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0. ABSTRACT

It is shown that the exact finite sample
distribution of the limited information maximum
likelihood (LIML) estimator in a general and
leading single equation case is multivariate
Cauchy. When the LIML estimator utilizes a
known error covariance matrix (LIMLK) it is
proved that the same Cauchy distribution still
applies. The corresponding result for the in-
strumental variable (IV) estimator is a form of
multivariate t density where the degrees of
freedom depend on the number of instruments,

*The referees made helpful comments on the earlier version of this paper
and, in particular, drew my attention to a deficiency in part of the
original argument. My thanks, therefore, go first to them, then to Glena
Ames for her skill and effort in typing the manuscript of this paper and,
finally, to the NSF for support under Grant Number SES 80007571.



1. INTRODUCTION

Improvements in the algebraic machinery of multivariate analysis.
have recently led to many advancements in our understanding of the finite
sample properties of statistical methods in econometrics, particularly
with regard to the simultaneous equations model. Modern multivariate
methods provide a convenient stepping stone to the solution of exact sampling
distribution problems through manageable algebraic representations of the
joint density functions of the matrices of sample moments upon which most
commont econometric estimators depend. These matrix variates have, in
general, noncentral multivariate distributions whose algebrailc forms and
properties have been intensively studied in mathematical statistics. Some
of the most important contributions in this area have been made by Herz
(1955), Constantine (1963), James (1954, 1960, 1964) and Davis (1980a, 1980b).
All of these contributions have substantially facilitated the development
of econometric small sample theory in recent years. A detailed account of
the theoretical developments have taken place in econometrics, largely in
conjunction with this analytic progress in multivariate methods, may be
found in Mariano (1982) and Phillips (1980a, 1982a).

The purpose of the present paper is to focus on a simplified class
of problems within the simultaneous equations setting where standard methods
of multivariate analysis allow us to extract the exact distributions of
econometric estimators with relative ease. Carefully chosen simplifica-
tions often enable us to work with central rather than noncentral distribu-
tions, thereby facilitating analytic derivations without sacrificing
important elements of generality. The special models and leading cases

we consider are discussed in Section 2 of the paper. Section 3 examines



the distribution of the IV estimator and Section 4 does the same for LIMLK,
both for a leading case with an arbitrary number of included endogenous
variables. The exact distribution of the LIML estimator is derived in
Section 5 for the same leading case. The results are discussed in Section
6. A sequel to the paper (Phillips (1983)) gives the exact finite sample

density of LIML in full generality using noncentral multivariate methods.

2, _SPECIAL MODELS AND LEADING CASES

We will work with the structural equation

(1) ¥y = YZB + Zly + u

where yl(T x1) and YZ(T'xn) are an observation vector and observation

matrix, respectively, of n+l included endogenous variables, zl is a

T x Kl matrix of included exogenous varisbles, and u 1is a random distur-

bance vector. The reduced form of (1) is given by

ﬂll I

"1 Ta2

12

(2) [y, :Y,] = (2, 12,] + v iV, =zn 4V,

where Z, is a T x K, matrix of exogenous variables excluded from (1).
The rows of the reduced form disturbance matrix V are assumed to be in-
dependent, identically distributed, normal random vectors. We assume that
the usual standardizing transformations (see Phillips (1982a)) have been
carried out so that the covariance matrix of each row of V is the identity

patrix and T 1

Z'Z = I, where K= K; + K, . We also assume that K, > n
so that the necesgsary order conditions for (1) to be identified are satisfied.

There are two speclal categories of models such as (1) and (2) in



which the exact density functions of the common single equation estimators
of B in (1) can be extracted with relative ease. 1In the first category
are the just identified structural models in which the usual consistent

estimators all reduce to indirect least squares and take the form
(3) By o = 12371 22y ]
ILS 2%2 2%y

of a matrix ratio of normal variates. In the two endogenous variable case
(where n =1 ), this reduces to a simple ratio of normal variates whose
probability density function (p.d.f.) was first derived by Fieiller (1932)

and takes the following form here (see Mariano and McDonald (1979))

2
2
exp{- L1 +8 )} 2 2
(4) pdf(r) = 2 5 11:'1 1, %_; UT Qa +31'2)
m(l+17) 141

where u2 = Tnéznzz is the scalar concentration parameter. In the general
case of n+l included endogenous variables the density (4) is replaced by
a multivariate analogue in which the 1F1 function has a matrix argument
(see Sargan (1976) and Phillips (1980b)).

