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SUMMARY
ROBUST ESTIMATION OF LOCATION IN A

GAUSSIAN PARAMETRIC MODEL: T1

This paper extends the results of Andrews (1984) which considers
the problem of robust estimation of location in a model with stationary
strong mixing Gaussian parametric distributions. Three neighbourhood svs-
tems are considered, each of which contains the Hellinger neighbourhoods
used in Andrews (1984). Optimal robust estimators for this dependent
random variable model are found to be bounded influence estimators with
optimal ¢ functions which are very nearly of Huber shape. These esti-
mators are quite robust against different ''amounts" of dependence, and
against lack of dependence. To generate the optimal estimators a mini-
max asymptotic risk criterion is used, where minimaxing is done over
neighbourhoods of the parametric Gaussian distributions. The neighbour-
hood systems include distributions of strong mixing processes. They
allow for deviations from stationarity and from the Gaussian structure
of dependence. In addition, deviations from the normal univariate para-
metric distributions are allowed within neighbourhoods defined by
(i) en—contamination, (ii1) variational metric distance, and (iii) Kol-

megorev metric distance.



1. Introduction

In this paper we consider the dependent random variable (rv) robust-
ness model of Andrews (1984) with larger systems of neighbourhood distri-
butions. Qualitatively distinct results are obtained. The models con-
sidered here are based on the independent identically distributed (i.i.d.)
models of Bickel (1981). The problem is to estimate the location param—

eter € in the model

Xj=e+Uj,j=l,...,n, (1)

where the Xj‘s are dependent rv's. Parametric distributions of the in-

finite process <Xj>j3}

E (Xl, Xy ... ) are specified, and neighbourhoods
of these parametric distributions are constructed. In fact, three differ-
ent neighbourhood systems are considered-—each corresponding to a distinct
model, As in Andrews (1984}, the parametric distributions are mean &
stationary strong mixing Gaussian distributions. The neighbourhoods con-
tain strong mixing distributions which are "close" to the Gaussian distri-
butions in the sense that their univariate marginal distributions are clese
in terms of 1) e-contamination, 2) variarional metric distance, or 3) Kol-
mogorov metric distance, and their bivariate distributions are close in
terms of some weak-convergence-inducing metric. The neighbourhoods of

the contamination (c) model are contained in those of the variational (V)
model which, in turn, are contained in those of the Kolmogorov (I} model.
For any one of the three models, the true distributiom of <Xj>iil is
assumed to lie in the neighbourhood of some parametric distribution., The
true distribution of Xl, ERTER. N is then just the distribution of the

L

first n rv's of the infinite process <X These neighbourhood

> .
b LSS

systems allow for the relaxation of the univariate parametric assumption of



normality, andof the assumption of independence and stationarity of the rv's.
The univariate contamination and variational neighbourhoods used
in this paper can be given gross error interpretations (for the latter
a theorem of Strassen (1965) is used), Also, Kolmogorov neighbourhoods
lie between variational and Prokhorov neighbourhoods in size, and the
Prokhorov neighbourhood (which is not considered in this paper)} has a
gross error interpretation which is similar to that of the variational
neighbourhoods (see Hampel (1968, 1971)). In the present model, however,
the neighbourhoods are not intended to be interpreted solely as the con-
sequence of gross errors. The neighbourhoods are designed to reflect the

belief that the parametric model is merely a close approximation of the

true distribution of the process <xj>j>l ,

due to the complexity of
nature. Thus, the parametric model is an over-simplification of reality,
of which the existence of gross errors is only one possible cause.

The estimation problem under consideration is cast in an asymptotic
framework. An optimal robust estimator is determined using a critericn
of minimax asymptotic risk (following Huber (1964)). That is, the optimal
estimator minimizes, over a class of estimators, the asymptotic maximum
risk over all distributicns in the neighbourhood system. In the present
models, this includes minimaxing over a prespecified set of correlation
matrices of the parametric distributions. The effect of this procedure
is discussed below (see Section 4). The use of the minimax
principle requires careful design of the size and character of the neigh-
bourhood system, The size of the neighbourhoods considered here is madé
to shrink to zero as the sample size (n) tends to infinity. Thus, for

each n we have a neighbourhood system of the whole process <X ,

37421

and as n increases the size of the neighbourhoods shrink, This modelling



construct is somewhat analogous to that of local power used in testing
theory. The idea is not that the true distribution of the process
<Xj>j3l somehow becomes closer to that of a parametric distribution as
the sample size increases. Rather, shrinking neighbourhoods are used as
a device to generate asymptotic properties of estimators which approximate
their properties for some specified finite sample size, Further discus-
sion of the use of shrinking (or infinitesimal) neighbourhoods can be
found in Andrews (1984) and Bickel (1981). Such neighbourhoods have been
used extensively in i.i.d. robustness models, see Huber-Carol (1970},
Jaeckel (1971), Beran (1977a, b, 1980), Rieder (1979, 1980, 1981a, b},
Bickel (1978, 1981, 1982, 1983), Wang (1979, 1981), and Holmes (1981).

It is jmportant that the neighbourhoods contain a rich arrav of
distributions which are close to the parametric distributions., In par-
ticular, the dependence structure of the neighbourhoods should be such
that all distributions in the univariate g=—contamination, variational
metric, or Kolmogorov metric neighbourhoods are attained as the univariate
distribution(s) of some neighbourhood distribution(s) of the process
<Xj>jil . This is the case, in fact, as shown in Andrews (1982a, section
I11.C). Thus the neighbourhoods are not sparse.

An optimal estimator is sought from the class of weighted M-estimators.

Such estimators solve for 6 an equation of the form

where the weights dnj may depend on parameters of dependence (such as
correlations). The use of weights is motivated by the generalized least

squares estimator which is a weighted M-estimator and is the uniformlv



minimum variance unbiased estimator. (See Andrews (1984) for a discussion
of this class of estimators.)

The optimal estimators from this class are found for each of the
three different neighbourhood models, In fact, the optimal estimators
for any twe of the three models are expressible quite simply in terms of
that of the third, so the description of the solution for any one of the
three models is sufficient. The optimal estimator is shown to have equal
weights. Note, the sample mean, which is an asymptotically efficient
(non-robust) estimator for the parametric model, also has equal weights.
The least favorable dependence structure of the neighbourhood distributions
is found to be that which has the largest correlation coefficients. This
is in accord with the results of Gastwirth and Rubin (1975) (which con-
cern estimator performance only under the parametric model), The optimal

Y function is of the form

= v for x> b

P (x) € [-v,y] for lx] < b, for a constant b <

-y for x < -b

Thus, the optimal estimator has a bounded influence function. In fact,
the dependent robust model considered here is closely related to the
bounded influence method of Hampel (1968, 1974, 1978) and extended bv
others such as Handschin EE.Elf (1975), Rousseeuw (1981), Krasker and
Welsch (1982), and Huber (1983). The i.i.d. model of Bickel (1981), upon
which the present model is based, can be viewed as a formalization of

the bounded influence approach of Hampel. The results of the present
paper show that this theoretical justification for bounded influence

estimators carries over to the dependent case.



The shape of the optimal ¢ function for =x € [-b,b] 1is given
by the solution to a calculus of variations problem. This problem yields
a constrained integral equation. The solution of this integral equation
is given as an infinite expansion in terms of orthonormal polynomials.

The coefficients of this expansion, the truncation height vy , and the
constant b are calculated numerically. The appearance of an integral
equation solution to the calculus of variations problem, as opposed to a
closed-form solution, is directly attributable to dependence in the model.
Estimators based on dependent data typically have asymptotic variances
given by a doubly infinite sum of bivariate expectations involving the

y function., These cross-product expectations prohibit pointwise mini-
mization, which is possible in the independent case, and lead to the
solution being given as an integral equation.

The optimal estimator is found to be nearly linear for x € [-b,b]
and is very well approximated by a Huber estimator (see Huber (1964)) whose
truncation height depends upon the "size" of the univariate neighbourhoods
and upon the least-favourable dependence structure. ({Note, Huber estimators
are strictly optimal for the i,i.d. version of the model considered here.)

Huber ¢ functions are of the form

Y x>b
Y ! Y
yix) = [Ex] = s x € [-b,b], for a constant b < = .
=Y
-Y X < =b

This is a useful approximation to the optimal ¢ function because the
determination of the optimal Huber estimator {(which only requires finding
the optimal truncation height) is much easier than the determination of

the strictly optimal estimator (which requires calculation of the infinite



expansion referred to above).

It is shown that the truncation height of the optimal estimator
(or of the optimal Huber estimator) is relatively insensitive to the
least favourable dependence structure, unless considerable positive de-
pendence is allowed. Thus, the optimal ¢ function for dependent rv's
is remarkably similar to that for independent rv's. This result is most
convenient,

A clear dichotomy exists between the optimal y function for
the Hellinger model considered in Andrews (1984) and those of the models
considered here, This stems from the small size of the Hellinger neigh-
bourhoeds as compared to the neighbourhoods considered here. Optimal
Hellinger ¢ functions are Huber o functions with arbitrarilv large
truncation height vy ., Consequently, the bound on their influence function
is arbitrarily large. On the other hand, the corresponding estimator is
arbitrarily close to being asymptotically efficient at the parametric model.
For contamination, variational, and Kolmogorov models, such estimators are
far from optimal, In fact, their asymptotic maximum risk over c, vV,
and K neighbourhoods is arbitrarily large. Whether or not the Hellinger
neighbourhoods are too small depends, of course, on the unknown true dis—
tribution. However, if there is a possibility that the true distribution
lies farther away from the Gaussian distribution than the Hellinger neigh-
bourhoods allow, then the c, V, or K neighbourhoods are more appropriate.

