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0. ABSTRACT

This paper derives the exact density of the Stein-rule estimator
in the setting of the general linear regressicn. The derivation is facil-
itated Ly the author's development of new algebraic methods that involve
an extension of the Weyl calculus, General formulae for the moments of

the estimator are also provided,
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1. INTRODUCTION

The idea that biased estimators may dominate the best classical
procedures seems to have occurred to many early researchers in mathemat-
jcal statistics. The quotation that heads this article was unearthed by
the author in the unpublished research archives of the Cowles Commission
and gives convincing evidence that at least two prominent scholars in
mathematics and mathematical statisticé had thought seriously about this
idea long before 1950. Nevertheless, it was the article by James and
Stein (1961) that really excited professional interest in this subject
and which laid the foundation for subsequent work on the class of biased
estimators which now come under the generic name of the Stein-rule family.

In view of the dominance of the Stein-rule estimator over classi-
cal methods in multivariate settings, knowledge of the sampling properties
of this estimator is very.important to us if we are to properly understand
its behavior. Unfortunately, and, in spite of the attention that the
Stein-rule estimator has received in the theoretical literature, its sampl-
ing properties are still very imperfectly understood, Some scalar summary
characteristics are known and these are useful in determining the dominance
property; but it would seem to be of greater importance to study the whole
sampling distribution of the Stein-rule estimator, particularly when it
has been advanced as a serious contender for estimation problems.

Undoubtedly the nonlinearity of the Stein-tule estimator has been
the major obstacle in the development of a complete distribution theory.
The simplest way to proceed is, of course, by the use of Edgeworth expan-
sions or by approximating distributions that utilize known moment formulae.

The first approach has been facilitated by recent advances in the theory



of asymptotic expansions and is currently being pursued in other work (see,
for instance, Ullah (1982}).

The object of the present paper is to show that an exact theory
is also well within reach. Specifically, this paper provides a mathe-
matical derivation of the exact probability density function (p.d.f.) of
the Stein-rule estimator in the setting of the general linear regression.
Moment formulae are then deduced directly from our general result,

These derivations are made possible by the deployment of new alge-
braic methods that are developed in the article. These methods involve
the use of fractional calculus and have many exciting potential applica-
tions in statistical distribution theory. They seem especially appropriate
in the case of statistics like the Stein-rule family that embody nonlin-
earities which cannot be treated by more traditional algebraic methods.
Matrix variate extensioﬁs of the techniques given here are also being

developed by the author in the context of other work.

2. THE MODEL AND NOTATION

We will work with the linear regression model
(1) y = XB +u

where y 1is a vector of T observations on a dependent variable, X is
a Txm observation matrix of full rank m < T of nonrandom independent
variables and u is a vector of disturbances that is assumed to be dis-
tributed as N(0, 0211 . To simplify the f&rmulae that follow without
loss of generality we assume that orthonormalizing transformations have
already\been performed which make the reduction to canonical form

T_lX'X = I ., Results that apply directly to the untransformed system are
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then obtained by transforming 8 - (X'X/T) ' “8 .

The Stein-rule estimator of B in (1) is given by:

S O Ol

where b = T"IX'y is the least squares estimator of B , s = y'(I -Px)y s
Px = X[X'X)'1X‘ and a 1is a scalar constant. The dominance c¢criterion
of r over b under quadratic loss requires 0 < a < 2{(m-2)/(T-m+2)

and m >3 (see, for instance, Judge and Bock (1978)).

3. THE EXACT DENSITY OF THE STEIN-RULE ESTIMATOR

We start by considering the characteristic function (c.f.} of r ,

Since b is N(8, (GZ/T)I) and s/c2 is independent and Xi—m we have:

(3) cf(t) = Ee*t'T) = fexp{it'b - i(as/Tb'b)t'b}pdf(b)pdf(s)dbds .

To reduce the integral in (3) we introduce a new operator calculus. Spe-

cifically, we now write:

(4) exp{it'b -i(as/Tb'b)t'b}

]
= explit'ax - i(as/Ta )t'ax}e” b <0

where ©5x denotes the vector operator 3/3X and Ax is the Laplacian
operator 9x'8x . Negative powers of A, are interpreted in (4) by ap-
pealing to the following definition of the (possibly fractional) operator
a

A; (a > Q)

(5) A;af(x) =

= -1
r(t) Io[exp{—ﬁxw}f(x)]wa dw , o >0



provided the integral converges. This definition is inspired by the form
of the gamma integral and, if A, were the simple differential operator
d/dx for a scalar variable x , then (5) would correspond to one form
of the Weyl fractional integral. As it stands (5) extends the Weyl cal-
culus by the use of fractional powers of polynomials such as A in the
operator 93x . Further generalizations along these lines are possible
and some of these have been developed in other work by the author (1983).
Readers unfamiliar with fractional operators are referred to Ross (1974)

for an introduction to the subject.

