBalwi)wiwi . [(Note that o can be esti-
mated by adding it to the parameter vector € and adding an element to
ri{B) .} As defined, ri(a) does not satisfy our conditions for smooth-
ness in 6 . A version of ri(e) that is smoothed at the corners, however,
does satisfy our conditions and differs very little from ri(e) .

It can be seen that ri(eo) is a bounded random vector. Hence,
6n and the WIV estimator of BO » given by the sub-vector én s have

stability exponent equal to one.

3.5. Nonlinear regression model--Least squares estimator (References: [12,

20, 34, 41, 561). The model is

Lo o A o )

(3.9} y; = £(x;, Bp) +u, , i=l,...,n, Z, = (g, XD, 8, =8,

where the errors u, are strong mixing, mean zero rv's, the regressors
x, may be fixed or random but are independent of u and must satisfy con-
ditions for "proper" behavior as n + o (see references), and the regres-

sion function f£(+,*} 1is smooth. The LS estimator én is defined by the

function
(3.10)  xi(0) = O - £(x;, 0))FE(x,, 0) .

The stability exponent of 6n depends on the random vectors
9 . . . .
u, 35f(x;, 85)| in the manner described in Theorem 5, For examples, if

the regressors are i.i.d. random vectors or are fixed and uniformly bounded,
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then its stability exponent is 1-1/p , where p is the maximal moment

exponent of uy g%f(xl, 80] .

3.6. Nonlinear regression model--Classical M-estimators (References: [ﬂ,

Az ii}). The model is as in Example 3.5, except 90 = (86, 00)' and the
assumption of mean zero errors is replaced by the assumption that
5 . - ~ ~
= : = ' t
Ew(ui/co) 0, for y and vy 8given below,  The estimator ®n (Bn’ on)

is defined by the function

Wy, - £(x;, B))/0) w5k (x;, 6)

(3.11) ri(e} s >
'] ((yi-f(xi’ BY)/o) - ¥

» fOr 9 E (B', U)' »

where vy is a (known) constant given by y = fwz(s)dé(s) for ¢&(-) tha
standard normal dffi % is an unknown scale parameter defined by
sz(ui/co) =y, and ¥ is a bounded function as in Example 3.1.

Since ¢ is bounded, the sfability exponents of én and §n depend

on the vectors

3
3ot (X0 €

0] . If the regressors are j.i.d. randon vectors,

their stability exponents are 1-1/p , where p 1is the number of finite

2
moments of 56*‘*1' 80)

. If the regressors are fixed and uniformly bounded,

their stability exponents equal one,

3.7. Censored regression (or Tobit) model--Heckman's two stage estimator

(Reference: Heckman [27]). The model
(3.12) Y; = (xiaod-ui) vo, i=1, ..., n - Zi = (Yi’ xg)' .

where " v " jis the maximm operator, the regressors x; are i,i.d. random
. 2
vectors, the errors u;, are independent, normal(0D, 00) rv's, and

6y = (8}, 0p)' . Heckman's two stage procedure uses an estimator of the



form (2.3) at each stage:

15t stage: The estimator in is a maximum likelihood (ML) probit estimator

of AD H 60/00 . Its defining function is

IIYi>0]- ¢(x{l)

() = SN A v e N

(3.13)

where ¢(+} and ¢(-) are the standard normal density and distribution

function, respectively, and 1[ ] denotes the indicator function,

-~

nd stage: The estimator (§£, o)’ is the LS estémator of (Bg» 0g)" given

Xn » using only the uncensored observations. Its defining function is

. ~ ve_ (% g X5
(3.3.4) rZi(An’ B, U) = (Yl - Xiﬁ' (¢i/¢i)0)(ai/$1) 1[yi>0] »

~ = - -~ = t ~ .
where ¢, = ¢ (xikn) and e, ¢i(xi)\n)

This two stage estimator can be written as a single stage estimator
. - - P ~ ~ -
of form (2.3) by considering the estimator 6, = (A}, B!, un)' of

Bb s (8y/0ys BYs 0g)' defined by the function

-~ r,.(})
(3.15) (8 - ( u ) :
: rZi(A,B,u)

Since the errors have all moments finite in this example, the sta-

&
bility exponent of 6, under Pg depends on the maximal moment exponent

p of the regressors X; . In particular, the stability exponent of 3; and

of (B}, 6)' is 1-1/p.
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3,8, Seemingly unrelated monlinear regression--Zellner's feasible Aitken

estimator (References: Gallant [21], Zellner [58]), The model consists

of M equations:

(3.16) .

