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0. ABSTRACT

This paper derives the exact probability density function of the
instrumental variable (IV) estimator of the exogenous variable coeffi-
cient vector in a structural equation containing n+l endogenous variables
and N degrees of overidentification. A leading case of the general
distribution that is more amenable to analysis and computation is also
presented. Conventional classical assumptions of normally distributed

errors and nonrandom exogenous variables -are employed.
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1. INTRODUCTION

Substantial progress has been made in recent years on the exact
distribution theory of econometric estimators and test statistics in
simultaneous equations models, The latest results cover general speci-
fications of single equation estimation which allow for the presence of
any number of endogenous variables and an arbitrary degree of (either
apparent or effective} equation overidentification., Thus, in earlier
papers, the author (1980, 1983a, 1983b} has given the exact distributions
of the instrumental variable (IV) and limited information maximum like-
lihood (LIML) estimators in this general setting; Rhodes (1981) extracted
the exact density of the limited information identifiability test sta-
tistic; and Hillier, Kinal and Srivastava (1983) have provided exact
moment formulae for the marginal distributions of the IV estimator.

For a recent review of these and other developments in the field the
reader is referred to Phillips ({1983c}.

The structural equation distribution theory cited above concen-
trates on the estimated coefficients of the endogenous variables. This
is natural because these coefficients form the nucleus of the simultaneity
problem and are therefore our primary concern, The coefficients of the
exogenous variables are also an important, if subsidiary, component in
the study of structural estimatien, So far, our knowledge of the dis-
tribution of the estimated exogenous variable coefficients comes from
the moment formulae that can be deduced from the equations that define
these estimators in terms of the estimated endogenous variable coeffi-
cients (see, for instance, Phillips (1983c))}. But the exogenous

variable coefficients gain in significance in the transition from



structure to reduced form, And an understanding of the distribution of
these estimated coefficients provides an important stepping stone to
the study of the estimated reduced forms.

The present paper derives the exact probability density function
(p.d.f.) of the estimated exogenous variable coefficients in a general
single equation setting when the estimation method is instrumental var-
iables. Conventional assumptions of normally distributed errors and
nonrandom exogenous variables are employed, A leading case is presented

in Section 3.

2. THE MODEL AND NOTATION

We work with the structural equation
(1 yp = Y, + Iy +u

where yl(T x1} and Y2(T xn) are an observation vector and observa-

tion matrix, respectively, of n+l1 included endogenous variables, Zy »

isa T xK1 matrix of included exogenous variables and u is a random

disturbance vector. The reduced form of (1)} is written:
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where Z_, is a T xK, matrix of exogenous variables excluded from (1).

2 2

The rows of the reduced form matrix V are assumed to be independent
identically distributed normal random vectors, We assume that standard-

izing transformations have been carried out so that the covariance matrix

of each row of V is the identity matrix and T-lZ'Z = IK where



[#3]

K = Kl + K2 . These transformations involve no loss of generality and
their effect on the parameterization and resulting estimator distribu-
tions are fully discussed in Phillips (1983c). We assume that K2 > n

and denote the degree of overidentification by N = K2 ~n , Finally we
note that the relationship between (1) and (2) and the implied restric-

tions on (1)} yield the equations:

(3) Tr].l - ]-[128 = .Y 1 “21 = H228 = 0 .

We define H

[Z1 :23] , Where 23 (T‘XRS) is a submatrix

of 22 and K3 >n . The IV estimators of £ and vy in (1) obtained

by using H as the matrix of instruments are:

I

-1
(4) Bry = (Y523Z3Yo) “(V3Z3Z3yy)

'11 '11
T zly, - T Z}Y

(5) Y1v By -

The number of surplus instruments in this estimation is denoted by

3. THE LEADING CASE

We define the matrix variate

-'lt _-1t
PTOziY,] = T oL

(6) (b:B] = [T 2y, :

which is normal with mean matrix [ﬂll IH12] and covariance matrix

I From equation (B3) in Phillips (1980) we know the p.d.f.
Kl(n+l)

of BIV to be:



T = = L+n+1
etr{- 2(I+BB')H22H22}PH(——§——)

nn/2(1+r'r)(L+n+l)/2

_ E X (%)j(L+g+1)Keg,K

. : . L+n
=0 k= . By P=hitis
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(7)  pdf(r) =

k(T - T= -1 =
c; (7“2235'“22’ S, (1+81") (T+11") (I+rB')H'22).

