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0. ABSTRACT

This paper derives the exact probability density function of the
limited information maximum likelihood (LIML) estimator of the coeffi-
cient vector of the endogenous variables in a structural equation
containing n+l endogenous variables and L > 1 degrees of overiden-
tification. This generalizes the presently known results for the two
endogenous variable case (n+l = 2) and the leading case analyses in
the author's earlier paper (1982). Upon appropriate symbolic trans-
lation the results may be applied directly to the maximum likelihood

estimator in the multivariate linear functional relationship.

(© phillips, 1983

*My thanks go to Glena Ames for her skill and effort in typing the manu-
script of this paper.



1. INTRODUCTION

In recent years there has been a renewed interest in the limited
information maximum likelihood (LIML) method of estimation in the simul-
taneous equations model. Some of this interest has been directed towards
modifications of LIML which yield estimators with certain improved
features. The improvements have been measured by the criterion of second
order asymptotic efficiency and by the extent to which the modifications
thin out the tails of the distribution, thereby reducing the probability
of extreme outliers in finite sample LIMI, estimation. Studies of suqh
modifications have been made by Fuller (1977), Kunitomo (1981) and
Morimune (1981); and a review of this work may be found in Phillips
(1983a)., A second direction of interest has involved extensive numerical
tabulations of the exact distributions of competing estimators in the
case of a single equation with two endogenous variables. These tabula-
tions have led to a reassessment of the relative merits of LIML and two
stage least squares (2SLS) as competing estimators. In particular, the
distribution of LIML is shown to have a superior central location and
a more rapid approach to its asymptotic distribution than the distribu-
tion of 2S5LS., The differences working in favor of LIML are most striking
when the degree of equation overidentification is large and when there
is a high correlation between the endogenous regressor and the structural
equation error. The reader is referred to Anderson (1982) for a detailed
account of this work.

The present paper is concerned with the distribution of the LIML
estimator in the general single equation case. As such it is a sequel

to an earlier paper by the author (1982) (hereafter referred to as



LIML: I) which dealt with a leading case of the general problem. The
exact probability density function (p.d.f.) of the LIML estimator in
an equation with two (n+l = 2) endogenous variables and an arbitrary
degree of overidentification (L > 1) was found by Mariano and Sawa
(1972). 1In Basmann's (1974) notation their result characterizes the

following subclass of distributions:

=]
L

where Mn L denotes the joint distribution on RP of the LIML estimator
]

of the coefficients of the n right-hand side endogenous variables in
an equation with L degrees of overidentification. The results of the
present paper characterize in the same notation the complete class of
distributions

oo o

M= U U Mn L

n=l L=1

corresponding to a structural equation containing any number of endog-

encus variables and an arbitrary degree of overidentification.

2. THE MODEL AND NOTATION

As in LIML: I,we work with the structural equation

(1) v, < YZB + Z. vy +u

1

where yl(T x1) and Y2(T Xm) are an observation vector and observa-

tion matrix, respectively, of n+l i1ncluded endogenous variables, Z1



is a T x Kl matrix of included exogenous variables, and u is a random

disturbance vector. The reduced form of (1) is written

1 T2

21 oz

(2) [y, :¥,1 = 12, . 2,)
s

+ [v1 :VZ] =ZI +V ,

where 22 isa T x K2 matrix of exogenous variables excluded from
(1). The rows of the reduced form disturbance matrix V are assumed to
be independent, identically distributed, normal random vectors. We assume

that the standardizing transformations (see Phillips (1983a) for full

details) have been carried out, so that the covariance matrix of each

row of V is the identity matrix and 7izz = Iy where K = K, +K, .
We also assume that K2 > n+l so that the degree of overidentification
is L = K2 -n >1 . When the equation is just identified (K2 = n)

LIML reduces to indirect least squares and the exact distribution theory
in Sargan (1976) and Phillips (1980) applies.

We write the LIML estimator of B in (1) as BLIML and define
the matrices W = X'(P, -le)x » 8 =X'(I-P,)X where X = [y, 1Y,]
and PA = A(A'A)"lA' . BLIML minimizes the ratio BAWBA/BASBA , where
Bé = (1, -B') , and satisfies the system

(3) (W-2x8)8, =0

1/2 . -1/2 .

where A is the smallest latent root of the matrix § WS~

in (3) also satisfies
(4> [s -f(u+s)18, = 0

where f = (1+)\)_1 is the largest latent root of (w+s)’1/25(w+3)'1/2 .