This paper is organized as follows: Section 2 sets up the problem
to be solved, It contains definitions, regularity conditions, and a
formal statement of the problem. Section 3 gives the theoretical results
of the paper including a solution to the problem in terms of a constrained

integral equation, and a solution to the integral equation in terms of



an infinite expansion using orthonormal polynomials. Section 4 then
describes the results of numerically solving the integral equation via
caleulation of the coefficients of the expansion. It also contains com-
parisons of the performance of the optimal estimators with the simpler
Huber estimators, and with the optimal non-robust estimator, under a
variety of scenarios. Section 5 contains some proofs which are omitted
from Section 3 for purposes of continuity and ease of reading.

The results presented in this paper concern the case where the
parametric distributions are mean 0 stationary Gaussian distributions.
The neighbourhood system and theoretical results are extended in Andrews
{1982a) to more general single parameter stationary parametric distribu-
tions {whose univariate marginal distributions satisfy maximum-likelihood-
type regularity conditions). For these generalizations, numerical cal-
culations are necessary to yield the optimal ¢ function in closed
form., (Such calculations have not been performed.)

For references to other papers which consider robust inference

in the context of dependent rv's see Andrews (1984),

2, Definitions, Regularity Conditions, and Statement of the Problem

Some of the definitions and regularity conditions given here are
analogous to those of Andrews (1984). The reader is referred to comments
given in that paper regarding the choice and generality of the definitions

and assumptions.

2.1. The model under consideration is given by (1), The Xj are ob-
served, and © 1s an unknown parameter to be estimated. The parameter

space, & , 1s an open subset of R .



2.2. Parametric distributions, ¢8 , of the infinite process <Xj>j>1

e

are specified to be mean 8§ , (known) varlance 02 , Sstatiocnary, strong

mixing, Gaussian distributions with (infinite dimensional)} correlation

matrix £ . § € 5, a specified set of correlation matrices defined in

section 2.3 below. @ep satisfies the mixing condition MIX defined in

section 2.5. Under ¢GQ , the univariate marginal distribution of Xj

(for any 31 ) 1is denoted by ¢8 , and the bivariate marginal distribution
of rv's %j » % of distance r apart (i.e., |j-k| = r ) is denoted
@gg . The densities of @8 and ¢EQ » with respect to Lebesgue measure,
are denoted by ws and me(-,-,pr) , respectively, where L= [pj]jjp

= [Cov¢ (X

Xj+1)/62]j>0 is the correlation vector corresponding to & .
1Y —

1,

2.3. Each correlation matrix O of a stationary parametric distribution

d

&c, is completely characterized by its correlation vector p . We spec-—

ify restrictions, in terms of the vector p , on the matrices & over
Lo
which minimaxing is to take place. Correlation matrices { of parametric

distributions QBP must lie in the set § , where § is defined bv

§ = {Q : 2 is a positive definite, semi-infinite, Toeplitz
; : Jtho
matrix with unit main diagonal elements and j diagonal

B .
elements pj, where loj{ j_pj, V3 3_1} .

where R? = (1, p?, og, wv.)' 1s some specified positive definite cor-

B - P .
relation vector (i.e., ¢ corresponds to a positive definite Toeplitz

matrix QB Yy with D? >0, ¥j . (Bv semi-infinite we mean (I cor-
j =
. . B B
responds to a process on the positive integers.) L and & are referred

to as the boundary correlation vector and matrix, respectively.




Comments: (i) For example, the boundary correlation vector can be taken

as that corresponding to any stationary, finite-parameter autoregressive-

moving average (ARMA) process,

{ii} The boundary correlation vector is specified on the basis
of experience in the same manner as is the choice of parametric family.
However, the results of Section 4 show that the optimal robust estimator
is aet too sensitive to the choice of EP , unless quite large "amounts

of correlation are considered,

2.4, Three different models are considered, each corresponding to a

different sequence of neighbourhoods of the parametric distributions

. i
@BQ . The three sequences of neighbourhoods are denoted by ﬂFt//H(e>’

n=1, 2, «.. , for i =c (contamination), V {variational), and K

{Kolmogorov). Each neighbourhood consists of distributions of a

Feﬂn

real-valued process <Xj>j>1 with the properties specified below. Let

P be the univariate marginal distribution of Xj under for

én Femn *

=1, 2, ... . Let F%éﬁ denote the bivariate distribution of Xj, Xk

"

&)

under F . The density of Fo , with respect to a specified measure,

fin én

is denoted by fén , Yi=1,2, .. .

A distribution Fenn is in the nth i-type neighbourhood of

., i.e., Foo € {?i/ﬁ;(e), ), for i=c, Vor K, if:

Fl1: FeQn is the distribution of a strong mixing, real-valued process

~
on the positive integers with mixing numbers a(j) , j =1, 2, «..

where a(j) satisfy condition MIX defined below.

3
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i i . i ) .
F2: Fon € ft//ﬁ(e) » ¥ =1, 2, ..., where ft//g(e) is a neighbour-

hood of the univariate parametric distribution ¢e defined as in

Bickel (1981) by

a) Contamination (i = ¢)

TE/VE{G) = {F : F(x) = (1 -t//E)Qe(x)-+H(x)t/ﬁT, for H{+)

arbitrary; ,

where F(+) and H(.) are distribution functions (dfs) on R

b} Variational and Kolmogorov (i = V and K) :

J’i//r;(e) = {F : a,(F, 0 < t/vn} ,

AV(P, ¢e) =z sup{ﬁF(A)-—@e(A)] : A is a Borel set in R}

1
Yie-olas
where f = dF/dy and u >> ¢y s and

A, (F, ¢.) = sup|F(x) -3,(x)]| .
K 5] <ER &

F3: The bivariate distributions of Feﬂn lie in Aw-metric neighbour-

noods of ¢6Q , Where Aw is any fixed but arbitrary weak-convergence-

; . , 2 ; .
inducing metric on R , and the sizes of such neighbourhoods are

o(l) as n ~+ « , That is, for some d(n) which satisfies

n-e Jak T .
d(n) — 0, Aw(Fenn' @8) < d(n) for all r , and for all :, k
such that |j-k| = r .
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Comment: The univariate neighbourhoods are related as follows:

C
Foym® <

A K
H
ft//rT(e) <

where .Fs/ﬁ;(e) is the Hellinger metric neighbourhood of radius t/vn

about @e .

2.5. The following mixing condition is assumed to hold:

. i
MIX: 50 and Fem , Wwhere FSQH € {?t//ﬁ(e), sz}n s ¥n , VY5 €@,

Vi € 5, are strong mixing with mixing numbers generically denoted

by a(m) , m= 1, 2, .., . There exist non-negative non-increasing
numbers og{m} , m =1, 2, ... , such that for all ¢6° and Feﬁn .
g(m) <afm) , m=1, 2, ... , and alm) , m=1, 2, ... , satisfv

[+ +]
z mzo.(m)T <o . for some T € (0,1) .
m=1

2.6. Let <Fenn>n3; denote an arbitrary sequence of neighbourhood
T _ ) i \
distributions Foon » 0 = 1, 2, ... . That is, Foon € {Ft/JH(e)’ 7 S
voo , and € S where 1 = ¢, V, or K. Let unif(e,F,Q)i abbreviate
"uniformly for 6 € C, where C is any compact set in © , uniformly
for <Feﬂn>qzl , and uniformly for & € § , where the neighbourhoods

are of type i ," for i =1¢, V, or K,

2.7, Define T = <Tn>n>l to be a weighted M-estimator of & for some

Lebesgue measurable function y : ® x R - R, and for some triangular

array of weights {dnj} , 1if
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n
Closest root of I dnjw(e, xj) =0 to T; if a root exists
T = =1
n ~
Tn if no root exists,

~r

where T = <Tn>n>l is some estimator of 6 which is comnsistent

unif(a,F,Q)i » Such an estimator exists by Andrews (1982a, b).

The following assumptions on ¥ hold when specified:

3

Al: U € ¥(8) = {EI 1 9 x R~ R’E(b ?L'(e,x) =0, qu I(e,x)-(x—e)/c2=1
) 9

and E, 3°(8,%) < m} .
%

A2: sup]w(e,x)l < Cl(e) , where Cl(e) is bounded for €& € C ,
x€R

any compact set in O .