In this expression Cé’K is an invariant polynomial in the elements

of its two argument matrices, Such polynomials were introduced by Davis
(1979, 1980) to extend the zonal polynomials and the reader is referred
to his articles for a detailed presentation of their properties, together
jax
8
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partition of the integer f = j+k into < n parts, k 1is a partition

with a definition of the constants that appear in (7). © is a
of k into < n parts and the notation @ € (j,«) which is defined
by Davis (1979) relates the two sets of partitions in the summation.
The matrix ﬁéz in (7) depends only on the submatrix H22 of reduced
form coefficients; it is defined in Phillips (1980).
Since Zi 3= 0, Zix is statistically independent of BIV
(which is a rational function of the elements of Z%X }. The joint p.d.f.

of (b,B,BIV) is therefore given by:

-K,/2-K n/2
(8) pdf(b,B,r) = (2m) eXP{

-(b -wll)'(b -vll)/Z}

1 ]
-etr{- E{B —le) (B -le)}pdf(r)

We examine first the leading case that is characterized by the

null hypothesis

(9) H :n,,=0, T,,=0.



Under H0 , the rank condition for identification of (1) fails, the
parameter vector B 1is no longer identifiable and estimation by IV
proceeds under conditions of only apparent overidentification, On the
other hand, vy = ™1 under H0 . Thus, the analysis of this leading
case can provide insight into the effects of misspecification through
the imposition of erroneous simultaneity, In particular, estimation
of vy can be achieved by conventional least squares regression of the
reduced form under HO or by instrumental variables upon (1) leading
to Yy - Comparison of the distributions of the two estimators will

illustrate the effects of the misspecification,

Under HO » the density (7) reduces to:

L+n+1)
"=

(10) df (r) = :
P 1Tn/zr(%_l__)(hr,r)(L+n+1)/2

and (8) becomes

F(L+g+l)exp{-(b—Y)'(b—y)/z} etr{_ %B.B}

(11) pdf(b,B,r) = Kl(l'l"'l)/z Kl(n+1)/2+n/2 (L+1) (1+1'1) (L+n+1)/2
il T

2

2

We write Yy 3 S = b - Br (compare (5)) and under this transforma-

tion we deduce:



r(?+g+l)etr{' %B'B} eXP{' %(5+Br”Y)'(S+Br'Y)}

(12) pdf(s,8.7) = = gy 77 X a1y /72702 (L+1) (Loprpy (LD /2
T r

It

2
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L+n+1

r( > )exp{- %{S-Y)'(S-YJ}
Kl(n+1)/2ﬂK1(n+1)/2+n/2T(L+1) 'r)[L+n+l)/2

2 - (1+r

-etr{- %{I+rr')[B-(s-y)r'(I+rr')-1]'[B-(S-Y)T'(I+Tr')_l]}

'exp{%(s—Y)'(S~Y)r'(1+rr')"1r} .
Integrating out B we find

F(E:%il)exp{- %(S-Y)'(S-Y)} ' exp{%(s—Y)‘(S-Y)T'T/(1+T'r)}

PAE(s,T) = S5 Trmng2 K./2
, 177 F(L;l)(1+r,r)(L+n+1)/2 [det(I+71")] L
+ J ]
- r(“‘; 1)exp{- %(s—v)'(s-v)} - {%(s-ﬂ'(s-ﬂ} (r'r)’
13 = : .
K./2 (L+n+1+K.)/2 .& . N
(2m) 1 ﬂn/ZP(Lzl)(1+r'r) 1 j=0 jI(l+r'r)

/2}

We transform r - (m,h) according to the decomposition r = (r'r)l/z(r/(r'rjl

= ml/zh . The measure changes in accordance with the relation

dr = 2"1m(n" 2 /zdm(dh)

where (dh) denotes the invariant measure over the Stiefel manifold

Vl n (see James (1954), equation (8.19)). With this transformation
'

we integrate out (m,h) as follows:



L+2+1)exp{— %{s-v)'(s—Y)}
K./2
(2m) 1 TTn/ZF(Lzl)

(
(14) pdf(s) =

1 ] .
© {"‘(S-Y) ' (S-Y)} © n/2+j-1
2 dnm
.'ZO 23! JO m(L+n+1+K1)/2+j JV (dh)
)= (1+m) 1,n

] (22 (- st (s }

K. /2
{2m) 1 ﬂn/ZF(E%l)

j L+K.+1
m{%(s-\f)'(s—v)} 1‘(%+j)1‘( 21 )2nn/2

'.E 2j! L+K, +n+1 n
=0 1 . T{=
J (0T B
L+K, +1
F(L+n+1)T( L )exp - l-(S-Y)'(s-y)} n+L+K, +1
{15) = 2 2 2 P (8, —21 '1—(5-‘{)'(5—\’)
K.,/2 L+K, +n+l 1 1\2 2 > 2 '
1 L+1 1
(2m) r( . )r( 2 )

It is simple to verify that the density given by (15) integrates
to unity. In considering the order to which moments exist it is convenient
to set v = 0 and examine the convergence of the following series of

positive terms:



F(L+n+1)r(L+Kl+1) ) ( ) ( )
d/2 2 2 -s's/2 als j+d/2
E{(s's) K1/2 Lol /LKyl .Z n+L+K +1 J (s's) ds
en () 7 (),
L+K, +1 n\ (1} d+K K./2
P(L+2+1)F( ; ) E (i)j(i) P( 21 +j)2n 1
= K./2 L+K_+n+ly . n+L+K.+1 5+ (d+K,)/2
1 L+l 1 j=0 . 1 1 K
@ e (—5—) J!(-——z—-)_ (1 e
j 2 2
L+K, +1 d+K
r(L*2+l)r( ; )r( 21)2d/2 d+K.  n+L+K, +1
- P 1 1. 1) .

. L+l . L+K1+n+1 - El 271\2
2 2 2
The series converges absolutely provided d < L and diverges otherwise,
Thus, integer moments of Yy, are finite up to the number of surplus
instruments L = K3 -n (or, in the case of 2SLS, to the degree of over-

identification), as we know from earlier results on B and from the

Iv
form of (5).

4. THE GENERAL CASE

From (7) and (8) the joint p.d.f. of (b, B, BIV) under the alter-

native hypothesis £0, Iy #0 is:

12

L4n+l —
(16) pdf(b,B,r) = rn( 2 )etr{' 7(1+88") 1), 22}

K, (n+l}/2
(21) 1 ﬂn/2(1+r'r)(L+n+1)/2

'eXP{'(b-ﬂll)'(b-wll)/Z}etr{- %(B-nlz)r(a_nlz)}

L BER

. . . L+n
= = . 1! —
j=0 k=0 @€j+x J.k.rn( 5 w]

*

,j’ T— T'- -1 i_)
Co (2 m,,R8' H22, Fipo (T+8T 1) (T4rrt) “(1+18 )HEZ, .



As before we write

completing the new matrix quadratic form in B we find:

L+n+1 —
r ( )etr{_ T 1epsn)my }
pd£(s,B, 1) = —DB\ 2 22%22 .

K,(n+l1)/2
(2m) * a2 (1aprp) Lmr1) /2

setr

-etr{;[nlz-(s-nll)r'](I+rr')"1[H12—(s-v11)r']'}

K

j20 k=0 @€jex jIKIT (L;“, w)

LY fL+n+l ej,K
o o Z 2J 2 )

isx T— —
C (§ﬂ2236 Héz, iﬂ (I+Br') (I+rT') " (I+rB')H£2) .