1m=fm(xim’ Bgm)+u. , m=1, ...,M, i=1, ..., 1n ;

im

= : ]
Zi (yil’ tesy yiM’ xil' se ey xZ'I!.M)'

| 3 = L ]
Under Gallant's Lg\lj assumptions, the error vectors u, = (uil’ vens uiMJ

; T = V 1 = 7 * 1
satisfy Eu:.L =0, Euiu:.L Iy » and Euiu£ g for i # & ; the variables

X;p are fixed; and the regression functions fm(xim’ BOm) are smooth, have

bounded first derivatives, and behave like i.i.d. rv's for n 1large. Let

Bo = (BB, u{'})' , where Bo = (861. ...,BbM)' » O S vec }:0 , and § is

the known M(M+1}/2 xMz selection matrix such that g is the vector ob-

tained by vectorizing the lower triangle of the symmetric matrix '::0 .
The feasible Aitken estimator has three stages, each of which yields

an estimator that is the solution to a system of equationms.

15t stage: The estimator in is an equation by equation LS estimator of

80 . Its defining function is

' ?
Ogy = 510y Bggf (0 B By
(3.17) r;(8) = M . , for B =) . 1.
? 3
i~ B(xgpp BM))'é'B;fM(xiM’ By M

2“d stage: The estimator an of Gy is based on the first-stage residuals.

Its defining function'is

),

(3.18) rZi(An’ o) = 5 vee(Z - ujul
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-~ = - ~ - -~ ' -
where u; = (yil fl(xil' Aln),..., YiM fM(x. an)) s I is an M=xM

iM’

matrix defined by vec I =Dz, and D is the known M2:<M(M+1)/2 dupli-
cation matrix defined such that £ is symmetric and o is the vectoriza-

tion of the lower triangle of I ,

»

Srd stage: The estimator Bn is a multi-equation weighted'LS estimator

of BO « Its defining function is

-1 3¢ ),

(3.19) 33y, 8) = Oy - £5(8))1E 7 f,

where vec zn £ Dun s Y. = (yil’ ...,yiM)' , and fi(B) = (fi(xil, 81),

L fM(xiM’ BM))' -

We write this multi-stage estimator in the single stage form of (2.3)

by taking
(3.20) i (8) = (r); 0, 1,,(0,0)7, 1y (0,800,
& [nd -~
to yield an estimator Sn E {1;, nﬁ, Eﬁ)' of the parameter vector

In this example, the stability exponents of the estimators é; and
(ﬁn, &n) equal - 1-2/p , where p is the maximal moment exponenf of the
errors u, . Since En is basically a LS variance estimator, it is not
surprising that we get the same stability exponent here, as we got with the
LS variance estimator in the linear-regression model (see Comment 3 follow-

ing Theorem 3).

3.9. Maximum likelihood (ML) and pseudo-maximum'iikelihood estimators (Ref-

erences: [1, 18, 29, 30, 541). ML and pseudo-ML estimators (both defined
as solutions to likelihood equations) can be written in the form (2.3) for

virtually all econometric models, provided the log-likelihood (or pseudo-



log-likelihood) function is differentiable in its parameter & , (See
Crowder [18] for a treatment of maximum likelihood estimation with depen-
dent observations.} 1In the case of independent observations ML estimators
are defined by the score function

0
(3.21) rl(e) = 36’103 P(zi, e) ’

where p(zi, 8) is the density of Zi with respect to some measure yu .,
Pseudo-ML estimators are defined identically, except p{zi, 8) 1is some spe-
cified density that is not necessarily assumed to be the true density of

Zi - In addition, an estimator defined by (3.21) is called a pseudo-ML

estimator if the observations are not independent, since in this case

n .
_Illog p(z;, 6) is not the log-likelihood of the sample.
i=

For the results of Section 2 to hold, all that is needed is that the
cbservations are strong mixing (with @-mixing number (s} <1 for some
$ ) and that the score function satisfies the conditions B1-B5 on ri(e) .
Under quite general conditions, ML and pseudo-ML estimators have been shbwn
to be strongly consistent, so Bl is not a problem. Further, assumptions
B2-B5 are easy to verify and are satisfied in most econometric models.

