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0. ABSTRACT

This paper derives the exact finite sample distribution of the two-stage
GLS (generalized least squares) estimator in a multivariate linear model
with general linear parameter restrictions. This includes the seemingly
unrelated regression (SUR) model as a special case and generalizes presently
known exact results for the latter system. The usual classical assumptions
are made concerning nonrandom exogenous variables and normally distributed

errors.,
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1. INTRODUCTION

In the early 1960's Zellner [8] developed a two-stage GLS estimator
for the coefficients in a linear multivariate system that is now popularly
known as the SUR model. This two-stage procedure has since been used in
many empirical applications. GLS also forms the basis of other commonly
used estimators both in linear models with heteroscedastic or autocorre-
lated errors and in simultaneous equation systems where it leads to three
stage least squares (3SLS). In spite of extensive research and perhaps sur-
prisingly in view of the popularity of GLS methods in empirical work, the
exact finite sample distribution of the SUR estimator is known only in highly
specialized cases. These cases effectively restrict attention to two equa-
tion systems and models with orthogonal regressors [2]. Existing distribution
theory is even more limited in the case of other commonly used GLS estimators,
such as the two-stage estimator in linear models with heteroscedastic errors.
Here, only low order moment formulae are known and then only in the simplest
two sample setting.

The research underlying the present paper is motivated by the deficien-
cies outlined above. Our initial object of study was the exact distribution
of the SUR estimator in the general case. But the methods we have developed
open the way to an exact distribution theory for econometric estimators in
a much wider setting than the SUR model. The present paper will derive the
exact finite sample distribution of the two-stage GLS estimator in the multi-
variate linear model subject to general linear parameter restrictions. This
generalizes all presently known distribution theory for the SUR models itself.

Two important specializations of our results will be illustrated in detail.



A sequel to the present paper [5] will extend the distribution theory
given here to other commonly used estimators of the GLS genre., Later work
by the author will use the methods we have developed to open up an exact

distribution theory for a wider class of econometric estimators.

2. THE MODEL AND NOTATION

We will work with the model

(1) Yo = Ax  +u , t=1, ..., T

where Ye is an n x1 vector of endogenous variables, X, is an mx]1

vector of non-random exogenous variables and the u, (t

1, ...,T) are
i.i.d. N(0,r) with non-singular covariance matrix I . We write (1) as
Y' = AX' + U' where the data matrices are assembled in columns as in

Y’

[yl, ...,yT] ;3 and we assume that X has full rank m .
The coefficient matrix A in (1) is assumed to be parameterized in

the form
(2) vec{4) = Sa - s

where wvec( ) denotes vectorization by rows, S 1is an nm xq matrix whose
elements are known constants and whose rank is q and s is a vector of
known constants. In (2} o is taken as the (g x1) vector of basic
parameters.

The model given by (1) and (2) includes the SUR models as a special
case as well as Malinvaud's general linear model [3] which allows for the
same parameters to occur in more than one equation. Moreover, the model

(1) and explicit parameterization (2) are formally egquivalent to the same



model (1) with the coefficient matrix A subject to p = nm-q general linear

restrictions
(3) D vec(A) = d

where D is a p xnm matrix of rank p and d is a px1 vector. All
of our results apply to the restricted regression model (1) and (3) upon
appropriate symbolic translation. We will therefore confine our attention
in what follows to the explicit parameterization (2).

The GLS estimator of o is given by

-1
(4) qa = {s'(z'l®x'x)s} {S'(Z-1®X')vec(Y') +s'CI@®x'0s) .

The two-stage estimator of o 1is obtained by replacing I in (4) by an
estimate that is typically based on the residuals of a preliminary least

squares regression on (1). We take the estimate

(5) 5% = (T-m)'lY'(I-—PX)Y , P, o= X(X'x)"Ix’

X

from an unrestricted regression. The corresponding two-stage estimate of

o we will denote by o* . The error in this estimate satisfies:

-1
(6) o* - o = (ST @x'R)S) {S'CFL @ XN)vec (U] .

3. THE EXACT DISTRIBUTION OF a*

1

Define M =T X'X, p = vec{U'X/T) and D= Y'(I -P,)Y . We write

the error in the estimator o given by (6) in the generic form

(7 ¥ - o = e(p,D) .