3. THE DISTRIBUTION OF LIML

The first steps of the derivation follow those of LIML: I. In

particular, let the m = n+l roots of the equation
(5) deti{S-f(W+8)] = 0

be ordered fl > f2 > e > fm > 0 and assembled into the matrix
F = diag(fl, f2’ ...,fm) + Further, let the corresponding vectors 84

satisfying [S'-fi(W+S)]gi =0 be normalized by gi(w+s)gi =1 and

assembled into the matrix G = [gl, 8os ...,gm] . We set E = G_1 and

define a transformation (S,W) -~ (E,F) by the equations
(6) S =E'FE, W=E'"(I-F)E .

This transformation is made one to one by the imposition of a sign require-

ment on a particular column of E = (eij) » We choose the final column

>0 for all i .

of E (as in LIML: I) and set ei,n+1-—

Our distribution theory begins with the joint p.d.f. of (W,S)
W and § are independent Wishart matrices. § 1is Wm(T—K, I) (as in

LIML: I) and W 4is noncentral Wishart Wﬁ(KZ, I, M) . The noncentrality

matrix M is given by

/2

(7 M=MM = E(T'llzx'zz)E(T"1 Z!'X)

2

0
' —— )
Tt |- [0 :IK 1n

I 2
K,

"ﬁ!

= T _gl []'[
'
Ty2

21 ¢+ M2l

'E!
= —_ L}
T “22“22[B’I]

I
n

—




The joint density of (W,8) 1is

etr(- %MM' etr{--%(w+s)}

m(T-K.)/2 /K
2 )
m\ 2/ m\ 2

(K,-m~1)/2 K
+(det W) 2 (det s)(T'K'm'l)/20F1(7;; : ) .

(8) pdf(W,s) =

jga
=

P 1] e = k= .
Writing H22H22 as H22H22 where H22 is an n xn matrix we find

that

ng

€)] etr(- ') = etr{ 2(I+f38 )Hzi—éz}

and

K
®201 B 2, I- . {J@L
(10) 0F1( 25 Z“M'W) = OFl( 75 3o [P L 1V 5 ]ﬁﬁz) .

The jacobian of the transformation (S5,W) -+ (E,F} is

(11) 2®|dec E[™ 1 (£, -£)

i<j

(as in equation (22) of LIML: I). We deduce from (8)-(11) that

2 etr{—-—(I+BB')II22 22}

m(T-X,)/2 K

2 ()
m m\ 2

1 (T—Kl-m-l)/Z
-etr(- EE'E)[det(E'E)] |det E|

(12) pdif(E,F) =

w2

(Kz-m-l)/2
[det (I~F)] T (f
i<j

«(det F)(T'K'm"l)/2 1 -fj)

2, Ig . . B' |+
oF1 ( 55 7 T,,[8 :I]E (I—F)E[ T ]”22) .



We now introduce the same partition of E that is used in LIML: T (see

equation (32)) and again employ the notation BLIML =r :
1 n
. "
e e
S et O
| B2t | Ep

We also partition F conformably as

£, 10 ‘
F = — ——
[ it

where F2 = diag(fz, f3, ...,fm) » With this notation the argument of

the 0F1 function in (12) becomes

(13) (T/4)Ty, [(1 -£,) (ey18 +e),) (e, 18" +ej,)

typt - 1y 1!
+ (T+Br")E) (1 -F,)E,,(I+x8") T}, .

Using the series representation of 0F1 in zonal polynomials (Constantine

(1963)) and the multinomial expansion of a zonal polynomial of a sum of

matrices in terms of invariant polynomials of several matrix arguments

(Davis (1980, 1981) and Chikuse (1980)) we deduce that

K

2, I . ' @_' '
(14) OFl( 5 30,8 L IE (I—F)E[—x—]ﬁiz)
- aele)
= i 1 —_.._.. @ Ji2 _?;_ n ' t AT
- fzof! é R\ gl Jitdp! e (A(I“fl)nzz(3113+312)("'11S e12)M50s
(_Z')w (wes[2])

T_,_. —
Zﬂ22(1+8r')EéZ(I_FZ)E22(1+rB')H52) .