The stability exponent of ML and pseudo-ML estimators depends on the
- maximal moment exponent (and perhaps tail behavior) of their score functions -
as established in Section 2. Examples include:

(i) Binary lopit model: The v Y takes values 0 or 1. The prob-

ability that Yy equals 1 is Pi(e) £ exp(xie)/(12+exp[xie)) , where
Xy is a fixed or random explanatory variable. The ML estimator is defined

by
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(3.22)  r;(0) = [y; - exp(x]0)/ (2 + exp(x]0))1x;

The first nultiplicand of ri(e) lies in (-1,1} , so the stability
exponent of én depends on the explanatory verisbles x, , i=1,...,n.
1f the x; are fixed and uniformly bounded, the stability exponent of §n
is one. If the Xx; are i.i.d, with maximal moment exponent p , the sta-
bility exponent is 1-1/p . (Note that the extension of the multinomial

logit model is straightforward.)

(ii) Binary probit model: The model is the same as the logit model,

except Pi(e) s ¢(x;e) , where &(+) is the standard normal df. The ML

probit estimator én is defined by

) yi = Q(xie) ,
(3.23) 73 (8) = ST 1= (Tt %

It is easy to see that the stability properties of the ML probit estimator

are the same as those of the ML logit estimator.

(i1i) Censored regression (Tobit) model (see Amemiya {2}): The model

is the same as in Example 3.7, The ML estimator §n = (ﬁﬁ, an)' is defined

by
[ ecox . )
T80 [y;=0] * 20~ XiB %1y )
(3.24) 7, (6) = ,
va\? '
\02(1 - wi(a)) [Yi=0] C * a [yi>0])

T

where ¢ita) = ¢(xi8/o) and Oi(a) £ Q(x{B/c) . The form of ri(e) shows
that the ML estimator has the same stability properties as Heckman's two

stage estimator (see Example 3.7).
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(iv) Seemingly unrelated nonlinear regressions model: The model is

the same as in Example 3,8 where 90 = (86, ué)' . The pseudo-ML estimator
of s formed using the multivariate normal (0,Z) distribution for the

errors u, = {uil, ...,uiM)‘ is defined by

‘ -1 3
(y. - £.(B))'L * =f£.(R)
(3.25) 1, (e) = 1 9872 ., for &= (8", a")' ,

S vec[z-(yi— fi(B))(Yi' fi(ﬁ))']

where a =S vecZ and S is defined in Exammle 3,8. The pseudo-ML esti-
mator is very similar to the feasible Aitken estimator of Example 3.8, They
both have the same stability properties,

For brevity we have not included the 2SLS, 3S5LS, LIML, and FIML es-
timators of linear simultaneous equations models in the examples given above.
2SLS and 3SLS can be written in the form (2.3) via the method of Examples
3.7 and 3.8 (using Theil's [52] interpretation of 25LS), LIML can be so
written using its interpretation as the FIML estimator of an incomplete sys-
tem of equations (see [23; 46, pp. 276, SSIj). Finally, FIML is trivially

of the form (2.3) under the assumption of independent errors.

Cowles Foundation, Department of Economics, Yale University
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APPENDIX

The proofs of Theorem 1 and other results below use the fol lowing

Lemma:

LEMMA 1: ILet {Yi} be a sequence of mean zero, strong mixing rv'’e with

strong mixing members that satisfy Al. Aseume sup E|Y, IC“‘S <w, for
i>] .

some ¢ >1 and all & arbitrarily emall and positive. Then, for any se-

quence of positive integers {kn} with k, <n,

nCTn.k o0 a.s., vz <1l -1/{2a(c/a)) ,
>*n
1 n
b’hel"e Yn’k - '——i" I Yi .

n-1 , .
n i=1, 1;!kn

PROOF OF THEOREM 1: Let Z denote a sumation over i from 1to n with

i#kn. Using {r (enk)=0, a Taylor expansion of n li’ig(nk)

sbout €. yields

0
@ o0=n""r (o) + Tsmers (80) + (B 2 y%e_ . -6y
n £330 26" 13( 0 *( n,k n‘eo) aeae'rlg(en, k, n nk "0

anag so,

(4.2) 0 =o(1) + (3 +o(1))nv(§n,kn-80) a.5., Yo <1-1/(2A(p/2)) »
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for j =1, ..., J , where S; K is a random vector on the line segment
Hl
n
. - . .th .
joining en X and 6g a; 1is the j row of A, and o(l) is a
» n .