The category of estimators that take the generic form of a matrix
ratio of normal variates, as in (3), also includes the general IV estimator
in the overidentified case provided the instruments are non-stochastic,
that is, if BIv - [w'YZ]-llw'yll and the matrix W is non-stochastic,
as distinct from its usual stochastic form in the case of estimators like
25LS in overidentified equations. This latter case has been discussed
by Mariano (1977). A further application of matrix ratios of normal var-
iates, related to (3), occurs in random coefficient models where the reduced

form errors are a matrix quotient of the form Afla where both a and



the columns of A are normally distributed. Existing theoretical work

in this area has proceeded essentially under the hypothesis that det A

is non-random (see Kelejian (1974)) and can be generalized by extending
(4) to the multivariate case in much the same way as the exact distribution
theory for the IV estimator in the n+l endogenous variable case,

The second category of special models that facilitate the develop-
ment of an exact distribution theory are often described as leading cases
of the fully parameterized simultaneous equations model. In these leading
cases, certain of the critical parameters are set equal to zero and the
distribution theory is developed under this null hypothesis. 1In the most
typical case, this hypothesis prescribes a specialized reduced form which
ensures that the sample moments of the data on which the estimator depends
have central rather than (as is typically the case) noncentral distribu-
tions. The adjective "leading" is used advisedly since the distributions
that arise from this analysis typically provide the leading term in the
muitiple series representation of the true density that applies when the
null hypothesis itself no longer holds. As such the leading term provides
important information about the shape of the distribution by defining a
primitive member of the class to which the true density belongs in a more
general setting.

It is with such leading cases that the present paper 1s concerned.
We will consider, in particular, the leading subcase of (1) and (2) in which

N,. = 0 . Under this hypothesis the reduced form (2) becomes

22

2') [Yl EY2] = 21['"11 . 1112] + [V1 Evz} .



3. THE IV ESTIMATOR

Statistical analysis of the leading case arising from (2') can be

simply illustrated in terms of the IV estimator of B :

= 1 ' T 1
(5) BIV [Y223Z_.'3Y2] [Y223Z3yl]

where 23(T xK3) is a submatrix of Z, forming instruments additional

3
to Zl and where it is assumed that K3 >n , This is the representation
of the IV estimator given in equation (3) of Phillips (1980b). We note that

-1/2

the conditional distribution of (T_;YéZBZéYz) (‘1‘_1

t 1
Y22323y1) given

zZ'y, 4is N(O, In) . This is independent of ZéY and is also, therefore,

372
the unconditional distribution. Further, T-1

2

[ ] T
Y22323Y2 has a central

Wishart distribution of order n with degrees of freedom K3 and covariance

matrix In . We may therefore write BIV in the form

[(T’ly'z 'Y )-1,2][(T'1Y'z yAR'S )_1/2(1“'1*1'2 ALY
2°3%3%2 2“3%3%2 2°3°3%1

6 By

-1/

2
W, (X5, 1017 "%N00, 1))

so that B is proportional to a multivariate t variate (see, for

1v
example, Dickey (1967)). The p.d.f. of BIV is therefore given by

r 53:3 r L+n+l]
2 i
(7) Pdf(t) = =
“nlzf‘[l(:i-nﬂ " (1+r'r)(1< +1)/2  n/2, [%J (14r' ) (L0H1)/2
2

wherg L = K3-n_4is the number of surplus instruments used in the esti-

mation of B .



The density (7) specializes to the case of two stage least squares
for K3 =K, (wvhere the result was given by Basmann (1974)) and to the
case of ordinary least squares for K3 = T--K1 (where the result was given
by Wegge (1971)). As shown in Phillips (1980b), (7) is in fact the leading
term in the multiple series representation of the exact density of BIV
in the general single equation case where sz is not necessarily the
zero matrix. Moreover, the leading marginal densities can be readily de-
duced from (7) (see Phillips (1982b)) and standard properties of the
multivariate t confirm that integer moments exist up to the order L

({.e. the number of surplus instruments).