In this expression, § represents an ordered partition of f = jl + j2

into at most n (hereafter < n ) parts and J[2] = (Jl, JZ) where Ji



represents an ordered partition of the nonnegative integer (i=1, 2)

Iy
into < n parts., The notation ¢ € J[2] relates the two sets of par-

titions and is explained in Davis (1980, 1981). Cé[z]

nomial in the elements of the two matrices X and Y which is invariant

(X,Y) 1is a poly-

under the simultaneous transformation X + H'XH and Y - H'YH for any
orthogonal matrix H . These invariant polynomials in two matrix argu-

ments are developed and tabulated to low orders by Davis (1980). The

constants 83[2} that appear in (14) are given by
J[2] _ J[2]
(15) e@ Cw (I,I)/Cw(l)

(Davis (1980), equation (5.1)).

Noting that det E = (det E22)(e11 r) we transform

12

E =+ (e and find the density:

11° €120 T» Epp)

(e )
2 11 12 12
etr{ 2(I+BB )]I22 22}6

(16) pdf(e;,e,,,r,E),,F) = w(T-K )12 Kn 7o
2 NEIACS
m\ 2/ m\ 2
(T-K;-m-1)/2+1 T-K,-m
. —at!
etr{ 2(I+rr )E22 22}[det(E22E22)} e11 €1,
(K,-m-1)/2
v(det F){TRm1Y2 0000 1oy 2 T (£,
j
1<]
J[21 .
oo 3] J]_
) 1 Z TJET_“{l“f )
£=0 é (Eg) sfa7 ittt
2 ® (WeJ[2])

i[zl(a 220011 8%ey5) (2118410 55, %ﬁzz(l+5r')Eiz(I'Fz)E22(1+TB')ﬁ52) '

We transform E_ ., > H'E =D where H 1is an orthogonal matrix

22 22 22

and then integrate over the orthogonal group, O(n) , normalized so that



the measure over the whole group is unity. In performing this step we

utilize the following integral, where (dH) denotes the normalized in-

variant measure on O{n)

(17) J >} (a'H"xHA, B) (4B) = ¢} (a'a,BIC, (X)/C (D)
0(n)

(Davis (1980}, equation (5.13)). We find

(18) pdf(ell’eIZ’r’DZZ’F)

22 22

m(T—K )/2 —M K
1 2 T-K
2 rm(T)rm(T)

. _— ¥ t
etr{ (I+rr )D22 22}Idet(D22D

1, 2
~=(el +el.e..)
etr{ T 148"y T } 2V°11 712712

{T~K,-m+1)/2 T-K, -m
)] . le,,-e! r| 1
22 11 "12

(Kz—m—l)/Z
[det (I-F) ] I (£,-£,)
1< 13

(et ) (TK-m=1)/2

eJ[2] jl
) 1 Z 'TSET——(lﬁf )
® (Eg) gz 311t
2 © (w32

12 i \
(4 22(e118+e ) (ep 18" +e] DT} ) 7T, ) (T4 ') Dy D 20 (T+r8 T’ )CJz(I F)/¢y (1

The next step is to integrate F out of (18). The required integral

is:
R e (K —m—l)/z
an | (1~£) tedet 1) TE™D /2 gee (1)) 2 5, (I=Fy) T (£,-£aF
0<F<I J2 i<j
First we transform F2 - fé by defining F2 = flﬁb . The jacobian is

fg and (19) becomes



1 (K,-m-1)/2+j
(20 J fT(T-K)IZ-l(l_fl) 2 1

0 0<F2<I

- K—m— _ _ (R,-m-1)/2
- (det FZ)(T K-m 1)/2det(I-F2)[det(I-lez)] 2
«C_ (I-f,F,)) 1 (f,-f,)dF.df

3,002 2¢i<; i 2%+

where fé = diag(? . ...,?ﬁ) and f2 > f3 - P fm . We write out

the expansions:

(Kznm-l)/Z )

(21)  [det(I-£,F,)]

where the summation over j3 is finite if K2 -m~1 1s even and infinite

otherwise, and where 33 is an ordered partition of j3 with < n parts;

and

P I
(22) ¢, (1-£.F) =c_ (1) } Z( 2)0 (-£.F,)/C. (1)
3,012 1, 3,50 3, 3,/73, 12,
J

where J4 is a partition of j4 with < n parts and (J

2) denotes
4

the generalized binomial coefficient introduced by Constantine (1966).