A3: sup|y(s +hl, x) —yp(8 +h2, x)| < cz(e)- for all

h, -h
2
xER

1|
[hll, |h,| <€, where e >0 is fixed, and where C,(¢)

is bounded for 8 € C , any compact set in € .
Al 1«'/(9,1‘{) = U-'(03 x—S) (E W(X‘“e))

Comment: Assumptions Al=-A3 are discussed in Andrews (1984). A4 implies
that the estimator is location equivariant with probability that converges
to one as n =+ « , This condition is not used for the thecoretical results

of the paper, but it simplifies the numerical calculations of Sectiom 4

considerably,

For the K neighbourhood model the folleowing two stronger assump-—

tions replace A2 and A3:
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A2': There exists a finite, signed measure v and some constant

B
C3 such that 1(g,x) = ve((—w, x]) + C3 a.e, and
|Ivenv <Cy(e) , where C,(&) is bounded on compact sets,

and ]]-”V is the variational norm (see condition F2).

for v, is as in A2',

2 C@ [hy =hy |, 8

Vgn = Voan b
6+h,~ Vg+n Ny

where cz(e) is bounded on compact sets.

Comment: The existence of a measure Ve in A2' and A3' is not restric-
tive since the minimand is finite if and only if there exists such =

measure (see Bickel (1981)).
The triangular array of weights {dnj] are assumed to satisfy:

n
D2: The limit of d (= yd.,), n=1,2, ..., exists

and equals n (#0) .

Without loss of generality, take 1n =1 and assume the feollow-

ing limits exist:

~ n
n = ii: “521] nj] s
and (2)
15 = =
w, % 11m;{ (dnj—dn)(dn(j+r)—dn) , Yr=20,1, 2, ... .

e Dj=1
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2.8. Let ﬁ% , 1 =1¢, V, or ¥ be classes of weighted M~estimators
with weights {dnj} which satisfy D1 and D2, and v functions which
satisfy Al, A2, and A3 for i =c¢ or V, and Al, A2' and A3' for i =K.
Let ,Mi be the Rocation equivariant subset of ,ﬁ% . That is, estimators

in .Mi also satisfy A4,

2.9, Let L : R~ [0, be c given loss function which satisfies con-
ditions L1 and L2 when specified:

Ll: 1 is symmetric about 0 and increasing;

L2: L is convex.
2.10. The problem for 1 = ¢, V, or K can now be stated as follows:

Find an estimator T = <Tn>n>l E.M% of 6 which attains the infimum

of the expression

R, (y,d,8,t,5) = sup lim sup sup E L{vn(T_-8) ) (3
1 a n
a>0 n+e QES <F > g80n
gim n>l

: . . 5
where La(x) = L(x) A a . That is, we want to find an estimator in j%
which yields asymptotic, minimax risk over the distributions ir the neigh-

bourhoods.

3. Theoretical Results

We now proceed to simplify the minimand Ri(w,d,e,t,s) . Some
of the results of this section parallel those of Andrews (1984). In
such cases, the reader is referred to that paper for the proofs. Any
necessary adjustments of those proofs are given below. Theorems, lemmas,
and corollaries of this paper are numbered Bl, B2, .... Results referred

to by numbers 1, 2, ... are from Andrews (1984).
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Theorem Bl, For T € J% .

15 5 5)
IEGQH(/E(Tn e Elgldnjl(w’ % Fen)}]

J=

4

j:—oe

b

as n -+, unif(e,F,Q)i for 1 = ¢, V, or K, where x(y,0,F) = EFw(e,x) ,

and where I%(Y) denotes the distribution (or law) of Y under F .

Comment: The proof of Theorem 1 (of Andrews (1984)) holds as stated
when Hellinger neighbourhoods are replaced by ¢ or V neighbourhoods, as
in Theorem Bl. The proof needs to be altered slightly for i = K (see

Appendix).
Corollary Bl. If T E‘Mi and L satisfies L1 and L2, then

| . oy r) -
Ri(b’,d,e,t,s) = ENL\bl(Ib,d,e) +;’ég G(-.p,d,e,u) z/ ] (3>

for i =1¢, V, or K, where Z ~ N(N,1) , and where

bc(w,d,e) = ﬁ:t-%(ess sup ¢(8,x) - ess inf w(e,x))

*€R x€R

+ t-%- ess sup ¥(6,x) +ess inf w(e’X){ , (6)
x€R x€R

bv(w,d,e) z ?ﬂt-(ess sup ¥{(8,x) -~ ess inf w(G,X)) s (73
x€R xER

by (9,d,8) = ?T-t-HvGHV , 8
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and

2 ~ o

T(1:4,8,8) = | (Ltw DB, w(E, XPUE, X)) . ()
J=-ee 1Y

Comment: The proof is the same as for Corollary 1 with Lemma 6 replaced

by Lemma Bl.

Lemma Bl. If {y,d} corresponds to some T E‘Mi , then

n
1 j .
sup lim I Z dnjl(w, B,an) = bi(w,d,e) , for 1 =c, V,and K. (10)

.
<Feﬂn>q31 e =l
N.B.: The proof is given in the Appendix.

We now calculate the infinum over the triangular arravs of weights

{d_.}
nj

Theorem B2, I1f T E.ﬂ% and 1 satisfies L1 and L2, then

inf R, (¢,d,8,t,8) = Ri(w,d*,e,t,s) s (11
{dnj}:Dl and

D2 held

where d¥ = {d;j} is any triangular array of identical nonzero constants,
for 1 = ¢, V, and K.

Without loss of generality we can take d:j =1, ¥i, V¥no.
Then, define R, (¥,0,t,5) = R, (p,d*,8,t,8) , b, (¥,8) = b, (y,d%,8) ,
and oz(w,B,Q) = Uz(w,d*,e,ﬂ) , for i =14¢, V, and K. The asvmptotic
maximum bias and the asymptotic variance simplify to:

b (y,8) = teess sup|y(e,x)| ; by(y,8) = t-(ess sup ¥(6,x) -ess inf y(&,x)) ;
¢ XER *€ER X€ER

©

2
by (¥,6) = t-||veuv ; and 0" (y,8,0) = ) E¢GQW(8, Xpw(e, X1+ij1) .

J:—m
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Proof of Theorem B2. The proof is the same as for Theorem 2, since

~

bi(w,d,e) is minimized by minimizing n for i =¢, V, and K . O

Next we show that QB is the least favorable correlation matrix.

Theorem B3, For ¢ satisfying A2,

sup Gz(lP,B,-Q) = 02(‘1’3 9, QB

fES

} . (12)

Comments: (i) This shows that the (perhaps unrealistic) inclusion of
Q matrices in % with large amounts of negative correlation is irrele-

wvant .,

{1i} Suppose the true i 1is known, call it QT . Then, the op—-

timal estimator can be calculated by taking QB = QT .

Proof of Theorem B3. The bivariate normal density we(x,y,p) can be

expanded in terms of the Hermite polynomials Hk(-) s, k=20,1, ...,

as

L-E)Hk(zg&)pk% ()0, () (13)

f -1 8
%H
PammN
Q

we(x,y,o) =

where equality is the sense of mean square convergence. For j =21, #2,...,

oo 2
) Uw(e,x)ak(—x—;—e—)oa(x)dx] (pm)k
R

k=0

Llleom(sea] olp”

N

E, w6, XDv(6, X )
LI 1 1+

jA

n

E, che, X )ule, Xy ) (14)

6q

+13]
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where the two equalities follow using (13), the boundedness of , and a
Fourier series result (see, e.g., Andrews (1982a, Lemma 11)). Summing

over j =0, %1, #2, .,. gives the desired result. O
The results obtained thus far are summarized by:

Corollary B2, For T E.ﬁ% and for L satisfying L1 and L2,
Ri(¢,e,t,s) = ENL(bi(e,w) +o(w,e,QB)-z) for i =¢, V, and K. (15)

Under A4, y(8,x) = y(0, x-8) . Define y(x~8)

(0, x-9)
The next result shows that only odd (about 8 ) v(*) functions need to

be considered:

Theorem B4. If there exists a ¥(+) function satisfving Al-A4 which
minimizes (15), then there exists an odd (about & ) y{+) function
which also solves the problem, for i = c¢, V, and K. If there exists

only a sequence of functions <y which approaches the infimum of

q g1
(15) as g + = , then there also exists such a sequence of odd (about

& ) () functions.

Proof of Theorem B4. TFor any function %(6,x) which satisfies Al-A4,

consider the odd version of y(8,x) defined by

F(8,x) = [9(8,%) - v(-¢, —x)1/2 . (16)

~

Vv satisfies Al-aA4, since ¢, is symmetric about € . Without loss of

&l

generality assume 8 = 0 . We have

By _
)

~ ~ 2
I = 5@, 0, B <%, 0, o = ay
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since J(¥) 1is a convex function. The latter follows because

2

n
J[Cw1‘+(l—c)w2) lim E, (c—l-[ ¥
B =

n-—rc

1B
< lim E¢ . C(7§-£
= CJ(wl) + (l-C)J(ll/z) [ (17)

where the inequality follows because g(x) = x2 is convex. Also,
bc(EZO) f_bc(w,O) by the triangle inequality,

bV(E,O)_: t«([ess sup ¢ -ess inf ¢}/2 - [ess inf ¢ -ess sup ¥]/2)

= bv(w!o) 3

~ 1 l
and bK(w,O) = §_£ E'U (%) - Vg —X)| < bK(w.O) s

by the triangle inequality. Thus, by the argument of the proef of Corol-

larv 1, fer 1 satisfying L1 and LZ, and for i = ¢, V, and K,
E.Lib (749) +U($ f QB)'Z < Lib,{(y,8) +o(y, 6 QB)°Z
™~ i Vs ’ s —_ EN i L] * L] .