4, THE DISTRIBUTION OF LIMLK

In the overidentified case (K2 > n+l) , the LIML estimator,

Bipg » ©f B minimizes the ratio BAWBA/BESBA where Bi = (1, -8') ,

W= X'(PZ -P_ )X, §= X'(I~—PZ)X and where X = [yl :Y2] and

Z

PA = A(A'A)-lA‘ . When the covariance matrix of the rows of X is known,

the corresponding estimator is called LIMLK (see, for example, Anderson
(1982)) and it will be denoted here by Buppg + Since the model is already

in canonical form, 8 minimizes the ratio BAWBA/BABA and satisfies

LIMLK

the system

(8) (_W--Aml)sA =0

where BA = ( is the latent vector associated with the smallest

]
a1 Ba2?
latent root A of W . This yields the estimator Bypqy = _BAZ/BAI

by normalization. In the just identified case (K, =n) , both LIML and

LIMLK reduce to indirect least squares since the reduced form (2) is



unrestricted; and the analysis of the preceding section applies.

Under the null hypothesis that I, =0 1in (2), W has a central

22

Wishart distribution WE(KZ’ I) , where m = n+l < K with density

2 L]

—mK2/2 K, -1 (R,~m-1)/2
(9) pdf (W) = 2 Pm'TT etr[ %W)(det W) .

In order to extract the exact distribution of B we introduce

LIMLK
the orthogonal transformation H by which W 1is diagonalized so that

H'WH = A = diag(kl, ...,km) . This transformation is unique if we specify
that Al > A5 > ... > A and that the elements in the first row of H

are positive. (The latter eliminates the possibility of multiplying columns
of H by =l1.) From (9) we can deduce the joint distribution of (A,H) .

It is most convenient to work with the probability element pdf(W)dw .

Under the transformation W -+ (A,H)} we have

pdf (A,H)dA(dH) = pdf (W)dW
m
(10) = pdf (W) I (Ai—J\j)( I dx,)(dH)
i<j i=1
-k, /2[" (K, -1 1 :}::1 m (Kpm)/2
(11) = 2 T |- expl=3 ) A, (C T A
m| 2 2i=1 i {=1 i
m
o (A, =2)( 0 d)x,)(dH) .
1< * ¥y 1

Line (10) involves the jacobian of the transformation and is given, for
example, in Constantine (1963, equation (43), p. 1280). (dH) 4is the
invariant measure on the orthogonal group O(m) (the group of orthogonal

m Xm matrices) that is normalized so that the measure over the whole group



{restricted so that hlj >0 ) is unity. The distribution of H 1s called

the conditional Haar invariant distribution (see Anderson (1958, p. 322)).
We see from (11) that H 3is distributed independently of the latent roots
that form the diagonal elements of A , a result obtained by Anderson (1951).

To find the distribution of B8 we concentrate on the final

LIMLK
column of H . We write this m-vector h , say, in partitioned form as
h' = (hl, h)) . The invariant distribution of H implies an invariant

2 T
1 + h2h2 =]
. The latter is the unit sphere in (n+l)-dimensional

measure for h over the Stiefel manifold defined by h'h = h
and denoted by Vl,m

Euclidean space and the invariant measure on this manifold is given by the

exterior differential form

n
(12) (dh) = A b'dh
j=1 7

(see equation (5.1) of James (1954)) where bl’ bz, ey bn are orthogonal

column vectors all of which are orthogonal to h and A denotes the wedge

product. Using the parameterization of the manifold in which hl = (.‘L-—h'zh?_)ll2

and restricting the region so that hl-> 0 , the invariant measure (12)

can be written in the alternative form

kdh2

1

(see Farrell (1976}, equations (7.7.3-4)) where the constant k i1s selected

80 that the measure over the restricted (h1 > 0) region of the unit sphere

is unity. Since the measure over the entire unit sphere in lin

202 o)

is
» that is the surface area of the sphere (see James (1954)

equation (5.9)), the normalizing constant in the invariant measure (13)



over the restricted region is (ignoring questions of sign in (13) since

we are working with a positive probability measure):

(14) k = “—(n+1)/2r[§%;} .

We now renormalize the latent vector h to yield the LIMLK estimator.

Setting BLIMLK =r , we find that this involves the transformation

/2 1/2

h, + -/ (L4 )t

with h, = (1 -h'h,) = (1+1:'r)1/2 . Taking differ-

2 1 272

entials we deduce that

dh2 = -(1+r'r)-1/2[1+rr'}-1dr

and the modulus of the jacobian of the transformation is (1+r':.')-(n+2)/2 .