Using {4) we may now write (3) in the form

pdf(s)ds

x=0

(6) cf(t) = f [exp{it‘ax-i(as/TAx)t'Bx}f ex'bpdf(b)db]
s b

since the integral over b-space converges uniformly. Upon evaluation we

find:
x'B+02x'x/2T
cf(t) = [exp{it'ax-i(as/TAx)t'ax}e ] pdf(s)ds
s ' x=0
= 2
(1 = [exp(it'ax)f e;q:{—i(as/TAx)t|ax}2- (T-m)/zr[(T-m)/Z)—la- (T-m)e—S/ZU S(T*m)/z-l.
0
ex'B+02x'x/2T}
x=0
] 2 L ]
(8) = {BXP(it'Bx){l +2i(ac:2tfax/mx)}‘(T'“‘Vzex Bro’x'x/2T]

%x=0

The order of differentiation and integration may be interchanged once again
in view of the uniform convergence of the gamma integral in (7). If we

set t = sh for an arbitrary real scalar s and m-vector h we deduce



from (8) the characteristic function of the linear form y = h'r :

] 2 [
(9}  ¢f(s) = [exp(ish'ax){l +Zis(a02h'3x/TAx)}—(T_m)/zex Bra'x X/ZT]
x=0

We observe that, since exp(x'8 +02x'xf2T) is analytic,

exp(ish'3x)exp (x'8+0°x"X/2T) = exp{8' (x+ish) + o> (x+ish)' (x+ish)/2T}

and (9) becomes:

-(T-m)/2

(10) cf(s) = exp(isB'h-—ozszh'h/ZT}{(1+Zis;x) exp{x'(B+isczh/T)+02x'x/2T}]

x={
where ¢_ = ag’h'3x/Th_ .

X X

Inversion of (9) now yields the p.d.f. of y in the integral form:
D paEy) = & [ e Vempisen - o’sPm/en| araise )"/

-0
.2 2
sexp{x'{B+isc“h/T) +0o x‘x/ZT}] ds .
x=0

.. . . . -(T-m}/2 . .
Using the integral representation of (1+215cx) in (11), and inter-
changing the order of the operators, which is permissable because of the

uniform convergence of the integrals and the series, we obtain:



@ w  -2isy W
pdf(y) 1m f o ww(T m)/2 11 I o X

2n
r—z_ O -

2 ]
vexp{-i5(y-B'h-0°x"h/T) - 0%s2h'h/2T}dsdw e* B0 X'X/2T

x=0
1 T 1 - - - k NN
= Z ET'I e ww(T m)/2+k 1dw(-Zcx) E%-f (is)
=] k=0 7" 0 -
\2
2 22 x'B+02x'x/2T
sexp{-is(y-B'h-0"x'h/T) - c"s"h'h/2T}ds ¢
=0
T-n
=\ K k1
=k£O 1 (-28,) [(az) g;r—fm

2 ]
'exp{-is(y-B'h-ozx'h/T-z) 'Uzszh'h/ZT}ds] oX'B0 x'x/2TJ

z=0 x=0

2
2 /. -1/2
*—ET—E{-(Z;X)k[(Bz)k(Zﬂazh'h/T)

k=0
2 2 X'B+02x'x/2T

rexp{-T(y-8'h-0"x*h/T-z) /Zozh'h}] e
z=0 x=0

Thus, the p.d.f. of y = h'r is given by:

()

1/2 » \ 2 '

(12) paty) =(—3—) z-,;i[(-m;x)"
2mg"hth k=0 )

[ k 2 ¢
*1 (92) "exp{-T(y-B'h-o"x'h/T-2)

/202h'h}]

z=0

ex'8+02x'x/2T
x=0

where G, = aczh'ax/TAx .

Note that when a = 0 only the first term of the series in (12) is



nonvanishing and we are left with

1/2 , 2, ,
(13) ( g ) o-T(y-h'8)/2¢"h'h
2r6°h'h

corresponding to the density of h'b ., Note also that the analogue of
(12) for the case of regressors that are not orthonormalized is obtained
by transforming h - (X'X/T)_l/zh .

When a is of O(T'l) in (2), as the dominance criterion requires,
(13) gives the crude asymptotic approximation to (12). Higher order ap-
proximations may be obtained from (12) by selecting more terms of the
series according to their order of magnitude after application of the

operator L. . The algebra quickly becomes quite heavy in this process.