The case for sequences <y >

gl is proved analogously, term by term, O

For odd V¢ functions,

b, (¥,8) = 2t-ess sup |¢(x=8) 1 = 2o (¥,8) . (18)

Thus the variational model with t = t'/2 has the same asvmptotic maximum

bias as the contamination model with t = t' . Since the asymptotic
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variance is the same in both models:

R (4,6,87,8) = Ry (v, &, t'/2, S) . (19)

Further, if the optimal ¢ function for the variational (or contamina-
tion} model, call it w* s» 1is monotone (as it is for the numerical cal-

culations carried out), then

% = =
be(¥™,8) = bo(v*,8) (= 2.0 (v*,8)) , (20)

and

RK(w*,e,t,S) = RV(I,D*,e,t,S) . (21)

Since {?flvﬁie), &), = {Fk//—(e) Ql,, vn, voe€S, (21) implies

that ¥

is also optimal for the Kolmogorov model. Hence, it suffices
to consider just the contamination model,

Minimizing (15} is easier if the doubly infinite sum of Oz(w,B,QB)
is truncated at a finite number of terms. By truncating at a sufficientlv
high point the optimal ¢ function for the "truncated" minimand has

risk Rc(w,e,t,s) which is arbitrarily close to the minimum of (13%)

2
over T Ej% .

Lemma B2. Suppose T € Aé and L satisfies L1 and L2. (Given any

£ > 0, there exists an integer M € (0,=) such that
2 B
oy (¥, 8,0) _02(¢,9,QB)[ <e,and [H () -R (4,6,5,8)] <, (22)

2 By _ o
where GM(w,S,u ) = Z E wie, Xl)w(e, hl+]j|) (>0, (23)

j==M en

N = 0 By, ‘
and Hcﬁ(u) = ENL<bC(w,8) +0M(¢,8,Q ) Z) . (24)
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Proof of Lemma B2, Given any ¢ > 0, for M sufficiently large,

2.

[=+] 2 (>3

L OB, oV EDU L)) < 8¢ (0T T e(d) <, (25
jefin o8 1] 7 yaim
using MIX, A2, and a mixing inequality {(see Philipp (1969, Lemma 2)).
This gives the first inequalitv of the Lemma. Note, cfi(w, 0, 2% is
necessarily positive, since equation (14) of the proof of Theorem B3 and

e, > 0, Vj , yield

2 B 2 roc 2, 5. F
o, ¥, 0, &) = ju(R@(x)dx +2 ] ] [ VO (x/0)0,(x)dx]" () > 0 . (26)
M 0 . 0 3
j=1 k=1
The second inequality of the Lemma holds because ENL(bC(w,O) +cZ) is

continuous in o , O
By Lemma B2, we can solve

inf  H_, (1) (27)
v :A1,A2,43, ©1

and A4 hold
to get an e-optimal solutien to (3). Of course, if the parametric dis-
tributions are M-dependent this solution is strictly optimal. For con-
venience, and without loss of generality by A4, take 6 = 0 . As above,
y(x) = ¢(0,x) . The "truncated" problem (27) can be split into two

parts. Let

WY = {w(x) : R~ R!w satisfies Al, A2, and A3 with 6 = 0 and

ess sup |V(x) | < Y} . (28)
xER

Then, assuming L1 and L2 hold, {(27) can be written as
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inf E L(tw + inf cM(wY, 0, QB)-Z) s (29)

N
+ v EY
YER Yoy

by the argument of the proof of Corollary 1. Thus, we need to solve

inf ci(w, 0, ab) . (30)
Y EY
YO

Once this is solved for different values of vy , yielding solutions
¢¢ , the optimal value of v, call it ¥ » 1s simply the smallest

value of v which solves

inf ENL(t-Y-+GM(¢*, g, SB)-Z) . (31)
+ Y
YER

Equation (31) is relatively easy to solve, at least for simple loss func-
tions. For example, if loss is quadratic,(31) is just

. 2 2 %

1nf[t v+ ci(w;, 0, QB)} . (32)

YER+

Note, Y* must be finite (whether or not quadratic loss is assumed),
since Rc(wy’ 0, t, S) » = as vy 4 o , for all wY under consider-
atiom.

Before attempting to solve problem (30) via standard calculus of
variations methods, the question of existence must be addressed, since
there mayv not exist a wY function which satisfies all the constraints

and attains the infimum.
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Lemma B3, From the class of wY functions which satisfy Al, A2, A4,

and ess sup[wY(x)l <y (but which do not necessarilyv satisfy A3), there
xER

exists an (a.s.} unique extremal function E: for the problem

. 2 ):]
inf GM(wY, 0, 27y . (33)

¥y

Further, Ve » 0 , Sw: € WY (i.e., ¢: also satisfies A3) such that

cf{(wi, 0, o) < inf oi(qu, 0, 2% +¢ . (34)

vy

Proof of Lemma B3. The proof is sketched here; details can be found in

the proof of Lemma 12 of Andrews (1982a). Define

B=1{yE L2(<I>O) : qu Y(X) = 0 and Ecb w(X)X/c?' =13,
0 0

and

B, = {v € L,(¢,) : ess sup|y(x)] <y} .
Y 20 XER

Consider the weak® topology on the space of LZ(QO) functions. 1In this
topologv, B 1is closed, and BY is closed and compact. Hence B N BY
is compact. Using Reed and Simon (1981, Theorem 5.7), it can be shown
that JM(-) = ci(-, 0, QB) is lower semi-continuous with respect to

the weak* topologv on B n BY . This, coupled with the compactness re-
sult, implies JM(-) attains its infimum on B N BY

If the function $$ which attains the infimum of JN(') on

B n BY does not satisfy A3, then take
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* o | THReael
RUY(x) = i w\,(x z)se(z)dz (35)

where SE(') is a close (but smooth) approximation of point mass at

zero. O

Lemma B3 implies the existence of an (a.s.) unique extremum for
the problem (30) provided the Lipschitz condition is ignored. Hence,
the Euler-lLagrange necessary conditions for this calculus of variations
problem can be applied. (See Gelfand and Fomin (1963) or Akhiezer (1962)
for the classical calculus of variations theory.) For points x € R
not con the boundary of the constraint

ess sup |y (x)| <Y, (36)
xER ¥

a necessary condition for an extremum is

M

!

j=1

Ax
ng)=———5—2bw@>

- 0y (%,7,03)dy /0 (x) (37)

where the multiplier A is such that EqD iJJY(X)X/O2 =1, This is a

0

constrained integral equation of Fredholm second type. (Note, the trun-
cation of the sum in (37) at M has allowed the change in order of
integration and summation which otherwise would not be justified.) Points
x € R on the boundary of (36) are on the upper (lower) boundary if (37)
holds with "=" replaced by "<" (">"). Whether a point is on the boundary
of (36) or not is determined by the coincident satisfaction of the inte-

gral equation (37) and the coustraints. Since Et is odd, (37) can
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. . + -
be rewritten for x in R {the set of positive real numbers) as

- TAX
wY(x) = 52 + gY(x) + Dij(y)KM(x,y)dy , (38)
Y
M B B
WhE]fe K..M(x’y) = -ZjZl[(pO(X,y,Oj) ‘lPO(X,—y,Dj)]/QDO(X) ] (39)
g\,(x) =y ,LKM(x,_v)dy - Y,[_KM(XsY)dY s (40)
DY DY

- +
and DY . DY , and DY are the regions in R+ where -y < wY(x) < v o,
wY(x) = ~y , and wY(x) = +v , respectively, For x € R , $(x) = =u(-x) .,

Manipulation of the integral equation (38) vields the following:

Lemma B4, The optimal wY function, _ﬁi , which solves problem (33)

of Lemma B3 satisfies

_ ¥y for all x sufficiently large
wj(x> =
-y for all x sufficiently small.

Comment: The optimal wY function, E¢ , 1is similar to the vy function
generated via the bounded influence approach (see Hampel (1968, 1974))

--both are constant for large and small values of x .

Proof of Lemma B4. Since

B . . . +
i >0, Vj, implies KM(x,y) <0, Vx€R |,

the right-hand-side of (38), denoted ww(x) , satisfies

Wo(x) > - DX + Y JKT(x,y)dy > - —12-- My > vy , (42)
s _ 2 f - =
20 R+ 20

for x sufficiently large, since A < 0 . Hence, (38) holds with " ="

tnoon ES

replaced by " <,™ and E& must be on the upper boundary, for =x sufficiently
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large. The corresponding result for x sufficiently small follows since

Y is odd. D

The solution Eﬁ to the constrained integral equation (37) can
be expressed in terms of orthonormal functioms. See Courant and Hilbert
(1937, Chapter III, §5) for a discussion of this method. TFor notational

convenience, let <815 857 denote Jsl(x)sz(x)ub(x)dx , for any two
Y

functions sl(-) and 52(') defined on D.]r . Let al(x) , for x €& DT .

