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Abstract

In an earlier paper we presented a variable dimension algorithm for
solving the linear complementarity problem (LCP). We now extend the class
of LCP's that can be solved by this algorithm to include LCP's with copositive
plus coefficient matrices. The extension, inspired by Lemke [1965], is
obtained by introducing an artificial dimension and by applying the variable

dimension algorithm to the enlarged LCP.
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1. Introduction

The linear complementarity problem with matrix of coefficients M ¢ Ran

and right hand side q ¢ R" , LCP(M,q) , consists in findinpg vectors s

= (8., seus Sn] ¢ R® and z = [z

1 ces zn] ¢ R" satisfying

1’

(1.1) 5 - Mz = q
(1.2) s,z22 0
(1.3) 542, = 0 for i =1, ..., n .

Two vectors s and z verifying (1.3) are called complementary. This
problem arises in mathematical programming, economics, engineering, and game
theory, and is well discussed, e.g., by Cottle and Dantzig [1968].

The standard way to solve LCP's is a pivoting method due to Lemke [1963].
Applied to LCP's with copositive plus coefficient matrices the algorithm
either finds a solution or shows that none exists by demonstrating the in-

feasibility of linear system (1.1)-(1.2).

1.4. Definition. The matrix M ¢ Ran is copositive if thz 2 0 for all

zZ € Ri . M is éopositive plus 1f M 1is copositive and if (M+Mt)z =0 for
n t
any z € R+ verifying z Mz = 0 .

In an earlier paper [Van der Heyden, 1980]) we presented a variable
dimension algorithm for a fairly restrictive class of LCP's, characterized by
Cottle [1980] as those with completely-Q coefficient matrices. Jones, Saigal,
and Schneider [1983] have identified specially structured LCP's that can be

more efficiently solved by a variable dimension algorithm. We now show that



this variable dimension algorithm can alsoc be applied to solve LCP's with
copositive plus coefficient matrices.

To solve LCP's with copositive plus coefficient matrices we proceed
as in Lemke [1965]. We introduce an artificial variable and increase the
dimension of the LCP by one. The extension is obtained by applying our

variable dimension algorithm to the larger dimensional LCP.



2. A variable dimension algerithm

Before reviewing the algorithm we recall the usual nondegeneracy

assumption for pivoting algorithms [Dantzig, 1963] and introduce notation.

2.1, Assumption. Equation (1.1) is nondegenerate, i.e., every solution has

at least n nonzero variables,

(k)

. ‘ =1
Given a positive integer k < n and given a vector x ¢ R , X

denotes the wvector [xl, chey xk] € Rk . Similarly, the kth leading principal
(k)

submatrix of M is denoted M Given LCP(M,q) the k-problem is the
subproblem LCP(M(k), q(k))
Our variable dimension algorithm [Van der Heyden, 1980] starts at the

point [s,z] = {q,0] and follows particular lines of solutions for (1.1),

called variable dimension lines.

2.2. Definition. A variable dimension line comsists of a line of solutions
[s,z] for (1.1) verifying the following statements:
a. there exists an index k with Sy < 0 and zk >0 3

b. zj =0 for j > k ;

s(k—l) and z(k_l)

c. 1if k > 1 then are nonnegative and

complementary.

The above line is a line of the k-problem in that a point on the line

would solve the k-problem if not for B < 0 . The intent of the algorithm

in following the line is to reach an endpoint where ) is zero. An end-

point is reached whenever a variable W =8, or h £ k , becomes

nonbasic, that is, equal to zero. The nondegeneracy assumption (2.1) insures

that only one variable becomes zero at an endpoint, Distinguishing three



cases, we now show that an endpoint either solves the LCP or uniquely leads

to another variable dimension line, which the algorithm follows next. We

characterize the new variable dimension line by identifying the variable

which is zero“at the endpoint and which becomes nonzero along the line,

i.

ii.

iii.

h = k, W = S [Dimension increasel.

This is the desired situation where the endpoint [s,z] solves
the k-problem, and also solves the LCP if s 2 0 . Otherwise let
g = min (§ | Sj < 0), j >k ., The other variable dimension line
incident to the endpoint is obtained by increasing zg (z_ > 0)

g
and is a line of the g-problem.

h =k, wk = z

The fact that the algorithm never returns to its starting point

K [Dimension decreasel].

[s,z] = [q,0] 4implies that k > 1 at this endpoint. The endpoint

is a new solution for the (k-1)-problem. let g = max (j | z, > 0),

A

g < k . The other variable dimension line incident to the endpoint

is a line of the g-problem obtained by decreasing sg (s, <0) .

h <k,
The endpoint is incident to another line of the k-problem obtained

by increasing the variable complementary to v namely z, if

= g and s if w = L

¥ " %h h h

Starting at [s,z] = [q,0] the algorithm follows variable dimension

lines and generates endpoints until it finds a solution for the LCP or

generates an unbounded variable dimension line. Assuming nondegeneracy, the

algorithm never visits an endpoint twice as the initial point is incident to



precisely one variable dimension line, and any other endpoint is incident
to at most twe such lines. The finiteness of the number of variable dimension
lines, and hence of endpoints, then proves that the algorithm must terminate

with a solution if all variable dimension lines are bounded.



3. The enlarged problem

Following Lemke [1965] we extend the class of LCP's solvable by our
variable dimension algorithm by embedding the LCP into a larger dimensional
one and by then applying the variable dimension algorithm to the larger LCP.