The product formula

2
- - 34 334, 309, -
(23) c, (£,F)C, (-£,F,)) = (-1) f ) (e ) c. (F.)
312N, 1 (3463543, J 3g 2

(Davis (1980), equation (5.10)) enables us to write (20) in the form
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(-K2+m+1)

2 ] .

J, "2 J j

(26) ¢; (D) ] Z-———3~T—~41 ) Z(Jz)(-l) 4
2 3, 7, 3 3,70 3,4

2
( JB,J4)
®;
(I €353 T
1 m(T-K)/2+j +j,-1 (K,-m—1)/2+3
-J £, 374 (1-£,) 2 Lis

0 1

- (T-K-m-1)/2 = = T = \a=
. <I (det F,) [det(I-F, )1C. (F,) I (f,-f,)dF,/C_ (I)
0<F2<I 2 2 J5 2 i< 1] 2 J4

To evaluate the integral over F2 we note that

1 T (a,])T_(b)
a~(n+1)/2 b-(n+l)/2 _ TnT? n
(25) J (det R) [det(I-R)] C;(R)dR = I_(a¥h,)

C_(I)
0 J

where the integration is over all positive definite R for which

0 <R<I (Constantine (1963), Theorem 3). In (25)

1

Zn(n-l) n 1

(26) rn(a,J) = q i (a-+ji_-§{i-1))
1l

i=
for the partition J = (jl, jZ’ ...,jn) « Following the approach used
in LIML: I (equations (25)-(28)), we deduce from (25) a corresponding

integral in terms of the latent roots (r, > ... > rn) of R :

1

I
27) J a a—(n+1)/2(n(l_r ))b—(n+l)IZC

) (R) I (r,~r. )1 dr,
0i i i i J i<j 173 i +
n
i} Tn(a,J)Fn(b)CJ(I)Tn(E)
5 .
Tn(a+b,J)wn /2

This integral may now be used to reduce (24), leading in fact to



We transform D

(30) d

2 3 2
(28) CJZ(I)'Z J——— ] Z( 2)(—1) )

_3 3’ 4
3ql L J )
Jg 33 3 j4 0 J4 4 (J €J 'JA)
T-K K m1
'B(m—-—2—+33+j4, —2-——2-—+31+l)

= cjzcl)wn(al, 3,) , say.

From this expression and (18) we deduce

(e )/2
etr{ (I+BB')H22 22}6 11 12 ‘12
- w(T-K, )/ 2-m (K
r

1 2\.. (T=k
2 L)

(T—Kl-m+l)/2 T—Kl-m
. t . |
etr{ 2(I+rr )D22 22}[det(D22 22)] €51 e ot

J[Z}

S 1
[

E _te“—'_w (J 2 J )
(_K_Z) T2 jl!_'jz' n-1*"2
2 w(weJ[Z])

© (4 Myp(eyyBery) (g B 4e 05007 4 Ty, (I+81')D},D 22(I+r3')nﬁz)

99 (H,D) , where H 1is orthogonal and D = (D 22 22)

0o = HD . The measure changes
according to (see equation (34) of LIML: I)

according to the unique decomposition D

D,, = 27 (det D)"lfde(dH)

1/2

11



12

where (dH) is the invariant measure on 0(n) . Hence, by integrating

over H and using (James (1954))

o n2/2
(31) vol[0(n)] = j (dH) = =T .
0(n) rt3

we obtain

(32) pdf (611’312 » T, D)

2
2 -(el,+tel e )/2
nn/2 _T nwer T 117712712
] 2T etr{ 2(I+BB )szﬂzz}e
m(T—Kl)IZ-m+2n K
I‘(
m

: =l 5)3)