2=1, 2, ... be the orthonormal polynomials (with respect to @, over

the region DY ) obtained by applying the Gram—Schmidt process to the

2

polynomials 1, x, x°, ... . Then, by definition, for

Cr BT T Gy o

k, £=1, 2, ... , where 6k2 is the Krenecker delta function. By

. , . . . B
standard Fourier series results, the bivariate normal densit (%, v, 26.)
y @ ) 3

can be written

B i B
@ (%, ¥s 05) = kz Z £ (£ (D@ ()P ()T (207) 5 ¥x, y €D, (43)

1 =1

where equality is in the sense of mean square convergence (against the

2

density wo(x)wo(y) over the region (DY) )}, and
r, () = j Jz £ (X8, (@ (x,y,p)dxdy . (44)
(DY)
Thus,
(x,9) = =2 ] ] £ (xE, Moyt (45)
K Ly B E R

M
_ B B _
where Tkiszl(rkﬁ(oj) —rki(-yj)) , for k, &2 =1, 2, .., . Note,

B . . B B .
T, > 0 because £5 > 0 dimplies rkﬁ(oj) 3_rk2(-cj) y Y3, k, £
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Define the following infinite dimensional vectors:

e
141

(<w, €l>! <‘1U’ C2>’ e )‘ ] E’Y (<8.Y’ £l>! <g.Y5 £2>, *ere )' 3

b
m

(<X/02, gl>, <X/02, 52>, «.. )", and éﬂx) = (gl(x), gz(x), A L

Let T be the semi-infinite matrix with (k,%) element =t for

k¢’

- +
Theorem B5. Let DY , DY , and DY be the regions in R+ where w¢ s
the solution to problem (33) of Lemma B3, is unconstrained, constrained

below, and constrained above, respectively. Then Ei is given by

+
€
Y for =x DY
E;*(x) =4 (%/2-2 YT 427 g(x) for x € D, (46)
-y for x € DY .

where I is the identity matrix, (I+2T7) is some generalized inverse

of T+27, &= (Zgl(I+2D) X +vleg(D) e (D)1 -1)/X' (I +27)7X (vhere
QO(D+) and ¢O(D_) are the @0—probabilities of Dt and D; » Trespec-
tively), and the equality in (46) is in the sense of mean square convergence,

F € R , v¥(x) = —y¥(-x
or X s wY( ) VY( )

Comments: 1. The proof of this result follows the classical treatment

of linear integral equations (see Courant and Hilbert (1937, Chapter III).
2. By Lemma B3 the solution to problem (33) is (a.s.) unique,

Thus the sets DY . D; , and D: of Theorem B5 are (a.s.) unique.

Also, given DY s D; » and Di , the integral equation (38) has an

(a.s.) unique solution, provided I+2T is non-singular. The latter

holds if 1 is not an eigenvalue of the symmetric kernel KM(x,y) . This

is shown using Mercer's expansion theorem (see Courant and Hilbert (1937,
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p. 138), which guarantees an expansion of the form Z Zl(x)zl(y)/xﬂ
g=1

where ZE , and A2 » 4 =1, 2, ... , are the orthonormal eigenvectors
and eigenvalues of KM(x,y) s respectively. For the numerical calcu-

lations described below, singularity or near-singularity of I +27 never

occcurred.

Proof of Theorem B5. Substituting (45) in (38), multiplying (38) by

gm(x)wo(x) » and integrating (38) over DY , glves
} X o o
W B2 S -5 S B> bg £ > =2 ] ] <p, £ se<h , £ beT,
m 2 02 m v' "m kel g=1 k? "m y* 78 kg
XX o
=-3 653’ £+ <gy’ > - 2£Zl<w7' > T, (47)

where the exchange of integral and summation signs necessary for the first
equality is justified by a Fourier series result (see, e.g., Andrews
(1982a, Lemma 11)) since ER, Ek € L2[¢b] » and where the second equalitvy
follows by the crthonormality of £, » %£=1,2, ... . Equation (47)

for m=1, 2, ... can be written as

L, = (I+2T) (-2%/2 +5,Y) . (48)

The vector of Fourier coefficients EN gives the solution to (38):

v = E yr EpPE (0 = REG) = (AF/24+g ) (TH2D)TE() , (49)

£=1

where the first equality is in the sense of mean square convergence.

The constraint E¢ wY(X)X/o2 =1 is satisfied when
0



1=2 J(-'%ﬁ-Fgw)'(I-+2T)_£(x}3%wo(x)dx + vy I¢b(X)dx -y JwO(X)dx
D ~ a + -
Y D D
Y Y
= (_3Y 1 T +_ -
= Aé-+257) (I+2T) X + y(@O(DY) ¢0(DY)) . (50)

This yields * as defined above. O

If the $¢ function of Theorem B5 does not satisfy condition A3,
then a smoothed version of it, call it w; , which does satisfy A3,
can be used (see Lemma B3 and its proof), Minimization of (31) over v
then yields an e¢—optimal solution to problem (3) for contamination neigh-
bourhoods. As discussed above, this immediately gives the solution for
variational neighbourhoods, and if the optimal contamination neighbour-
hood ¢ function is monotone, for Kolmogorov neighbourhoods as well.
The next section presents the results of carrying out these procedures

numerically,

4, Numerical Results

The solution to problem (3) given bv (31) and (46) has been cal-
culated numerically for contamination neighbourhoods and quadratic loss.
The results are given in Table 1 for a number of different boundarv cor-
relation vectors RF + More specifically, first order autoregressive
(AR(1)) and moving average (MA(1l)) boundary correlation vectors are con-
sidered with several different correlation parameters, 02 is taken to
be 1 (for 02 # 1, the ¢ function just needs to be rescaled)., The
degenerate kernel method utilizing orthonormal expansions was used to
solve the integral equation (38) numerically., {See Atkinson (1976) for
a brief description of this method and references to the literature con-

cerning it. Thecretical error bounds can be calculated for this method
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but are often too large for practical use, and hence, are not reported
here.) This method consists of truncating the expansion of the selution
(46) given in Theorem B5 at a finite number of terms. TFor the degrees
of accuracy given, it was necessary to calculate the first three terms
of the expansion. Hence, the optimal ¢ function for x € DY is given
by a polynomial of degree three {without a constant term, since the solu-

tion to (38) at x = 0 is necessarily 0). The sets DY , DY » and

D: and the optimal truncation height vy were found by search procedures.

DY . D; , and Dt are of the form [0,b) , the null set, and [b,=)
respectively, where b is given in the tables. The table only gives
Y(x) wvalues for x > 0, since § is odd., The table shows the optimal
¢ function corresponding to 6 =0 ; for 8 # 0, w(8,x) = Y(x=8) ,
by assumption A4. Four values of t (the parameter which indexes the
size of the neighbourhoods) are considered, viz., t = 0.5, 1.0, 1.5,
and 2,0, Tor samples of size 100, these correspond to the ''reasonable"
contamination levels of 5, 10, 15 and 20%, respectively. Bickel (1981)
provides additional arguments which suggest that this is a reasonable
range of values for t . As discussed above, the contamination results
for t = t' correspond to the variatiomal results for t = t'/2 , thus
the table actually gives soluticns for both the contamination and varia-
tional neighbourhoods models. Further, since the optimal ¢ functions
given in Table 1 are monotone, the variational and Kolmogorov models
have the same solution, and the results of the table apply to the Kol-
mogorov model as well (with t = t'/2 ).

Table 1 gives the optimal ¢ functions and the corresponding

minimum risk values (labelled R1 risk) for the different situations

described above, As expected, v (i.e., the value of U(x) for x € [b,=)



TABLE 1. vy functions for the optimal estimators (E1l) in the
contamination model with squared error loss.

The ¢ functions are odd and on R+ are of the form

[ a.x + a x2 + « x3 for x € [0,b)
1 2 3
U(x) =

Y for x € [b,=) .
For 68 # 0, v(8,x) = p(x-8) .