Our approach is to work with the conditional distribution of e given D

and then average over the distribution of D to achieve the marginal prob-

ability demnsity function (p.d.f.) of e .

given D is

Since p is N(0, Z @ M/T) the conditional p.d.f. of e
quz,exp{—- %e' [B(Z ®M)B' ]'le}
(8) pdf(e|D) =
(2mY 2 (get (B @M)B' )2
where

=1
(9) B=(S'(L@MS] ' r@D]

The matrix D is central Wishart with p.d.f.

etr(- %E-ID)(det D)(T-m—n—l)/Z

(10) pdf(D) = .
ZH(T—m)/zrn(E%E)(det Z)(T-m)/Z

It follows that the unconditional p.d.f, of e 4is given by the integral

Tq/2

pdf(e) =
(2n)q/22”(T'm)/2rn(E§9 (det 1)

(T-m)/2

etr(- %ﬂ_lD)exp{- %e'[B(Z C)bDB']—lé}(det D)(T-m—n-l)/de

(det [B(z @ mB' )12

J

D=0

/2 = (- % :
(T/ZT)q z 2
(_’I;_m (det Z)(T-m)/Z PSR

(11) =
2n(T—m)/2rn

j
(T-m-0-1)/2 v 3¢z @ M)B] 2e) ap
1/2

I etr(-~%z_lD)(det D)
D>0 (det [B(z ® M)B']



where term by term integration of the series is justified by uniform con-

vergence.

We now decompose the matrix

1 1

(12) Bz @MB = [s' (0L @MWs] (st (ol @wsis' (0t @ ws)

‘ -1
= L] -1 t 1
= [s'(D, @Ms] "' (DID, @ M)SI[S' (D, @ M)S]

where the suffix a is used to indicate the adjoint of the associated matrix.

The integral we need to evaluate in (11) has the following form:

b
(13) D,[Oetr(-— %E_ID)(det D) (T-m_n-l)/z{e'[S'(Da®M)S][S'(DaEDa®M)S]a[S‘(Da®M)S]e}

_j -—
det [S" (Da®M)S]{det[S'(DaEDaG)M)S]} 2ap .

We introduce an n xn matrix W of auxiliary variables and using (Al2),

(Al3) and (Al4) in the Appendix we deduce that (13) equals

[
T L} T 1 ] j
(14) He is (Blva®M)S][S (awazawa({«)M)s]a[s (Bwa®M)S]e}

1

..j -—

'detIS'(awa®M)s]{det[s'(awazawa®m)s]} 2
. j etr[-(%i'l —W)D](det D)(T—m_n_l)lde}

p>0 W=0

In this expression awa denotes the adjoint of the matrix operator

3W = 3/9W (in the notation of the Appendix) and the fractional matrix

operator that appears in (14) is defined as in (A9) in the Appendix.
We evaluate the multivariate gamma integral in (14) and from (11)

we then deduce:



/2
(r/2m)¢
(15) pdf(e) =
2n(T—m)/2rn(I%E)(det E)(T—m)/Z

N

A
g—.—%l[{e‘ [s’ (awa®l~1)s] is' (awazawa(g)M)s]a[s' (awa®M)s]e}j

o 3
1

L

h
-det[s'(awa@)n)s]{det[s'(awazawa@)s]}- ]

)]—(T—m)/z]

W=0

h|
T\4/2 = !— %) 3
= (—-) S5 {e'[s'(awa®M)s][s'(awazawa(aM)S]a[s'(awa@)n)s]e}

(16)
1

-det[S'(awa()M)S]{det[S'(BWaEBWaC)M)S]}- 2

+ [det (I - 23W) ]'(T'm)/z}
W=0

In generalized operator mnotation this expression (16) for the p.d.f. of

may be written more simply as:

e=co*-aq
quzexp{:_%e'G(awa)nle} —(T-m)/2
(17) pdi(e) = 73 172 [det(I -2IW}]
(2m)3"“ [det G(aW )] W=0
where

] T -1 1 v = ' -1
{s (Bha®M)S} [s (akaaawa®M)s][s (awa®M)s] .