(T-K

1 ' 1—m)/2 ' TﬂKl—m
-etr[- E{I+rr )D](det D) ell~e12r|
. eJ[2]
P .
oé(x_z) shy TEEatn
2 w(QEJIZJ)

f

ne~18

. J[2] I— 3] E— LR |
% (4”22(3113+312)(‘3113'+ei2)nzz’z.“22(1+5r')D(I+rB )“22)

where the additional factor (1/2") arises because of the original sign

restriction on the final column of E22 which is now relaxed. To inte-

grate out D we use the following result (where x is an n x1 vector

and X is an nxXn matrix):

(T-K,=m)/2 J,,J
Gy | etr{-'%(1+rr')D}(det Dy 1 c(pl Z(xx', XDX')dD
D>0

T-K ’ -
= Fn(—hfi, Jz)[det{%(1+rr') Cq)l 2(xx', 2X(I4rr") lX')
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which can be deduced from Davis (1980), equation (5.14). 1In (33) the

explicit notation Jl’ J2 replaces J[2] in (32). Additionally, since

xx' has only one nonzero latent root, the right side of (33) may be

written in the form

n(T-K,)/2 ,T-K ~(T-K,)/2 [3,],J
(34) 2t rn( 1 1 1

5 JZ)[det(I+rr')] qp (xx',ZX(I+rr')—lX')

where [jl] denotes the partition of j1 with leading part j i.e.

1l
{jl, 0, vv.5 0} . We now deduce

(35) pdf(ell.elz,r)

n2/2

2
_ ~(e ., +el e . )/2
T etr{ (I+BB yI! } 117712712

22 22

(T-¥,)/2-1 /K (T-K,)/2
2 1 rm(—zi)rm(T K){det(l—i—rr )] L

[i,1,J
T-Kl—m o & 1 2

-le -a! r| Z 1 Z @ ( J )]“ (E(.:.l:. J
117%12 £20 0 /%2 50y Ay “ntd1ee 2 V2
—in 1*v2
\2) )
¥ (t.rfjl J2)

[J 1,3, —
@ ! (4 22(e 18+eq 2)(e118'+e Z)HZZ’ 2 22(I+Br ) (T+rr') (I+r8')H52) .

Henceforth, we assume T-—Kl -m to be an even integer (as in LIML: I},

facilitating the reduction of (35). In particular, let T-—Kl -m = 2k

for some integer k . Define g’ and a' = (1, r') . To

= 1
(ell, e12)

reduce (35) we need to evaluate the integral

. [J 1,J - "
(36) Je 4 q/2(a'q)2k w 2(T 1,,[8:1]qq’ [B ]ﬁ'z’z Ty, (I+8r") (I+rr’ ] (I+r8 )H )d

where the integral is over 0 < q, <®, "= <q <=, (1 #m) . We

first rewrite (a'q)2k in the form
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(37) (a'9)™ = ¢\ (aa'aq") |

The argument matrix in this zonal polynomial is mxm . To multiply the
polynomials that arise in the integrand of (36) it is convenient to write

(38) ¢ (xx',B) = C

@ *=*"'E'. ,E, .BE!

[0]_ () g®="E} 4, E; gBE] )

where EiO = [In . 0] is an nxm matrix and the notation | ]n sig-
nifies that the ordered partitions retain < n non-zero parts while the
argument matrices are now mx*m (m = n+l) . We use the following repre-
sentation of a product of polynomials with multiple argument matrices

that is due to Chikuse (1980), equation (3.11):

[4,1513,1 B
| I Ed . ' _.'_ vt
(39) Cpyy(aa’aq )C[w]n 2107228 1]ag [ I}iZZElo’

(1+sr')(1+rr')'1(1+rs')ﬁ‘ E! )

T —_—
3E10M)2 22%10

kyJysdosb Ky Jpado59

Yi % C[k](I)C[w]n(I)/Cw(I)}

VETK]- [31+ 10, {
n

3, 03,1, 13,1 .
T o= . _,
Cy aa'qq"ZE10H22[B:I]qq'[fflnizElo’

(148r ") (T+rr ') "L (T4r8 )T E! )

T J—
§E10n22 22710

where the indexed constants Y and o are defined by Chikuse (1980) in
her equations (3.1) and (3.13).