Boundary R1
Correlation t o o o Y b ,

Vector 1 2 3 Risk
AR(eP=.0 0.5 1.63 .000 000 1.410  .862  1.636
1.0 2.971 .000 000 1.293  .435  2.964
1.5  4.953 .000 .000  1.267  .256  5.000
2.0 7.634 .000 .000  1.259  .165  7.787
AR(MWeY =1 0.5 1.632 .000 000 1.411  .864  1.859
1.0 2.971 . 000 .001  1.293  .435  3.186
1.5 4.953  -.002 .006  1.267  .256  5.223
2.0 7.990  -.002 ,007  1.259  .158  8.010
AR(l)p? =.3 0.5 1.617 .000 L008  1.414  .871  2.499
1.0 2.93  -.001 011 1.294  .441  3.809
1.5  4.953  -.006 025 1.267  .256  5.867
2.0 7.63  -.004 023 1.259  .165  8.653
AR(l):f =.5 0.5  1.538 .002 043 1,431 .908  3.666
1.0 2.837  -.023 098 1.297 .45  5.010
1.5  4.631  -.009 089 1.269  .274  7.050
2.0 7.63%  -.005 .088  1.259  .165  9.839
AR(DeT =.7 0.5 1,223 416 -.198 1,490 1.030  6.404
1.0 2.469 .008 .305  1.310 .513  7.809
1.5  4.345 2116 .022  1.271  .290  9.870
2.0 7.038  -.003 396 1.260 179 12.664
MA(DPS =.1 0.5 1.636 .000 000 1.410  .862  1.837
1.0 2.971 .000 001 1.293  .435 3,164
1.5  4.953  ~.002 006 1.267  .256  5.201
2.0 8.402  -.002 .008  1.258  .150  7.987
MA(L)R: =.3 0.5 1.617 .000 007 1.414  .871  2.242
1.0 2.903  -.001 011 1.295  .446  3.572
1.5  4.953  -.005 022 1.267  .258  5.609
2.0 7.636  -.003 .02 1.259  .165  8.394
MA(D) 0} 0.5  1.442 307 -.171 1.427  .903  2.662
_ 40009 L0 2.85  -.001 058 1.296  .451  4.005
= 499, 1.5  4.951  -.006 J077  1.267  .256  6.045
2.0 7.635  -.004 077 1.259  .165  8.833
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and b decrease in t (for any given RF ). That is, as the size of the
neighbourhoods increases the truncation height decreases. For any given
t, v and b increase as the "amount" of dependence (as measured by

the value of p? ) increases. Increased dependence inflates the asymp-
totic variance but not the asymptotic maximum bias. Hence, the tradeoff

between the two shifts in favor of increased weight given to the asvmp-

. . B fe s .
totic variance as p,; increases, However, it is worth noting that the

. R . . . B .
sensitivity of the optimal truncation height to the value of py 1s

slight for o? less than .7, A very large value of D? is needed to
B
significantly increase the truncation height relative tc the Py = 0

optimal height,

Most of the optimal ¢ functicns have slopes which are slightly
increasing on [0,b] , or which are decreasing verv near zero and in-
creasing from there to b . This contrasts with the constant slope on
{0,b] of the optimal, independent, robust ¢ function. The intuition
to explain this pattern of change in slope is not clear. However, the
change in slope is verv slight for all cases except those with quite
large o? value, and even in those cases it is small. Generally speak-~
ing, the optimal ¢ functions are remarkably close to the Huber v
functions (see Huber (1964)) which are continucus, symmetric, linearly
increasing in the middle of R , and constant in the tails. This is

not surarising, especially for small values, since Huber ¢ func-

B
°1
tions are optimal in the above robust model with independent data (i.e.,
the model with QB = 1 ; see Bickel (1981)).

A number of interesting questions can be asked concerning the

relative performances of:



TABLE 2. ¢ functions for optimal Huber estimators E3 in
the contamination model with squared error loss,

The ¢ functions are odd, and on R+ are of
the form

ax for x € [0,b)
p(x) = ~
Y for x € [b,®)

For 6 # 0, ¢{8,x) = y(x-5) .

Boundary
Correlation t Q ? b
Vector
AR(l)Dg - .0 0.5 1.636 1.410 .862
1.0 2.971 1.293 .435
1.5 4,953 1.267 .256
2.0 7.634 1.259 .165
AR(l)p? - .1 0.5 1.636 1.410 .862
1.0 2.971 1.293 435
1.5 4.953 1.267 .256
2.0 7.638 1.259 1165
AR(l)oE = .3 0.5 1.624 1.413 .870
1.0 2.937 1.294 441
1.5 4.953 1.267 .256
2.0 7.638 1.259 .165
AR(L)p} = .5 0.5 1.563 1.430 .915
1.0 2.841 1.297 457
1.5 4,785 1.268 .265
2.0 7,638 1.259 .165
AR(l)p? = .7 0.5 1.409 1.490 1.057
1.0 2.520 1.310 .520
1.5 4,696 1.270 .282
2.0 7.048 1.260 .179
AR(l)p? - .9 0.5 1.161 1.719 1.481
: 1.0 1.535 1.439 .938
1.5 2.374 1.318 .555
2.0 4.150 1.273 .307
AR(l)p? = .95 0.5 1,093 1.883 1.723
1.0 1.287 1.568 1.218
1.5 1.636 1,410 862
2.0 2,141 1.335 624
MA(l)p? - .1 0.5 1.636 1.410 .867
1.0 2.971 1.293 435
1.5 4.953 1.267 .256
2.0 7.638 1.259 .165
MA(I)Q? = .3 0.5 1.624 1.413 .870
1.0 2.971 1.293 435
1.5 4.953 1.267 .256
2.0 7.638 1.259 .165
MA(l)oi = .499,99 0.5 1.580 1.425 .902
1.0 2.872 1.296 1451
1.5 4.953 1.267 L2956
2.0 7.638 1.259 165
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The estimators can be compared for different underlving models.
For each such model, a comparison of two estimators can be made by look~
ing at their ratio of risks. The risk function of the underlying models
considered are:
(R1) the asymptotic maximum risk over neighbourhoods of depen-
dent processes (i.e.,, the value of (3)) for given E? and
t >0

(R2) the asvmptotic maximum risk over neighbourhoods of indepen-
dent processes (i.e., the value of (3) for QB = 1 and
given t > 0 };

{R3} the asymptotic risk (equivalently variance) under parametric

Gaussian processes with a given boundary correlation vector
EF and no neighbourhood distributions (i.e., the value of
(3) for given EF and t =0 ); and
{R4) the asymptotic risk (equivalently variance) under independent
parametric Gaussian processes with no neighbourhood distri-
butions (i.e., the value of (3) for QB =1 and t =20 ).
As in Table 1, loss is taken to be squared error, and 02 =1,

Ratios of Rl risk for the estimators El and E3 have been calculated
for the cases considered in Table 1. 1In each case the optimal estimator
El has smaller Rl risk, but the difference in risks is less than .17,
‘Hence, the class of Huber ¢ functions yields approximitely optimal
functions for the problem defined in (3) which are virtually as good
as the strictly optimal v functions. As mentioned above, it is much
easier to calculate the optimal truncation point Y for the Huber
function than it is to calculate the strictly optimal ¢ function using

an expansion in terms of orthonormal polynomials. Thus, Huber ¢ functions



{(with truncation points depending on EF and t ) are recommended for
use in the dependent robust models developed above.

Column 3 of Table 3 assesses the performance of the optimal robust
estimator for dependent processes El with respect to the optimal robust
estimator for independent processes E2 on neighbourhoods of independent
processes (i.e., using the ratio of their R2 risks). Note, when R2 risk
is considered, different RF values in the table do not reflect different
underlying neighbourhoods of distributions; they reflect different esti-
mators El. The table shows that the El estimators do remarkably well,
especially if p? < .7 for AR(1l) boundary correlation vectors., (If
p? < .7 , the ratio of R2 risks is greater than .99.) Hence, the spec-
ification of a large set of covariance matrices § still vields an esti-
mator which is quite good when the data are actually independent. Virtually
identical results hold for the performance of the optimal Huber estimators
E3 with respect to the estimator E2 using R2 risk values.

Table 3 also considers the obverse situation (see column 4) and
assesses the performance of the optimal robust estimator for independent
processes EZ with respect to the optimal robust estimator for dependent
processes L[l on neighbourhoods of dependent processes (i,e., using the
ratio of their Rl risks) for different boundary correlation vectors EF
and different values of t . Column 4 of the table gives the comforting
result that the optimal robust estimator for independent processes per-
forms extremely well on dependent data, and hence, is quite robust against
positive dependence. (N.B.: Columns 3 and 4 of Table 3 exhibit an asvm—
metry when very large amounts of dependence are considered, i.e., when
=h > .9 for an AR(1) boundary correlation vector. In particular, the

optimal robust estimator for independent processes does better (relativelw



speaking) on dependent distribution neighbourhoods than the optimal Huber
estimator for dependent processes does on independent distribution neigh-
bourhoods, While this asymmetry also exists for p? < .9, it is not

of significant magnitude.)