I

G(Swa)



4. MARGINAL DISTRIBUTIONS

Let F be an f xq matrix of known constants of full rank f ( <q)
and consider the marginal distribution of g = Fe . The joint marginal p.d.f.
of g is deduced by the same sequence of operations as those developed above

for the full dimensional case, The final result corresponding to (16) is:

]

T
f/2 @ P
— l 2 1 ] L} 1 7
(18) pdf(g) = (211) jZO T8 [F{s (Bwa®M)S}a{S (awazana®M)s}

Jlat 1 h| ) £+23
{s' (3u_GM)S)} F ]ag} (det[s’ (aW_@®M)S])

L1
-5 -=
-(det[F{S' (awa®M)s}a{s' (awazawa@)s}{s' (awa@)s}ar D 2

[det (T - 2zw) ]~ (T~ /2] ;
W=0

or in generalized operator form:

Tf/zexp{- %g'H(BWa)_lg}

/

[det (T - 2zw) ]~ (T-™) /2

(19) pdf(g) = W=0

1/2

(2ﬁ)f 2[det H(Bwa)]

where

¥ =lias 7 1 -1,
H(awa) = F[S (awa®M)s] [s (ahazawa@)m)s][s (awa®M)s] F



5. SPECIALIZATIONS

5.1. The unrestricted model

In this case o = vec(A) and o* is the unrestricted least squares
estimator. To reduce the general expression for the density (16) we note

that (aWa)(BWa) = I(det BW)n-1 and thereby
a

(30, ®M) ( aW_ ZaW_ @M . (W, M)

m-1 n-1
(awa®M)((awa)aza(awa)a®Ma)(awa®M)[det(awazawa)] (det M)

(7, @MY ) (det oWy 22 (get Bwa)zm-z(det 2™ L der ™t

(LM (det 1)P(det M7 (der aw)Z(m-1)

Additionally,

., 1
)
det ( awa M) {det ( awa zawa ®M)}

m—2m(j+%)

_j -——
(det M)n{det(ZG)M)} 2 (det 3W,)

a -3 -3 n(a~1)-2m(n-1) (45)
(det M) {det(E@M)} (det W) :

Using these reductions in (16) we deduce that:



J . . .
e'(z'1®M)e} [(det 5™ (get M (det aw)22(M"DI (4ep 10

, 1 .1
-i-35 m(n-1)-2m(n-1) (j+3) —(T-m) /2
-{det(Z®M)} (det 3W) {det(I -zm)} ]
W=0
- 3 -
e'(Z 1C)M)e} (det I) In/Z(det M)n/2
Tq/zexp{f Ie'(Z_lOM)e}
2
2a) = , q = nm .
/2 -1 1/2
(2m) Y “[det (Z@M ) ]
Thus, the joint density of e = a* - o reduces to the well known multivariate
N0, IREX'DTD
5.2. The Zellner model with pairwise orthogonal regressors
We specialize the multivariate system (1) and (2) to the Zellner model
(21) Yo = KBty k=1, ...,
where Yo is the observation vector on the kth dependent variable, Xk
isa T XLk observation matrix on Lk regressors, Bk is a vecter of
coefficients and Y. is a vector of normally distributed serially independent
errors. The covariance matrix of u' = (ui-, ...,u;_) is T ®I.
When we stack the model (21) and set a' = (Bi, ...,B;) the Zellner

SUR estimator of o is o* and its exact distribution is given by (17).

The marginal distribution of Bz , the SUR estimator of the subvector of
the coefficients in the kth equation can be deduced directly from (18).

To relate our results to the existing literature we now assume pairwise
orthogonal regressors across the equations of (21}, so that Xin =0 for

i #3j . We may concentrate on the first equation of the system without loss
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of generality and set k =1 , €11 Bl Bl and Mll T xlxl . From

the general expression (18) the joint marginal density of e is found

to be:

L,/2 . (_ ;)j
(22) pdfe;)) = ( T) (et M Y12y f

2 11 4=0 j
24+L
(oW 1

¥ ali; T-m) /2

«(e! M. e

M8 [det (T =28W) ]~ ¢

j+Ll/2
(3W _ZaW )
a a 1

1

Simple manipulations now verify that

23+L -j=L./2
(3W ) 1(3W Law ) 1 [det (I _zzw)]'(T"m)/z
a 11 a a’11

T-m n+l .
1 —_— - 2_‘_|+Ll

= T I etr(-S) (det S) 2 (¢'S “c) (c'S “c) ds
-m
I‘JT) $20

j+Ll/2 T-m n+l

= ooy [ etrc-sycger » 2 2 (s7h
7)) s

(23) =

where c¢' denotes the first row of 2—1/2 .

leading to (23) is an interesting exercise for the careful reader. If we

write I 1in partitioned form as

The final step in the argument



11

1

and set 01149 = var(ultlu2t ...unt) = 03y = %9 22 Oy WE find that
-1
cle = dll ={g l ) = U-l We may now deduce from (22) and
11 " %2 22 21 11-2 °

(23) the following expression for the joint marginal density of e ¢

L./2

T

1 -1/2
(24) pdf(e,;) = (5;) [det (o

1127

T-m , 1 -m L1 n i
r( 5 +E) s r( 7 t2 "3t +1){ Tell 11°11

T-m n 2 .
I‘(T-E'F]) j=0 I.,(sz_{_ 21"'%"':])_']' k 11 2

Upon translation of notation this is the expression found in [2] by direct

methods.

6. FINAL REMARKS

The general formulae (16) and (18) may be used to deduce the correspond-
ing asymptotic distributions in a simple way. We replace [det(I —ZZW)]_(T_m)/z
in (16) or (18) by an asymptotic approximation as W -+ 0 . It is

simplest to use [det(I -ZZW)]—(T‘m)/Z

~ etr[(T-m) W] . Upon evaluation,
we see that (16) now yields the asymptotic N(O, T-l[S'(Z-ICDM)S]_l) approxi-
mation directly., Higher order asymptotics may be obtained in a gimilar way
although the algebra is more complicated.

The calculus developed in the Appendix may be applied to a variety of
other unsolved problems in econometric distribution theory, including systems

estimators in simultaneous equations and Stein-like estimators. The author

currently has some work on these problems underway.
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APPENDIX: FRACTIONAL MATRIX CALCULUS

This appendix extends the theory of fractional operators in differential
calculus to matrix spaces. Those readers who are unfamiliar with scalar
fractional operators as a generalization of traditional differential and
integral calculus may wish to refer to the reviews in [6] and [7]. Addi-
tionally, [6] provides an interesting historical survey which traces the
theory of fractional differentiation to the work of Leibnitz, Liouville and
Euler.

let A be the space of n xn symmetric matrices, O0(n) the group of
n xn orthogonal matrices and ( the class of symmetric functions on A .

C 1is defined as the set of all complex analytic functions of A for which
f(X) = f(HXH'") for all H € 0(n) and where X € A, Since f € C 1is a
complex analytic function of the n elementary symmetric functions of X
(viz. o, = tr(X), Op = vuv Gﬁ = det X) , the domain of definition of f
may be extended to all complex n xn matrices X for which f(X) continues

to be defined [1]. In what follows we let ‘X be an arbitrary complex n *n

matrix and we use the notation 58X to denote the matrix operator 3/3X .

Definition, If f is a complex analytic function of X and o > 0 we define

the fractional matrix operator (det 3X)™% by the integral

1 I £(X-5) (det §)% (0D /24¢

(Al) (det 3X) VE(X) = —F—
Tn(u) 350

when 1t existe, The integral is takewn over the set of positive definite
matricee S > 0 .

This definition is motivated by the observation that (det 3x) "¢ may

be formally considered as the operator



i3

1

a=-{n+l) /2
?;TET ds

J etr{-93XS) (det §)
S>>0

(A2) (det 5X) % =

using the multivariate gamma integral [1]. We observe that since f is

analytic
(A3) etr(-aXS)f(X) = f(X-5)

leading directly to (Al).
The definition (Al) is a matrix generalization of the Weyl fractional

integral [4). 1Indeed, when X is a scalar we deduce from (Al) (with D = d/dx )

(A4) D Yf(x) =

o X
J f(x-s)sa-lds = (o) J f(y)(x-y)a-ldy
0 - .}

which is one representation of the Weyl definition of a fractional integral.
The Weyl integral (A4), when it exists, satisfies the familiar law of exponents

B - D—(a+8)

for all o and B (with fractional differentiation being
defined in terms of fractional integration to an appropriate order of a tra-
ditional derivative to the nearest integral order: see [4] for a full
development).