To evaluate (36) we transform q - H'q = p for H orthogonal
and integrate over the orthogonal group, normalized so that the measure

over the whole group is unity. From Chikuse (1980) equation (3.12) we
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deduce that

[k]’[jl]’[JZ]
B!
(40) C aa'Hpp'H', [B: I]pr H[ ]_. .
o(m) Y 4 10 22 22 10
2 lO 22(I+Br Y(I+rr? ) (I+TB )H22 10)(dH)

ksjlr‘]z;d) 9 [len

T -
= Y C ', EE it 2(I+Br')(1+rr') (I+rB 1! )
ek (3, ¥ 102 22510

[k],[3,] ' _
“C,_ 1 (aa , Z[B ]Hézﬂzz[B I]) .

We transform p > H'p = w for H orthogonal and note that

o, [J,]
2°n
T T 1
(41) o(m)cw HWW'H"§E10H22(I+Br Y(I+rr')” (I+r8 )II22 10)(dH)
a,[J,]
24 T —
= Cw (I, §E10H22(I+Br')(1+rr') (I+rB')Héino)CU(ww')/CO(I)
U.[J?_]
k+i; ew cw(x)

I
<

S
~

-1 Tt

where the integral is evaluated using equation (5.13) of Davis (1980)
and the final line follows from equation (5.2) ibidem.
The manipulations from (37) to (41) separate the variables that

enter the argument matrices of the polynomials in the integrand of (36).

They leave us with the integral

k+j
(42) 2—1J -w w/2( ) law
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where the factor 1/2 arises because we take the domain of integration
in (42) to be unrestricted (i.e. =« < LA < w ) while that of q in
{(36) satisfies the restriction 0 < q, <> - The integral (42) may be
evaluated by the same argument as that given in LIML: I (equation (41)ff).

We find that (42) equals

m/ 244§, -1
(43) 2 1 wmlzr(%-+k-+jl)/r(%) .

From (35), (39), (40), (41) and (43) we deduce the following general

form for the joint density of BLIML :

ﬂ(nm+1)/2etr{— +(I+RB" )H22 22}

r(%)rn(%)rm(fé)rm(T K)(1+r' )(T_Kl)/2

iy 31,9

2 16Lp 172 T-K, T-K,
L 3 v (jl’JZ)P( 2 +jl)rn( 7 Jz)
(_Z) [4,1,3, 1
SCRCITREE

(44) pdf(r) =

I~18

=0 ¢
2)
{ k’jl’JZ;w ksjanziw

) Y o Cr, . (I)C (I
VLK 1310 13,] - ® (] Tel, )

Ky ,Jdo3v [k1,[3,] -
Y5 v Co . (aa"'%[é ] 2212285 I])

GEEkJ-Ijll

v [J ]
-{ew /c (I)C[JZ] (I)} 2(2 22(I+Br')(1+rr )~ (I+rB')H52)

where

=(T-ﬁme2; and a'= (1, 1") .
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4. THE LEADING CASE

When H22 = 0 each term in the series (44) 1s zero with the ex-
ception of the leading term, for which f = jl = j2 = 0 . The general

expression for the joint density reduces after some simplification to:

T=-K T-K
nm/ 2 1 1
. r(_ i )rn( z)mn(0,0) o'y

K _ (T-K;)/2 ¢, ;(I)
r(%) Fn(%)rm(_iz—) rm(-T—zE) (1+r'r) 1 [k]

(45) pdf(r)

Now

(T—Kl)/Z-mIZ

(46) (a'a)® = (1+r'r)
and

2% . [m n T-K

2 k!(f)k (E)k ﬁl/zf( 21)
(47) ¢

k1P = TEor - @_)k = r(%)p(z__;_l_%) .