4, MOMENT FORMULAE

Exact formulae for the moments of h'r can be deduced quite simply

from (12). Ve note that

T 1/2 = 5 2 5
(-—-2-""") f yPexp{-T(y-8'h-0“x'h/T-2z) /20°h’h}dy
2rc“h'h -

2 3
P !_21 _p'zjg.-_h_'._h._
(2j)(3 h-c"x"™h/T-z) ( T
where [ ] denotes the integer part of its argument. Then, in view of
the uniform convergence of the series which defines the moment E(yp] s

we integrate termwise and deduce the following general expression:



T-m
2 (p/2]
k k k [ p
14 eGP = ek en¥ 3 ( )
kZO Kt x jeo \2

B

YN 2.,
.(B'h-czx'h/T-z)P ZJ(U 2 h) SX'BroTX x/ZT]x=0 .
z=0

This general formula may be written out more explicitly by using
rules for composite function differentiation. But for low order moments

these are not needed. Thus, when p =1 we find directly that

1 2
(15} E{(y) = B'h - (T-m)[cxex Bro x'x/ZT]

x=0
Consider
x'B+02x'x/2T 302 —TB'B/ZG2 -1 02 TB ' T8
;. e 2 —e h'3xs_“expys= X +—35 x-+——)}
X T X 2T 2 2
x=0 o] o
=0
2 2
(16) -2 'e[h'awa'le" “"“/ZT]
T W 2
w=TB/o

where 8 = TB'B/ZG2 and w = x-+tB/02 .

Now
2.4 w -sA 2,
an A;leo wi'w/2T _ f e WO W w/ZTds
0
@ e L 2,
- f z _(-;? :ec W w/ZTds
0 =0 :

and



al o - q
“wlw/? <44
)Z'eo w'w/2T _ X (o /.I.T) Aﬂ'(w'w)q

a0 A W

2 L+u
{o7/2T) 2

= 1 T ‘(w'w)“(u'fl)g(%w)

usop  (Rru)! )

where we use the fact that:

as) s v =
2 u n
297 (wtw) (u+1)2(3-+u) , q = f+u > ¢

as can be verified by direct differentiation. Next, we apply the operator
h*aw that appears in (16). We have

-84 2
" 0Tw /2
n'ah'e \e W /T

o J - 2 £L+u
Y {-3) (27/2T) Aok MY rue (E )
(h dh)££0 = UZO ouT - (w'w) “(usl) {5 +u .

£ « _» 2 £ " u _
2wy T 1 A et e e 1(u+1)1(2-+u)
£=0 u=0 °° : -

n

£

(n

J
@ o« (=207s/T) 1‘+U) - u _
(2h'w) § Elu}' Lue/2my )l
u=0 2=0 Y

u-1

- -n/2~u
—(1+20%s/T)

A
"

(19) (ozh'w) E (ozw‘w/T)

T/, I

-
The above proof applies when s lies in the interval 0 < s < T/2¢7 ;
but the formula holds by analytic continuation over the entire interval

(0,=) . We may therefore deduce from (17) and (19) that:
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2 2 © 2 v
, -1 o“w'w/2T _ fo“h'w (w'w/T) { T\
(h aw)Aw © - ( T )Vzo'v!(n/2+v \2G2}

v
nw © CRATAY (n/2) T (n/2)
i ( 2 )v=0 vI(n/2+1) T (n/2+1)

2
_ (h'w\ T(n/2) non, ., ow'w
(20) = ( 7 STt/ 2+ 1) 1F1('2” 7t % ) :

Term by term integration is justified by the uniform convergence of the
2
series, Evaluating (20) at w = TB/oc“ and substituting in (16) we obtain:

1 -8 T(n/2) n n i
(21) zah'Be © w750y 1F1("2" 7+ e) .

Hence, from (15) and (21) we deduce that:

_ _ T-m - r(n/2) (E n, .. )
(22) EQ) =h'8 - Sahie aymy Pl 71 S

where 8 = T3'5/202 . (22) yields as a special case the expression first

found by Ullah (1974) for the bias of the Stein-rule estimator of an in-

dividual element of 8 .

5. CONCLUSION

Formula {12) is very convenient for mathematical work with the exact
density, as the moment derivations of Section 4 demonstrate. But the gen-
eralized operator form of (12) is not the most convenient for numerical
exercises. More explicit reductions of the formula to a form that is
amenable to computational work can be achieved by direct use of the extended
Weyl calculus developed here. These reductions will be reported in subse-

quent work.
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