random vector of appropriate dimension which is of small order one as n + =
a.s. (4.2) follows from (4.1) using (i) lemma 1 and B3 toc show

nv-l'i'[ri_(e )*El‘ij(%)] =o0(l) as n+« a,s., (ii) the assumption B2 that

n¥” 1EEr (e ) =0(l) as n -+ e , (iii) Lemma 1 and B4 to show

—I[ae 13(90) Eae 13(90)] =o0{(l) as n-+ e« a.,s., and (iv) equation (4.5)

~ 2

. A . ]

below and the strong consistency of 6,k o give g( k| - 00) "35557 73 (en X, )
3

n

5|H

= o(l) as n -+« a,s. Stacking equations (4.2) for =1, +.., J to form

a system of equations yields part b of the Theorem, since A is non-singular,
Part a follows in a similar fashion from (4.1) and (4.2) taking v =0 and

kn = l'l-]. -

it remains to show (4.5). By Lemma 1 and B5a,

(4.3)

o]

T ) now 17
i{(wij-snij) -~ 0 a.s., and Egm.

1j=0(1} as n‘-+=°, Vi=l, ...,J.

-~ ~ = Pt .
Now, for any sequence of rv's {en} such that 8, — 90 a.s., en is

in .Bo for n sufficiently large a.s. (where 9 is some neighborhood
of ao , see B5), and so, for n sufficiently large,

)2 )2
3695 7% (93 e"a"" 5080

(4.4)

S

7

1~
i'ﬁgwij = 0(1) as n-+w als.’

by (4.3). Hence, using B5b,

(4.5) 17 =0(1) as n+w®, a.s., Vj=1,...,J.QE.D
1

aeae'ru (B )
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PROOF OF LEMMA 1: First we show that under the assumptions of the Lemma

(4.6) %Y. B0 a.s., YL < 1-1/(2A(c/a)) .

We apply McLeish's [42] Lemma 2.9 to the rv's X Yn/nl'; » where using

his notation we set d =1, vn, g(x) = les(ﬁ) for s(6) = (c-6) A 2a ,

< - . l/a - . .
and kﬁ-xnlnxnlidn] . Since nZIE gn(|Xn|) <w . provided [ < 1-a/s(8) ,

we have }: (Xn-EYn) converges a.s. by his Lemma 2,9, Now, by the proof
n=1

of Loeve's [40] Theorem 16.4.A (p. 241),

4.7) E (Exn-Efn) <o . provided |s(8)] >1.
n=1

Thus, provided (c-8) A 2a > 1 (which requires ¢ > 1 and § arbitrarily

small and positive), we have 2 X, converges a.s. Applying Kronecker's
n=1

lepma gives (4.6) for [ <1 - a/s(8) . Since 6 is arbitrarily small,

(4.6) holds for all ¢ <1 - o/s(0) , as desired.
1 1+

Now, simple algebra gives Yn - ?n,kn = ;Ykn - HYn,kn , and so,
<o) 1 <o g-1
(4.8) l'l Y (1 -“) =N Y - n Y -
n,kn n n kn
Using (4.6) we have
t=ly o %7 gfn-1 ne
(4.9 n Yn nYn-n(n)Y_l-—-rD a.s..

Thus, for any subsequence {kn} of {n} with ky<n, ¥n,
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(4.10) Y L < kETNY, [ B0 aws., Vo< 1-1/(2A(c/0) .
n n
Combining (4.6), (4.8), and (4.10) gives the desired result. &I,

The proof of Theorem 2 uses the following Lemma:

LEMMA 2: Let {Y.} be as in Lemma 1 and assume ]Yil SiT Y, Vi, for

gome v Y that eatisfies EIY[C'tS <« for some ¢ >a and all & arbi-

trarily emall and poeitive. If
(4.11) )) [I-G;(nl"f)] <o , for some T <1,
n=]l

where G;(x) £ min G (x) and Gi(x) is the df of Y; , then for all
l<i<n

sequences of positive integere {k } with k <=,

lim n‘('fn-Yn,k ) =0 a.s., Y{<1,

N n

where 'Y'n is ag in Lemma 1,

ok

PROOF OF THEOREM 2f e prove the results of Comment 5 following Theorem 2.
These results imply those of the Theorem., We prove (omment 5 part b first.