Suppose the data actually are generated by the parametric distri-
bution, i.e., a stationary Gaussian distribution with boundary correlation
vector EF » One might ask: How much is lost by using the optimal robust
estimator for dependent processes El rather than the agsymptoticallv ef-
ficient estimator for Gaussian processes E4, i.e., §£ ? Column 5 of
Table 3 answers this question by exhibiting the ratio of the R3 risk of
E4 to that of El., TFor given E? » the relative efficiency of El increases
as t (the size of the neighbourhoods) decreases. For given t , the

relative efficiency of El increases as increases for MA(1l) and AR(1)

1
boundary correlation vectors. This follows because 1) the truncation
height of ¢ increases as p? increases, and the higher the truncation
height, the closer is the estimator El to Eﬁ s and 2) even for the
same ¥ function, the ratio of R3 risk of an M-estimator with given
function te that of ;ﬁ increases as p? increases. (This second as-
sertion is proved using the argument of Gastwirth and Rubin (1975, Pro-
position 4.2, Lemma 4.2, and Corollarv 4.1).) For the case where
t =1.0 , the loss declines from 197 for am AR(1l) least-favorable cor-
relation vector with p? = ,1 to 2% for an AR(1l) vector with p? = .95 ,
The same question as above can be posed for the case where the
data is generated by an independent Gaussian distribution. Column 6 of
Table 3 gives the relevant risk ratios, viz., the ratio of R4 risk for

the estimator E4 to that of estimator El. (In this case, for different

pB in the table, the underlving distributions used for risk calculations



TABLE 3. Relative Risks of Estimators

C:fﬁgyfﬁfgn . B2 risk of E2* Rl risk of El R3 risk of E4 R4 risk of E4*
Vector R2 risk of E1 RI risk of E2 R3 risk of EI R4 risk of El
AR(l)p? =.0 0.5 1.000 1.000 .878 .878
1.0 1.000 1.000 774 774
1.5 1.000 1.000 .720 .720
2.0 1.000 1.000 691 .691
AR(1)9§==.1 0.5 1.000 1.000 .898 .878
1.0 1.000 1.000 .807 L 774
1.5 1.000 1.000 .759 .720
2.0 1.000 1.000 .730 .689
AR(l)p§==.3 0.5 1.000 1.000 .929 . 880
1.0 1,000 1.000 .862 776
1.5 1.000 1.000 .824 .720
2.0 1.000 1.000 .803 .691
AR(l)pf =.5 0.5 .999 1.000 .951 .888
1.0 1.000 1.000 .902 .780
1.5 1.000 1.000 .875 726
2.0 1.000 1.000 .857 .691
AR(l)p? =.7 0.5 .991 .998 .969 912
1.0 .998 .999 .930 .797
1.5 1.000 1,000 .909 .731
2.0 1.000 1.000 .897 .696
MA(l)D? =.1 0.5 1,000 1.000 .896 .B78
1.0 1.000 1.000 . 804 774
1.5 1.000 1.000 ,755 .720
2.0 1.000 1.000 724 686
MA(l)pE =.3 0.5 1.000 1.000 .918 . 880
1.0 1.000 1.000 .844 777
1.5 1,000 1.000 .801 720
2.0 1.000 1.000 .779 .692
MA(l)p? 0.5 1.000 1.000 .929 . 886
_ 495 99 1.0 1.000 1.000 . 860 .779
9% 178 1.000 1.000 .822 .720
2.0 1.000 1.000 .802 . 691

{continued)



TABLE 3 (continued)

Ci"r‘;“liatriin . R2risk of B2 Rl rick of E3 R3riskof B4** R4 rigkof E4*F
R2 risk of E3 Rl risk of E2 R3 riskof E3 R4 risk of E3
Vector

AR(l)p?=.9 0.5 .921 .985 .988 .959
1.0 .929 .988 .966 ,885
1,5 .971 .995 .942 . 806
2.0 .993 .999 .926 .735

AR(l)p}i =.95 0.5 .858 .978 .993 .979
1,0 . 840 .974 .979 ,935
1.5 .891 .984 961 .878
2.0 .933 .993 947 .824

N.B.: Estimators El and E3 are sc similar that the above table is virtually
the same with El1 replaced by E3.

*When R2 or R4 risk are considered, the underlying neighbourhoods of distri~

. B ; .
butions are the same for all op cases considered; onlv the estimators FEl,
] . B
E2, and E3 varies with p-= .
**These columns give the same risk ratios as the columns above except that
the estimator in the denominator is the optimal Huber estimator E3 rather
than the strictly optimal robust estimator El, This change in the table

is made because the estimator El has not been calculated for the AR(1),

B
ey = .90, .95 boundary correlation vectors.
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remain unchanged, but the estimators El vary with RF .) Again, the rela-

tive performance of El improves as t decreases or as increases,

B
1
And as expected, El does better for the case of dependent Gaussian data
than for independent Gaussian data. (This is a general result which can
be proved using the argument of Gastwirth and Rubin (1975, Lemma 4.1 and

Theorem 4.1).)

The obverse of the last two cases considered is the assessment of
the performances of §£ compared to those of El or E2 when the distribu-
tion generating the data is arbitrary within the neighbourhoods of the
dependent or the independent parametric distributions. These are given by
the ratios of Rl and R2 rislis of the estimators El1 and E4. For anv given
QF » these ratios are zero. That is, Eh performs so voorlv for some dis-
tributions in the neighbourhoods that its Rl and R2 risks are infinite.

We summarize briefly as follows: For neighbourhoods of contamin-
ation, variaticnal, and Kolmogorov type, the optimal robust estimators
for the dependent model are found to have ¢ functions verv close in
shape to Huber ¢ functions. In fact, for all practical purposes, a
Huber  function with truncation point adjusted depending on t and
RF is as goed as the optimal ¢ function., Further, for AR(1l) and MA(1)

boundary correlation vectors with < .7 , the truncation point is

Dl_.

not very sensitive to the value of p? + The optimal robust estimators
for the dependent model are robust against lack of dependence, and
the optimal robust estimator for the independent model is robust
against positive dependence. When the data are truly Gaussian,

the optimal robust estimator for the dependent model is less efficient
than Eh , but decreasingly so as the size (t) of the neighbourhoods

decreases, and as the amount of dependence (as measured by ) increases.

B
P



On the other hand, EA performs disastrously for some distributions
in the neighbourhoods, and hence, has infinite maximum risk over the
neighbourinoods, The specifications of t and 2? determine how closely
the optimal robust estimator for dependent processes resembles §h R
and how closely it resembles the sample median ;; (which has the mini-
mum possible asymptotic bias value for ¢

» V and K neighbourhoods,

and is optimal for these neighbourhoods as t =+ = ).

5. Appendix

Proof of Theorem Bl. The proof of Theorem 1 of Andrews (1984) is suffi-

cient except that equations (23) and (13) of the proofs of Lemma 3 and

Theorem 1, respectively, need to be proven for i = K . That is, it

suffices to show (a) E; = sup ]A(w,s,Fen) “A(,s,2.0 ] 250,
K
Fen@t/‘/ﬁ'(e)
uniformiy for all 8 , and uniformly for s € C , any compact set in
1% -
c , and (b) Gl'ﬂ = J[lP(TD’X) _w(e’X)]-;‘?rTjéldn](dFén(X) "dq‘e(X)) = Orem(l)
unif(s,F,Q)K .
To prove (a}, assumption A2' gives
0<E_ =  sw 'J Ll(-w,x](y)dvs(y)d(FBn(x) -%m)]
= sup U (e, () —Fen(y)ldvs(y)‘
R
FBHE}J:/\/E(G)
< Jd‘“sl(Y)'t//H < C(s)re/ B0, (51)

uniformiv for all 8 , and uniformly for s € C, where the second

equality holds by Fubini's Theorem, the second inequality bv the definition
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of fvar{e) , and the third inequality by A2'.

To show (b}, A2' and Fubini's Theorem (used as above) yield

0 <| =

I e~

ldnj (%(y) —an(y))d(v,rn(y) -ve(y))

1
1l

< thidIan(y) -V | < tBCy(0) [T 8] = o (1) unif(8,F,0), , (51)

FBQn

. K
where the second inequality uses Dl and the definition of thvg{e) .

the third inequality uses A3', and the last equality follows from Lemma 3. D

Proof of Lemma Bl. The proof follows that of Bickel (1981). Let

n .
- ;Il-z dnj)\(w,e,an) , and for any function g(x), let g(x) = g(x)v 0

and g(x) = (-g(x)) v 0. Forall sequences <F inthe variational neighborhooes.

BQn>n3}
3Cv,8,F) )] = fuce, %) (5] () -0, () Tdu(o -M(e,x)(fgn(x) — 0, (x))Tdy (%) |

< (ess sup y(8,x) -ess inf y(5,x%))- J[fJ (x)-—@%(x)|du(x)/2

XER xXER
< (ess sup y = ess inf y)-t/vn , (53)
and so,
—_— —_ 17
{lim vn G2nl < lim E—Z |dnj te(ess sup y = ess inf ¥) = b (y,d,8) . (54)
-+ n-w j=l

For sequences <F in the Kolmogorov neighbourhoods, A2’

>
9in n>1

and Fubini's Theorem give (as in the proof of Theorem B1)

!}.(w,e,an)[ = |,[(¢e(}f) —an(y))dve(yﬂ < hvglyresva, (55)

and so,
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volyot = be(v,d,8) . (56)

For sequences < in the contamination neighbourhecods,

F99n>n3}

each df an(x) can be written as FJen(x) = (1-t/f£)¢e(x) +q (x)t/vn ,

for some df Qj . Thus,

A(w,e.an) = jw(e,x)dQ.(x)'t//E-i ess sup ¥(6,x)*t/¥a , and
J *ER
(57)
A(w,e,}%n) > ess inf 4(6,x)+t/vn .
x€ER
+ - . 19 4 nowo o~
Let dnj = dnj v 0 and dnj = (-dnj) v 0 , Using D2, Eﬁzldn. — (n+1)/2
=1 and i%d 2 G172 = So
1°? nj=1 ni -T2 ’

3 ess sup w-—d;j ess inf w)t/“ED

n
—'—_iy - ) + . " =
v ( im L (dnj ess sup V¥ -dnj ess inf w)t/vn)

= t'[(ml ess sup ¥ —nz ess inf y) v (nz ess sup w-—nl ess inf
= b (v,d,8) . (58}
Next, for i =V and K, consider sequences <F(h)> of distri-
i i ffm n>1

i
. . , _ o ..
butions which are in {?t//ﬁ(s)’ }n for all n sufficiently large and
all Q€ 5, whose univariate marginal densities with respect to Lebesgue

measure are given by
£M3(x) = @ (x) rexplsgn(d ) h(x)/¥F - ¢ ] for j =1, 2
an ) Pi8E nj n o J [} 3 s

where c = is a constant defined to make this a density, h € Hi(e) ,
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{h € L7 : Jh(x)tpe(x)dx 0 and J’|h(x) |@0g (x)dx < 2t} ,  and

Hy ()
}g((e)

m
It

o y
{(h e : Ih(x)we(x)dx 0 and sup|j h(x)me(x)dxl <t} .

vyER

Such distributions exist since they can be created by point transforma-

tions of a sequence of rv's with distribution ¢GQ (see Andrews (1982a,

b)}. Bickel (1931, Lemma 2) shows that for n sufficiently large the
(h)j
on

] . . , . . i
univariate distributions F are in Ft/JH(e) for all h € H&(S) .