The matrix B may now be integrated out leaving us with:

FH(L+2+1)etr{— =(I+BB")TL. T

pdf(s,1) = 2222

(2m) {1+r'1r)

etr{%[]‘{lz- (S-Trll)r' ] (I+rr')'1 [le—(s-ﬂll)r' ] r}

- (%)j(L+g+1) ei,K

K
320 k=0 @€« j!k!rn(k%ﬂ, w)

. i,% T_ 11 T
Co (2 315,88 sz, o (I+81") (I+1T") (I+r8')ﬂéz)

Yy @ S = b -Br . Using this transformation and
(s~ " (g- S
xp{ (s Wll) (s ﬁll)/Z etr (- 5T

- L) [B- (1= (s=m )Y (Terrt) 1] [B- (T - (5om ) D00) (Terr)

K /2 n/2 (L+n+Kl+1)/2 exp{'(s-ﬂll)l(S-ﬁll)/2}etr(_ 51

_1]
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Fn(L+;+1)et { T(I+Bb')H22—§2}
(17) = T /2 iy [L+n+Kl+l)/2 exp{-(s—wll)'(s—ﬂll)/Z}
(2m) (1+r'r)
1 (s-wll)'(s—ﬂlljr'r -2r'H12(s-n11) -r' H12H12

*eXPYy 1+r'r

e
w © 2/. 2
iy ] K ®

. L L+n
- = i * 3 1 I —
3=0 k=0 @&j j.k.Fni > )

s _
'Cé (2“22BB 1o 2 T, (148 ) (T+rr') (I+r8')néz) '

It will be convenient in what follows to use the identity:

@) (-B) "

(18)  (1+Br*) (T+rr") "1 (1+x8") = T +p8" T+r'r

Since the polynomial Cé’K is an analytic function of its matrix argu-

ments we employ the Taylor expansion:

(19) etr{-az(r-B)(r—B)'/fl*r'r)}Ci’K(%ﬁézss'ﬁEZ’ %ﬂ (1+BB'+Z)H'2) 2=0

._3

cJ K(g"ézss'“gz, 51, (1+881) T3 2 1, (r-8) (r-8) 'L,/ (1+r r))

which converges uniformly in r . The matrix Z in (19) is a matrix

of auxiliary variables and 3Z denotes the matrix operator 3/3Z . The
left side of (19) provides a simple algebraic representation of the multi-
nomial expansion of the right hand side polynomial, which involves a

sum of matrix arguments. The latter no doubt admits an expansion in

terms of polynomials with more matrix arguments; but the explicit form

of this expansion has not yet been derived in the multivariate literature

and (19) is a simpler alternative that is very convenient for our purpose.
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From (17) and (19) we obtain

L+n+1 =
T ( )etr{ =(I+gR")T! }
'\ 2 2222
(20} pdi(s,r) = K72 n/2 (L4n+K,+1) /2 ©
i (1+r'r)

LY fL+n+l} j,x
L B

2
j:O k=0 @j'K Jlkf ( j

(27)

XP{-(s-vll)'(s—vll)/2}

L 2 L,+4

1 . 1 1 374

g {7(s-n11) (s-7, )} ( 7) (-1)
L £1'22 23'24!

L

L
) 2 3 2
C(x'x Lt Ii,0, T T le(s-ﬂ
l+r'r

11)) ((r-ﬁ)'BZ(r—B)) 4
I+r'r l+r'r

l+r'r
(I+BB'+Z)H )
22 22 720

i,k Ty T
.l (ZHZZBB T, =

where ZQ denotes ZQ ) Since the series converges uniformly
1272273274

in r we may integrate termize to remove T .

The typical term is then

E2 R 2, 2
('l 51 p7) I ,(s ~Tip)} {(T 8)'eZ(r-8)} (r'r) dr
(1) J (L+n+K1+1)/2+g
(1+r'r)
= (-ox'm! )Ez{-°8x'n (s-7 ' g
= (-8xTl ol 50 1ox'l,

3{(iax+8)'32(i3x+8)} 4

. 2
t
. elx r(r'r) 1dr
(L+n+K1+1)/2+2

{(1+r'r)

X

1l
]

where £ = Ly v Ry Ry, and 8x denotes the operator

a/9x taken
with respect to a vector of auxiliary variables

X .
We transform r - Hr

p for H orthogonal and integrate over
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the orthogonal group O(n) , normalized so that the measure over the

whole group is unity. The latter measure will be denoted by (dH)