Thus, the invariant measure (13) defined over the appropriately restricted

region (for which hl >0 ) of the unit sphere in Bp+l transforms as

follows:

n+l
{—E—]dr

(dh) = .
“(n+1)/2(1+r.r)(n+1)]2

The p.d.f. of BLIMLK_then takes the form

,

n+l
rizs)

{14r'r)

(15) pdf(r) =

Lt 1)]2 (n+1)/2 *

that is, a multivariate Cauchy digtrjibution.

In the two endogenous variable case (n = 1), (15) reduces to the
univariate Cauchy. It is an interesting exercise (that is left for the
reader) to verify that this distribution provides the leading term In the

multiple series representation of the exact density given by Marianoc and

McDonald (1979).
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It is instructive to illustrate the workings of the argument leading

to (15) in the restricted setting where n =1 .

mation H can be given the explicit form:

There is only

Note that the

defined to conform with the condition that hi

]

one

1

cos @ —sin ©
sin @ cos 6
-sin © cos &
cos 6 sin §

free variable,

» 5 28 < 2n
y 52020

e,

The orthogonal transfor-

in this representation of H .

domain of © 4is restricted and the form of H = (hij) is

i

> 0 and to allow a full

range of values for the ratio h22/h12 . The invariant measure (12), nor-

malized and signed so that the measure over the manifold is unity, is

(dh) =

We deduce that

B

and the density of B8

pdf(r) =

LIMLK

[%J(—sin e,

~h,,/hyy =

is:
LIMLK -

1

i

-1
= [r(1 +r2]

L]

[— %}(cos e, sin 6)[*coS 4

-sin 6

-sin 8
cos 6

cos 6)[

|
Jo

cos 6 _

sin § cot 6 ,

_ sin 0 = —tan 6
cos ©

d -1
= E;(cot (r))| », T <0

= dir(-tan'l(r))l , T>0

-0 < T < ™,

1
T

= 24
m

ds = —do

]

]

S <8<
- %-5_6 <0.
< 2n
£6<0



This specializes (15) to the univariate case.

5. THE DISTRIBUTICN OF LIML

The LIML estimator satisfies the system

(16) (W-—AS)BA = 0
where ) 1is the smallest latent root of the matrix s'llzws'llz .
lation of (16) shows that BA also satisfies
(17) [5 —f(W+S)]BA = 0

-1 -1/2 -
where £ = (1+)) is the largest latent root of (W4S) S (W+S)

Let the m = n+l roots of the equation

(18) det[S —f(W+5)] = 0

be ordered fl > f2

11

Manipu-

1/2

> iee ? fm > 0 (the probability of equal roots being

zero) and assembled in the matrix F = diag(fl, £,, ...,fm) . Let the

corresponding vectors 84 satisfying

(19) [s —fi(W+S)]gi =0

be normalized by

¥ _
gi(,W+S)g:L =1

and assembled into the matrix G = [gl, ...,gm] . It follows that

20) G'(WS)G = T
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1

(see, for example, Anderson (1958, p. 309). We now define E = G = and

consider the transformation {(S,W) - (E,F) arising from the equations
{21) S=E'FE, We=E'(I-F)E .

This transformation 1s one to one if we impose a unique sign on a particular

column of E = (e,,) . Let us take the final column and set e,

ij i,n+l 20

for all 1 . This requirement removes the indeterminacy in G associated
with the fact that columns of G can be multiplied by -1 without disturbing
the validity of (19) and (20).

The transformation (21) is discussed at length by Anderson (1958,

pp. 310-313) where it is shown that the jacoblan is

(22) 2®|det E[™ 1 (£, -f

)
i<j3 3

Under the null hypothesis that In,, =0 in (2), W and S have independent

22
central Wishart distributions WE(KZ’ I) and Wh(T-K,I) respectively,

with joint p.d.f.

(K,-m=1)/2
etr [- %—(W+S)](det W) 2 (det s)(T‘K'“"l)/2

(23) pdf (W,S) = TR .
=

2 2

We deduce that

(T-K.)/2-(m+1)

etr[- %E‘E](det E'E) 1 |det E|m+2
(24) pdf (E,F) =
2m(T—K1) /2-mr [K—Z}r [T_—lg]
m{2{m{ 2
(K,-m~1)/2
vdet ) TK2D/20400 (1-7)) 2 T (£, -£,) -

1<j



In order to integrate out F we will use the multivariate beta integral

Tm(a)rm(b)

a-(m+1)/2 .
Tm(a+b) ’