. . .. . (h) i
for 1 = V and K, This implies FBQn € {ft/v5<e), Q}n s for n suf-
ficiently large, for all h € Hi(e) + for i =7V and K. Also, by Bickel

(1981, Theorem 2},

t+(ess sup ¥ —ess inf ¥) feor 1=V
sup Iw(s,x)h(x)me(x)dx = (59)
h€Hi(8) te ve]!V for i

=
]
73

Now, exp[cn] =1+ 0(1/n) as n > =, and so,
exp[sgn(dnj)°h(x)/#g-cn] =1 + sgn(dnj)-h(x)/V; + 0(i/n) as n > = |
where 0(1/n} holds uniformly for x € R, since h is bounded. Hence,

lim|vn x@,e,FéE)j) -sgn(dnj)-J’w(s,x)h(x)@oe(g)dxl =0, and

N0

sup lim]VE—Gzn! > suUp lim|vn Gzn]
<F_. > T+ (h) . n-+w
85m n>1 Fotn’ns1 rhe}, (8)
1 T
= sup lim = Z |dnj1‘j¢(6,x)h(x)me(x)dx

he}fi(e) ne o j=1

I

b, (4,8,8) , (60)

using (59), for i = V and K .



Contamination neighbourhoods contain sequences of distributions

<Fgﬁn>qil s Wwhich are created by point transformations of rv's with
distribution ¢ (see Andrews (1982a, b)), and whose univariate marginal

&8a
df's are given by (1 —t/VE)Qe + th//ﬁ for arbitrary df's Qj .

j=1, 2, ... . Thus, using (57) and (58},

I
sup  lmj/ng, [ > sup 1&;1; ) dnjfw(e,x)dqju)-tl =b_(v,d,%)

Foan n>1 77 - e " i=1

Q
<FBQn>nil

Since the inequalities of (54) and (60), (56) and (60), and (58)

and (61) hold in opposite directions, they hold as equalities., O

Acknowledgments

I am greatly indebted to Peter J., Bickel and Thomas J. Rothenberg

for their help and encouragement.

. (617



FOOTNOTE

AMS 1980 subject classifications. Primary 62F35, 62E20; Secondary
62F10. Key words and phrases. Robust estimation for dependent
random variables; contamination, variational metric, and Kolmogorov

metric neighbourhoods; shrinking neighbourhoods: location model,



43

REFERENCES

Akhiezer, N. I. (1962), The Calculus of Variations. Translated by A. H.
Frink. Blaisdell Publishing Company, New York.

Andrews, D. W. K. (1982a). A Model for Robustness Against Distributional
Shape and Dependence Over Time. Ph.D, Thesis, University of Cali-
fornia, Berkeley.

Andrews, D. W. K. (1982b). "Robust and asymptotically efficient estima-
tion of locatien in a stationary strong mixing Gaussian parametric
model,” Cowles Foundation Discussion Paper No. 659, Yale Universitvy,
New Haven, CT.

Andrews, D, W. K. (1983). "Robust and efficient estimation of nonlinear
regression models with dependent errors," manuscript, Cowles Foun-
dation, Yale University.

Andrews, D. W. K. (1984). '"Robust and efficient estimation of location
in a Gaussian parametric model: I," manuscript, Cowles Foundation,
Yale University.

Atkinson, K. E. (1976). A Survey of Numerical Methods for the Solution
of Fredholm Integral Equations of the Second Kind., §.I.A.M.,
Philadelphia.

Beran, R. (1977a). "Robust location estimates," Ann. Statist. 5, 431-444,

Beran, R, (1977b). 'Minimum Hellinger distance estimates for parametric
models," Ann. Statist. 5, 445-463,

Beran, R. (1980). "Asymptotic lower bounds for risk in robust estimation,"
Ann. Statist. 8, 1252-1264,

Bickel, P. J. (1978). 'Some recent developments in robust statistics,”
manuscript, University of California, Berkeley.

Bickel, P. J. (1981). "Quelque aspects de la statistique robuste,"
lecture Notes ir Mathematics--876: Ecole d'Ete de Probabilites
de Saint-Fiour 1X-1979. Springer-Verlag, Heidelberg,

Bickel, P, J. (1982). '"Robust regression based on infinitesimal neigh-
borhoods,™ Technical Report No. 16, Dept. of Statistics, Universitw
of California, Berkeley,.

Bickel, P, J., (1983)., ™Comment on minimax aspects of bounded-influence
regression,” J,A.S.A, 78, 75-77,

Courant, R. and D, Hilbert (1937). Methods of Mathematical Phvsics,
Vol. I, first ed. Interscience Publishing Inc., New York.

Gastwirth, J. L. and K. Rubin (1975). '"The behavior of robust estimators
on dependent data," Ann. Statist. 3, 1070-1100.



44

Gelfand, I. M. and S. V. Fomin (1963). Calculus of Variations. McGraw-
Hill, New York.

Hampel, F. R. (1968). Contributions to the Theory of Robust Estimation,
Ph.D. Thesis, University of California, Berkeley.

Hampel, F., R. (1974). "The influence curve and its role in robust esti-
mation,”" J.A.S.A, 69, 383-393,

Hampel, F. R. (1978). 'Optimally bounding the gross-error-sensitivity
and the influence of position in factor space," 1978 Proceedings
of the A.S.A. Statistical Computing Section, American Statistical
Association, 59-64,

Handschin, E., J. Kohlas, A, Fiechter and F. Schweppe (1975). 'Bad data
analysis for power system state apparatus," IEEE Transactions on
Power Apparatus and Svstems PAS-94, Vol. 2, 329-337.

Holmes, R. M. (1981), Contributions to the theory of parametric esti-
mation in randomly censored data, Ph.D. Thesis, University of
California, Berkeley,

Huber, P, J. (1964). '"Robust estimation of a location parameter," Ann,
Math. Statist., 35, 73-101.

Huber, P. J. (1983). '"Minimax aspects of bounded influence regression,"
J.A.S.A, 78, 66-72,

Huber-Carol, C. (1970). Etude Asvmptotique de Test Robustes, Ph.D. Thesis.
Eidgen., Technische Hochschule, Zurich.

Jaeckel, L. A, (1971). "Robust estimates of location: Symmetrv and asym-
metric contamination," Ann. Math, Statist. 42, 1020-1034.

Krasker, W. and R. Welsch (1982), "Efficient bounded influence regres-
sion estimation," J.A.S5.A. 77, 595-604,

LeCam, L. (1960}, "Locally asymptotically normal families of distributions,"
U. of California Publications in Statistics 3:2, 37-98,

Reed, M. and B, Simon (1981). Methods of Modern Mathematical Physics 1:
Functional Analvsis (revised and enlarged edition). Academic
Press, New York.

Rieder, H. (1979). "A robust asymptotic testing model," Ann. Statist.
6, 1086-1094,

Rieder, H. (1980). '"Estimates derived from robust tests,” Ann. Statist.
8, 106-115,

Rieder, H. (198l1a). '"Robustness of one- and two-sample rank tests against
gross errors,' Ann. Statist. 9, 245-265.

Rieder, H, (1981b). '"On local asvmptotic minimaxitv and admissibility
in robust estimation," Ann. Statist. 9, 266-277.



45

Rousseeuw, P. J. (1981). New Infinitesimal Methods in Robust Statistics.
Ph.D. Thesis, Free University of Brussels,

Strassen, V. (1965). "The existence of probability measures with given
marginals,"” Ann. Math. Statist. 36, 423-429,

Wang, P, €. (1979). Asymptotic Robust Tests in the Presence of Nuisance
Parameters, Ph.D. Thesis, University of California, Berkeley.

ang, . . . obust as totic tests of statistica ypotheses
Wang, P. C. (1981) "Rob ymap i f istical h h
invelving nuisance parameters," Ann. Statist. 9, 1096-1106,