It suffices to show: if

4.12) [l-p;j(nl'in <e , Vj=1,,.,,.,J, and & < 2(1-1/(2!\(’5/&))}
n=l

then for all sequences of positive integers {kn} with kn <n , we have

(4.13) lim n‘lén-én’k | =0 a.s., Vo<t
n:-’-w n
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Let'r_-i?r(e) T -l-'f €,) A-ll).:la (9) and
: » E] = =
noom.L0d 0 n,k n 1 ¢ O n N, i1 56" *
1 T 3 X
An,kn = o JZL ﬁri(eo) . Using (4.1), (4.2), and Theorem 1 part b, we have
-— j— - ” " -2\?

4 = - - - -

(4.143 ] T rn,kn + An(en BO) An,kn(en,kn 90) +of{n ") a.s.,

for v <1 -1/(2A ('I;/G)) « By definition of v and [ we can take

v such that 2v > ¢ . This, plus manipulation of (4.14), gives

(4.15) -n®(8 'enk ) —n‘A T, -7, oLk ) +n"'A (A -A o )(énk -85) + o(1) a&.s.,
*“n *Tn

wheTre A;l exists for n sufficiently large a.s., since A is non-singular
and An 22 a a,s. by Lemma 1 and B4,

For all ¢, 3 =1,2, ¢eoy, J, and T =1-1/n,

(4.16) (lae e 0| >0 77) < I (o1 0D oy < 00 g

ﬂ""

where the first inequality uses the definition of Dr , the second inequal-

ity follows by Loeve [4)], Moments Inequality, p. 242], and the third in-
equality follows by B4b for 2all n satisfying n > 2a ('f;/u) and n > a .

Lemma 2 applied element by element now gives

(4.17) n'S(An-An (I)ESQ as., VE<r(z1-Um),
» n .

where g is a JxJ matrix of zeros. Thus, using Theorem 1 part b,

-1 ”
(4.18)  nfa; (=B x )y -89) =0t 85 n+e as.,

provided g-&-v < 0 ., Algebraic manipulation verifies this inequality.
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For ¢ < £ where }: [1-F;j(n1'g)] <o, V¥i=1, ..., J, Lemma
n=1

2 gives
Lo = noe
(4.19) n (rnhrn,k ) — 0 a.s.
n
. =1 noe -1
Eguations (4.15), (4.18), and (4.19), and the result An —r a.s.

vield (4.13), as desired.

Now we show that Comment 5 part b implies Comment 5 part a. For

all j=1, ..., J, &andall g<1-1/p,
T x o 1-E T 1/(1~E) 1/(1-g) -
(4.20) nzl[l- Fps(79)] 1nzlp((ruj) >n) 2 Elry;) +1 <>,

where the third inequality holds for all £ < 1-1/p since Ty has maximal
moment exponent equal to p , the second ineqﬁality follows by Loeve {40,
Moments Ineﬁuality, P. 242], and the first ineguality holds by definition of Ty -
For ; (2a-1, p} (which requires '§>2a-1 ) and £<1- 1/; , We can

show £ < 2(1 -1/(24A($7u)]) « This and (4.20) give part a of Comment 5, Q.E.D.

PROOF OF LEMMA 2Z: Simple algebra gives,

8F _V N L) | -1y
{4.21) n (Yn Yn,kn) s n Yk -n° Y

By assumption,

10- G;(nl"')’] <=,

n&l

(4.22) TPy, > <
‘n=1 n -~

~ so the first Borel-Cantelli Lemma gives P(nT"IIYk }21i.0.) =0, where
n

i.o. abbreviates "infinitely often." Thus, V7 <<t ,
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(4.23) nc'llYk | =50 a.s.
n

Lemma 1 and the assumption c¢ > a give

(4.24) Y L | 220 as.,

since -1 < 0 . Equations (4.21), (4.23), and (4.24) combine to give the

desired result, Q.E.D.
The proof of Theorem 3 uses the following Lemmas:

LEMMA 3: Let {Yi} be as in Letma 2 with the further assumption that
{Yi} has @-mixing numbers {@(s)) with ©(s) <1 for some s=1, 2,... .
If.