(Al) may be used to define a fractional matrix derivative as follows.
If w >0 and [u] = integral part of Y we set | = n-a where n = [p] +1

and 0 <a <1 . Then the fractional matrix (differential) operator (det BX)“

is defined as:

(A5) (det 3X)” = (det 3X)"*[(det 3X)"F(X)] .

With these definitions we can verify that the fractional matrix operator

satisfies the usual law of exponents. Writing D, = det 39X we have (for

X
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%, B> 0)
D I0RPE(0)] = o T;%ET Slof(X-S)(det 5y B (n41) /245
) ?;?ET%ZTET RIO sJ;of(X_R-S)(dEt 5B (1) /245 (ger Y9~ (P¥L) /245
S TEn® M’Iof(x-MSQi’:[det(M'Q)]a—(nﬂ)/ 2(det @F (M) /24
- ?;TET%;TET MIof(x-M)(det M)a+8_(n+1)/2IZ[det(I-T)]a—(n+l)/2(det B (+1)/24p
= T;?%IEY M{gf(X—M)(det py B (D) /2 4
= Dga-ef(x)

To prove that the law holds for general indices as well as negative indices
we use the argument that, if y =n-o and v = m—f with n and m integer,

then:

IRy Ol Baler _ O peBpntmey o mo-Bpantmoy _ opdy
DX[DXf] = DX DX[DX Dxf] = DX [DX DX f] DX [DX f] = DX f.

The following examples illustrate the use of the fractional matrix operator

on elementary functions of matrix argument:

(A6) D;etr(AX) = etr(AX) (det AYY , all

e Tn(a—U) —aty

(A7) D;[det(l-x) = oy ldet (1-0) ] , Re(a) > (n=1)/2 , Re(a-u) > (n-1)/2
n

Fn(a-u)rn(B-u)
rn(a)rn(a) lFl(a—u, B-u; X)

(48) F,(a,B;X) =

Dy 15y
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It is frequently convenient to work with the adjoint of the matrix oper-
ator 3/3X , which we will write in form BXa = adj(3/8X) . The fractional

calculus can be extended to this operator as in (A2) and (A5). We define

T_](;(:J.T J {etr(-aXaS)f(X)}(det S)

n S>>0

a-—(n+1)/2dS

(A9) (det axa)'“f(X) = , a>0

provided the integral exists; and, for u > 0 ,
(A10) (det axa)“f(X) = (det axa)‘“[(det BXa)nf(X)] , p=n-a , n integer.

In our applications of this calculus f£(X) is often the elementary function

etr(A¥) . Simple manipulations verify that for this function
(A11) (det 8X)"etr(aX) = etr(aX)(det A"

where Aa = adj(A) . We also need to work with the operators
det[S'(BXa(jM)S] and det[S'(BXaZBXa()M)S] where S5 is an nm xq matrix
of rank q , I is n xn positive definite and M 1is mxm positive

definite. Extensions of (All) to these operators yield:

]

(A12) {det[s'(axa()M)s]}”etr(AX) etr(AX) {det[8' (A, @MS]}

etr(AX) {det [S' (A" T @M)S ]} (det A)M2

(A13) {det[s'(axazaxa()m)s]}“etr(Ax) etr(AX){det[s’ (A A @M)S]}

etr(AX){det[S'(A-lZA-l()M)S]}U(dEt A)Z“q .

We also note that



g' [S"(3X_ @M S]IS' (3X_IdX_@M)S] [S'(3X_@®M)S]g etr(AX)
a a a a a

= etr(AX)g'[S"(A_ @MS]IS'(A 1A @S] [s'(A @M)S]e
a
where g is any ¢q x1 vector. Repeated use of this operator yields:

(A14) {g'[s' (3X_@M)S][S' (% _rax, @M)S] [S'(BXa()M)S]g}jetr(AX)
a

= etr(ax){g' [s' (o, @M)S]IS' (& TA_®M)S] [S'(A @MSIgH .
a a a a

16
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