We deduce that

T-K.\ ,T-K
1Tnm/2 Fn(—"fl)r(_Tfl"%)w (0,0) 1

(48) pdf(r) = 2 S s
Fn(%)Tm(ﬁg)Tm(T;K)(l+r'r)(n+1)/2 (14r'r)

Thus, B8 has a multivariate Cauchy distribution in this leading

LIML
case as shown by direct methods in LIML: I.
The reduction of the constant coefficient in (48) presents some

difficulties when n > 1 in view of the multiple series expression

for mn(0,0) , viz from (28):
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(-K2+m+1)
2
2 J K
_.—n" /2 (m n 3. T-K . 2 n
I3 73
r (’r_-u J)
'n 2 3 c. ()
T-K+4n J
I'n—"-'z—+l, J3 3

When n =1 direct evaluation of the series can be achieved as follows:

-K,+3

1\(T-K 1 ( 2 )
r(z)r(—-)r —-—) i
(50) “’1(0'0)=“_1/2 2 (2 2 ) I3

IK_3
2 "2
I3
) ('K2+3) (1-X) (Lf;lf:_l)
7oK _l _E__l ) j 2 2/,
_ T( 7 z)r(z 2)”“{) >3 - =
K 3! K
T-K _ 3 2 _1)] 3 Z-2) (5E+2
r(——z +3 I‘(T K +— 2) 3 (T K+3 2).(2 2)
K
T-K 1 2 1
=r(—-§-——E)I‘(-—2—-2)T(T-K) o (g IK_1 K+ ki3 T2 1
72 T2z 7 2 2

The series is well poised (see, for example, Rainville (1963) page

352
92) and therefore sums to:
K K
1‘(?-;—15 +1)I‘(%—I-(- +—3—)r(’r -K +72—% r(—zg-)
{51) .

T-X T-K
T (T-K+1) T(-:%)F(—zl -%)T'(—-—E'J—')




We deduce that

-k _1).(%2 1 -k _3\.(2
Ll o il ) i
(52) 0,00 = N2 _2\7 2 2 "2)\7)

T-K
T-K 3 3 1 1 1
T (—-—-2 +§) r(T-K+1) T(—i‘)l’(—'——z - -?:) T(——"z )

It now follows from (48) and (52) that when n =1

K K
T-K 1 2 2
111‘(— -—)r -2 )I’(T-K) r(—+1) (
(53) pdf(r) = ——2 2/ \2 2 2) .

K
(1/2)wr2(7§ rz(T K)F(T _K+1) (14r2)
Note that
K K K
2 172 (™2 2 1
Tz(z) " T(T)T(Tf)
T— 1/2_{T-K\./T-K 1
I‘z(z)- T(?)F(T"z')
soc that

2r(m-1<)r(-%E 1)

pdf(r) =
nT(T—K+1)T( )(1+ )

Finally, using the duplication formula for T(z) we deduce that

T(T-K) _1
P(T-K+1) ’
Hence,
1
pdf(r) = —
7 {1+r”)
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the univariate Cauchy distribution which we obtained by other means in

LIML: I.
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5. FINAL REMARKS

The exact theory for the LIML estimator developed in this paper
has application beyond the realm of the simultaneous equations model.
There is a well known formal mathematical equivalence between the model
studied here and the linear functional relationship in mathematical
statistics. This equivalence has been explored in detail by Anderson,
who applied the distribution theory for the LIML estimator (in the two
endogenous variable case) within the setting of a linear functional re-
lationship involving only two variables. Upon appropriate symbolic
translation our distribution theory for the LIML estimator in the general
case may be applied directly to the maximum likelihood estimator in the
multivariate linear functional relationship. Thus, our results generalize
the presently known exact theory in the latter setting as well as the
simultaneous equations model.

The numerical implementation of the general expression for the
joint density (44) is hampered by computational difficulties at present.
First, multiple series involving matrix argument polynomials like (44)
are often very slow to converge, particularly when the argument matrices
have some large latent roots. Second, available tabulations of the
polynomials and constants that appear in (44) are currently limited to
low orders (involving only single digits in most cases); and algorithms
for their generation are only in the incipient stages of development.

(A recent discussion of these issues has been given by the author else-
where (1983b).) Computational work with the series (44) in its general
form must therefore await improvements in technology which enhance compu~

tational speed and the development of general purpose software for the
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algorithmic generation of the required polynomials and constants. In
the meantime, these practical shortcomings of the general exact theory
increase the present value of the leading case analyses developed in
LIML: T and the refinements of asymptotic theory derived by Anderson

(1974) and others.
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