) [l-G;(nI"T)] =, forgome t<l,

n=l
where G;(_-) is as in Lemma 2, them for some sequence of poeitive integers
{k } with k. <n,

lim sup n*|Y -¥ =® a,s,, V[>
n_’mup ln n;kn[ as’ ‘ T

where Y 18 as in Lemma 1.
n,k_

n

LEMMA 4: (a) Zet {X } be a strong mixing sequence of random vectors with
w-mizing mober w(s)< 1 for some s=l, 2, ..., and let {D;} be a sequence

of events such that B_ € 'Bn » Yn, where B - is the o-field generated
by X, If IP(Dn) = , then P(D, i,0.) =1 (where i.o., abbrevi-
n=1

ates Minfinitely often”).

(b) The aaéwrption on the Q-mixing nurbere in part (a) 18 not redundant.
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COMMENT: Lemma 4(a) is a generalization of the second Borel-Cantelli Lemma.
It generalized Cohn's {15] Theorem 1.2. Lemma 4(b) shows that Theorem 3

does not hold with the weaker assumption Al replacing Al'.

PROOF OF THEOREM 3: We prove the results of (omment 4 following Theorem 3.
These results (and Theorem 2) imply those of Theorem 3. Consider Comment
4 part b first. The résult is trivial if € 1s null, so assume C is
non-empty. It suffices to show that for § € C, any ¢ larger than but

arbitrarily close to E , and some sequence {kn} with kn <n,

; L
(4.25) lim n"[6_-8 | = 0 a.s.
n n,krl

does mot hold. For £, i, and {k } as above, (4.15) and (4.18) yield

[l ~ —1 — —
(4.26) n‘]en-en’knl = nclAn (rn-rn,kn)] + o(l) a.s.,

since f < 2(1-1/(2A (;/u))) , and provided g-6-v <0 for some § <1-1/n,
where A;;l exists for n sufficiently large a.s. Given the former condi-
tion on g , the latter condition holds if n > 2 A(P/c) , &s is assumed.

Using a proof by contrédiction we show that for some sequence {kn}

Lia-lem _ = .
(4.27) lim sup n ]An (rn Tk ) == a.s.,
e n
where :1 denotes a J-vector with at least one element equal to = . Llet
w denote a realization of the process {Zi} . If _(4.27) does mot hold,
then for all w in a set with positive probdbility we have

-1
(4.28) nfl) G-t Mg, Va=1, 2, .l,
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for some scalar M’ <« , vhere & 1is a vector of ones and the superscript

w indicates the particular realization w . For such w and n suffi-
ciently large,

,,
Avegetlog < =

Aleg <M

(@.29) nf|T -T, ] - nclAnA;l(?n—?n’k 3| <me

n n
where the superscript w has been omitted in (4.29) for notational conven-
ience, denotes z J-vector of infinities, the first inequality holds
by simple algebra, and the second inequality holds for n sufficiently
large given e > 0 since Ah B2 A a.s. But, Lemma 3 implies

. - - 1 - .
lim sup n°|T. -T | = »* a.s, for some sequence {k_} . This contradicts
e n n,kn ~ n

(4.29) and implies (4.27) is true, (4.25) and (4.27) combine to give the

result of Comment 4 part b.

Next we show Comment 4 part b implies Comment 4 part a. For q <=,

it suffices to show £ =1 - 1/(q+e) is in C for € arbitrarily small
and positive. For this ¢ , EIrleq+E = » for some integer j in

{1, .."J} . mlls.

N I 1 o= . 1/(q+e) P*e | 1 . »
(4.30) nglu Foi(n )Jznglu Fysin )) 2 El7 | 1

where the second inequality follows by Loeve [40, Moments Inequality, p.
242). In addition, algebraic manipulation shows that p € (20q/(q+1), p]
and n > 2 A (p/a) implies £ < 2(1- 1/(2A (/) , for ¢ sufficiently
small., Hence, E.€C . b

For the case q = = , part a says A(§,P) <1 . The latter is true

whether or not qQ=«, if T £ 0 . To see this, consider £ = l+e for

€ arbitrarily small and positive., For this £ ,
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(4.31) y [1-1::1.(111'5)} > 1
n=1 } n=

{
1{1 - FLj (n" 7))

unless FLJ.(OJ =1 . BSince rLj >0, ¥j, (4.31) holds for all ¢ > C

0 . Thus, part a holds for q = =, =and moTe

"

and all j unless T

generally, A(8,P) <1, provided T EQ . &

tx)

s

PROOF OF LEMMA 3: It suffices to show the result for z € (1,1] . Using
{4.21), we have