(21} becomes

L '3

2 3
~3x'T? -igxt -
Jp[( X lenlzax) {-idx le(s nll)}

-{( 13z (i 4 iHxp! } (p'p)lldp
i3x+B) '9Z{1ax+R) } J etr(iHxp') (dH) Lok 17357
0(n) x=0 (1+p'p) 1
%y, 23
= [p{(-ax'niznlzax) {-18x'H12(s-n11)}
; ; g n 1 (P'P)Rldp
"{(13x+B) 132 (13x+B) } 0F1(§; T ZK'XP'P)JX_O (L+n+K1+1)/2+E
“7 (1+p'p)
b, %3
(22) = ZT[(-BX'HiZHIZBX) F-idx'p, (s-7) 1)}
g t L.+t
+{(19x+8) '3Z (13x+8) } 4(_ %x|x) ] L J (pziln+K f€3/2+£
T A0 t!(f)t " (L+p'p) !

where the summation ZT is over all values of t for which the quantity
in square brackets is non zero, Since the latter quantity is zero whenever
t >8R, + 2% 2, the integral in (22) is convergent within this summa-

tion. Upon evaluation of this integral (as in (14) above) we obtain:

Trn/2

7

L )

, 2, . 3
(23) ZT[(-BX Hizﬂlzax) {-18x‘H12(s—n11)}

Yar 1, A\t 1

{(iox+B) *9Z(i9x+B)} (— E«'x) =
x=0 t!i“d
2/¢

n L+K1+1
ey B sy ag v, o)

L+n+K1+1 *
P(""E“"+£1 iyt *24)
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From (20} and (23) we deduce the following general expression for the

p.d.f. of Yy ¢

L+n+1 ' =
(24) pdf(s) = r“( 2 )e {_ 28Ty 22}

Kl/z exp{-(s-wll)'(s-ﬁllj/2}
(27) r(%)
(L) (L+n+1) gs¥ B Ly 242,
E E 3 2 j 2 ; {_(S =m0 (s- ﬂll)} £-§- (-1)
Lo L . L+ % Lote o 1g !
=0 k=0 ¢€j-x J!k!Fn(—§—3 Q) 1772773774

n L+K1+1
-Z T(21 +§-+t)T(_ 5 +£2 +23 +24 -E)

T n L+n+K1+1
(n T )
t.(z)tr( 5 +21 +£2 +23 +£4)

22 2 E 1 t]
[( OxX' MY, 50x) “{-13x'M, ) (s-m) 1)} 3{(19x+8) 13Z(i3x+B)} ( = .x) |

._]

PN IS i '
(I s Ty T, s ))] .

The leading case that occurs when le =0, H22 =

deduced from (24) by noting that non zero terms in the various summations

0 may be

arise only when j = k = 22 = 23 = 24 =t =0 . Moreover,

Fn((L+n)/2; Q) = Fn((L+n)/2) when ¢ 1is a partition of zero. We find

in this case
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ER e (sry )" (51 1)/2]

K /2
e (E(F)
) L+K_+1
1 ' 1 n 1
i {E{S'“ll) (5'“11)} P(El *E)T('""E“‘)

2.1 L+n+K.  +1
L.=0 1 1

o
pdf(s) = =

L+n+1 LK, +1
-5~ t (e
_ Pn( 2 )r( 2 )exP{ (s-myy) ' (s-myp) /2 - gy Lkl | \
B K /2 Len+K, +1 1Filzs —5— 3(s-m )" (=7 )
1 L+n 1 /
(27) r\==-jr 5

L+K.+1
P(L+n+l) ( 1 )exp{ (s=-m,.)"(s=-m..,)/2} n+L+K_ +1
i} 2 2 11 11 F (B. LU Lgn yo(sen ))
K./ ( ) (L+n+K1+1) 171\2 7 2% 11

1 2
which is the same as (15) derived earlier by direct methoads,

{27) r

5. REMARKS

The exact densities (15) and (24) relate to the standardized model.
The corresponding densities for the non standardized model may be obtained
from these results by transformation using the formulae in Phillips (1983c).

Accurate approximations to these densities that will permit wide
ranging numerical computations and the analysis of marginal distributions
are the next step in studying these distributions. Methods used by the
author (1983d) elsewhere seem promising in this respect and will be the

subject of further work.
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