* ok
The embedding consists for a given LCP(M,q) to consider LCP(M ,q ) with

* 0 * qo
M = and q = ,
u q
t . n , X
where u = [1, ..., 1] ¢ R . The variables of LCP(M ,q ) are denoted
* + *
5 = [so, s] ¢ RY 1 and z = [zo, z] € Rp+1 . The right hand side constant

9 is chosen positive and such that the nondegeneracy of LCP(M,q) is trans-

£ *
mitted to LCP(M ,q )

To verify that the variable dimension algorithm when applied to LCP(M*,q*)
always computes a solution, it suffices to show that the algorithm does not
generate any unbounded variable dimension line. Such a line can be character-
RZ(n+l)

-
ized by a nonzero directional vector [s , z ] ¢ verifying for a

given integer k , 0 <k <n ,

(3.1) 5 +utz =0 ,
s - uEO +Mz =0

(3.2) 5,20 for j=0, ..., k1
<0 =k ,

and

(3.3) ;j 20 for j=0, ..., n

=0 for i>k



We mow argue that no such line is generated by the algorithm when solving

* % - -
LCP(M ,q ). If k =z 1 then the nonnegativity of s and 2z , along with

0
—% -%

(3.1), yield s, =0 and z =0 . Hence EO >0 (for otherwise s =2z = 0)

0
and s = UEO > 0 ., The latter inequality contradicts the nonpositivity of Ek

x Ok
and leaves us with having to consider the case k =0 . A point (s ,z ]

* *
€ R2(n+l) on the latter line verifies s = [50, q + UZO] and z = [ZO’ 0]

t
with zy 2 0 and 8y < 0 . However 85 = 4g ~ vz

new contradiction. Hence all variable dimension lines are bounded and the

9y > 0 then yields a

* %
variable dimension algorithm always finds a solution for LCP(M ,q ). Ve

examine this solution in the next section.



4, The copositive plus case

We now assume the coefficient matrix M to be copositive plus. For
the variable dimension algorithm to solve LCP(M,q) the constant 4 needs to

be sufficiently large.

4.1. Assumption. 9 is such that every extreme point of {[zo, z] ¢ Rn+l [

zg 2 0,220, and uzy+Mz +gq2 0} verifies u'z < q -

A lower bound for is available from Khachiyan [1979] who bounds the

90
extreme points of a system of linear inequalities [see also Bland et al., 1981].
Alternatively, a lexicographic implementation {Dantzig, 1963] of the algorithm
avoids the explicit determination of 4 - In this implementation 9, is

*
assumed to be a very large parameter and the right hand side g is rewritten

parametically as

q = + q

* * %
The pivoting operations are then applied to the tableau [I , - M, r ] with

* ¢ R(n+1)><(n+l) 1

*
I denoting a unit matrix and r = [g] € Rn+ . Throughout

these operations the updated right hand side remains a linear function of 9
*
with constant term being given by the update of column r and with the
*
vector of coefficients of 1 given by the update of the first columm of 1 .

For large the ratio tests determining the pivots consider these two

o
*
columns in lexicographic fashion, the update of r being considered only if

*
these are ties among the ratios based on the update of the first column of I

Should degeneracy occur and should ties remain after both updated columns
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have been considered, then the lexicographic method for meeting nondegeneracy
assumption (2.1) requires that these ties be resolved by considering the up-
dates of the other columns of I* [Dantzig, 1963].

The previous section argues that the variable dimension algorithm applied
to LCP(M*,q*) terminates finitely at a solution [g*, %*] . If 80 =0
then the coordinates [g, g] of this solution clearly solve the original
problem, LCP(M,q) . We conclude the paper by arguing that the alternmative

20 > 0 , signals that LCP(M,q) admits no solution because of the in-

case,
feasibility of linear system (1.1)-(1.2). The argument is essentially due to
Lemke [1965].

Ox Ox% ez
The solution [s , 2z ] verifies

t

(4.2) 5g =9 - vz~ 0 ,
(4.3) s - uz; - Mz =gq »
(4.4) zy > 0, s20,22090 ,
(4.5) s;2; < 0 for i=1, ..., n

o o
Assumption (4.1) then implies that [s, z] lies on an unbounded line of

solutions for (4.3)-(4.5). The directional vector of this line, (s, EO' z]

€ Ri?+3 , verifies
(4.6) s - uEO - Mz =0
.7) 57 =35 =92.=0 for 1i=1,...,n .

i1 ivi i"i

- - - t— ..-t -
The complementarity between s and 2z and equation (4.6) yield z's = (z u)z0

+ EtME = 0. The copositivity of M then implies that (Etu)zo = (0 and
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—t. - - - - - *

thz =0 . Should z =0 then s = uz with zg > 0 so that g = [0, q + uz
o¥* 0 . 0 . . o]

and z = {zo, 0]. However this cannot be as z = 0 implies $5 = 4g >0 .

Hence z =20, z,. =0 , EtME =0, and (M + ut)E = 0 by the copositive plus

0
property of M .

We now show that z verifies

(4.8) M < 0 and z'q <O .

The first inequality follows from the substitution of = 0 into (4.6)

;0
yielding 0 = s = Mz = -MtE since (M+Mt)2 = 0 . The second inequality uses
the complementarity relations (4.7). The complementarity of 2 and s along

t,t=

with (4.6) yields 0 = 8%5 = 8%Mz . Since (##M%)Z = 0 we also have 0 = 2Nz

tIME . From the complementarity of z and £ and equation (4.3) we then deduce

=z
0=28-= (Etu)go + zM8 + 2%q = (Etu)go +2z%q . Hence Z8q < 0 as (Etu)%o >0 .
The infeasibility of linear system (1.1)-(1.2) is now an easy conclusion

as the existence of a vector z verifying inequalities (4.8) is easily seen

to be inconsistent with (1.1)-(1.2) having a solution.
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