4 -1 -1 0
(4.32) n ]Yn-Yn’knl :nc “knl - %)y

Let {kn} be a sequence such that Gk (nl'T) = G;(nl'T) s ¥n . Then,
n

(4.33) T P(n-‘-“1 Y, | >1) = 3 1 -G* I-1y4 _ o .
ngl | kn ' ngll n(n )]

Lemmz 4 now gives P(n'r"lh’]c I >1i,0,) =1 . Thus,
n

(4.34) lim sup n° 2|y

F i

K == as., VOLE(1,1].
n

C'llf

Also, since 7 <1, n n,knl

converges to Zero a5 n -+ = 3.5,

by Lemma 1 and the assumption ¢ » o . Thus, (4.34) and (4.32) combine to

give the desired result, @.E.D,
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PROOF OF LEMMA 4: To prove part (a), note that Cohn's [15] Lemma 1.1 shows
that P(An i.o.) > 0 . The Kolmogorov 0-1 Law for strong mixing random
vectors (see Andrews [9]) now implies that P(An i,e.) =1, since
{An i.o.} 1s a tail event.

To prove part (b), we present a counter-example. Let {£n} be a
sequence of independent Bernoulli random variables with probability

q, = n/(n+l) that €, equals zero. Let {Xn} be 2 Markov chain defined

by Xl =€ and for all n > 1 , Xn =X if X,.y =1, and
X, =€ » if X,y =0 . The state 1 is an absorbing state for {Xn} .
Set Dn = {Xn = 0} . We have
n
P(Dn) = P(em=0, Vm=1, 2, ...,n) = I n/f(ml) = 1/(n+1) ,
m=1
so that ] P(D)} == . Further,
n=l
N
P(D_i.0.) = P(X_=0, ¥n=1, 2, ...) =1lim N q =0 .
n n : Nowo n=1qn

- .
Thus, } P(D,) = = does not imply P(D, i.0.) = 1. It remsins to show
n=1 . .

that {Xn} is strong mixing.

Let ‘Bij denote the o-field generated by Xi, sees X: o Take AO

J
. 0 . 1
to be any set in 'Bl,n » and B" to be any set in Bn+s,w . Let A
1 0

and B~ denote the complements of A~ and B0 » Tespectively. Simple

algebra shows that

(4.35)  [PA% 8% - %P % | = [pcad nBY - padypaY |, wi=0, 1; va=o0, 1.

Define A and ¥ by
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0 is A0 et 89 if 80cop

n ~ n+
1 and B =
A~ othemvise,

s

=
L]

1

B® otherwise,

where the superscript ¢ denotes the complement of a set. Note that

~ _ . c ~ .
AcpD and BeD . (This follows because lBl,n (‘Bms,w) does not

contain any proper subsets of Dn (D§+S) .} Since Dz and Dn+5 are dis-

joint, so are A and B . Hence, using (4.35},

1pa® n8% - paDr %] = PENB) -pRPE) | = PRPD)

<P, < P(D) = 1/(s+1) .

Since 1/(s+1) + 0 as 5 += , {Xn} is strong mixing. Q.E.D.
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of Western Ontario, and the participants of the statistics seminar at M.I1.T,

’The asymptotics used here are analogous to the standard asymptotics based
on weak convergence (i.e., convergence in distribution}. For example, sup-
pose one has two estimators that can be normalized to have standard normal
asymptotic distributions. The finite sample variabilities of these twe
estimators are usually compared by comparing the relative magnitudes of the
two normalization factors. Similarly, the finite sample stability proper-
ties of two estimators are compared by comparing the normalization factors
that are, by definition, their stability exponents.

3One solution to the problem of defining the estimand in a misspecified
model is to take the estimand 90 to be the a.s. limit of the estimator

under P (e.g., see {11, 31, 42, 53 54]1). That is, 8y may be defined

as the unique solution to lim — E E pTy {(6) = 0. Depending upon the circum-
nHe i= 1
stance, this solution may be more or less satisfactory.

“Assumption BS requires that r,(6) is twice differemtiable in some neigh-
borhood of 6y - This is not needed for asymptotic normality in géneral

but is needed for the stability results {see equation (4,14) of the proof
of Theorem 2).

SThis altering of the assumption of mean zero errors only affects the de-
finition of the constant term, and hence, is relatively innocuous.

6'I'he normal df arises in the definition of the constant vy , because with
this definition if the true error distribution is normal, then the scale
parameter ¢ equals the standard deviation of the errors. Such a defini-
tion is not essential, but often is reasonable.