(det(1-R))P~(mH1}/2

(25) f;(det R) dR = a, b > (m-1)/2
(see, for example, Tan (1969)). Let H be an orthogonal matrix for which
H'RH = diag(rl, Ty, ...,rm) . To ensure the transformation is unique we

we order the roots as T, > T, > e ? L and specify the first element

in each column of H to be positive. Under this transformation, as in

(10) above, we have

(26) dR = T (ri-r

)Hdri(dH)
i<j

h|
where (dH) is the invariant measure over the orthogonal group or, strictly
speaking, thatpart of which is defined by the stated restriction on H . We know that
m m2/2

@27 [ (am) = 2=

0(m) I‘m 7

(James (1954)) so that taking the fraction 1/2m of (27) corresponding to

the restriction on H and using (25) and (26) we deduce that

I
a-(m+1)/2 b-(m+1)/2
(28) fo(.ﬂri) (I -x,)) 1]<Ij(ri -r,)ldr,
m
) rm(a)rm(b)rm[EJ
B
I‘m(a+b)1rm /2

It follows that
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Ah

(29) pdf(E) = m(T-Kl)IZ- szzr [T_Kl]
kil e
m

2 3

(T-K,) /2-(m+1)

etr [- —E'E] (det E'E) |det :~:|"”"”2 .

Lot

It is now convenient to partition the inverse of E , viz. G,

as follows

1 n
1] g g, g g1
(30 G- 1 812 | _ 11 12
no| By G “811F Gy

where we use the fact that

(31) 8 r , say.

oo = 8217811 =

The corresponding partition of E is

o 1, , -1
1812655 +7T8)5)

-1

-1 -1, -l
811 "811812(Cpp +1875) T

E = —— [p—

] _1
(G22 + rglz) T

v . P kY WO e

]
(6, + 127,)

= s, Bay.

Thus, from {29) and (32) we find
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2
(33) pdf(e.,, €,,, ¥, E, ) = a
11* “12 22 2m(T-Kl)/z-m m2/2r [T—Kl]
m{ 2

1.2 ' _1 Yy
-exp[z 2(e11‘+e12e12i1etr[: 2(I+rr )EZZEZé]
(T—Kl—m+1)/2 T—Kl—m
. ] .
[det (E;,E,5)] leg; —ep,7l

E,, occurs in the density (33) only in the form E!} Moreover, when

22E22 -

E is integrated out of the density the value of the integral will be

22

unchanged if we relax the (positive) sign requirement on the final column

of E22 and multiply the integral by 2% | To assist in the integration
1/2
y1/

we transform E,, + (H,D) where H is orthogonal and D = (E},E

22 22722
according to the unique decomposition E22 = HD . The measure changes in

accordance with the relation

/

(34) dE,, = 27 "(det p)~1/ 24D (dn)

2

proved by James (1954) (see also Muirhead (1982)) where (dH) is the in-
variant measure on Ofn) .

From (33) and (34) we deduce that

T E_“n2/2
mi{2
(35) pdf(e,., e,,, T, D) =
11 12 2m(T-Kl)/2-1“m2/2r [T—Kl]l‘ F%
m| 2 n{2

1,2 1 )
-expE E(ell +ei2e12):[etrE 2(I-i-r*r: )DI

~m)/2 T-K,-m

(T-K
1 r| 1

0y -e!
(det D) lell 2P

Integrating out D in (35) and simplifying the constant we obtain
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( T-K,-m
n_+1 - _J;_ 2 ' _ 1
(36) pdf(e e r) = r 2 }EXPI: 2(ell+e12e12)j[]e11 eizrl
11° "12 (T-K,)/2-1 n-l% ™K, (T-K,)/2
2 w T -7 (1+r'r)

Henceforth, we assume T -Kl -m to be an even integer, facilitating

the reduction of (36). 1In particular, let T-K, -m = 2k for some integer

1

k . Define q' = and a' = (1, r') . We need to evaluate

(ey75 e),)
(37) fer4' /2 g1y 2kgq

where the integral is over 0 < q. <@, == < 9y <w , i#m. Wewill
transform q + H'q = p for H orthogonal and integrate over the orthogonal
group, normalized so that the measure over the whole group is unity. The
latter measure will be denoted (dH) .

In view of the fundamental relationship (James (1964, equation (22)):

i
Z

(38) f (tr(XH))Zk(gg) =17 < c, (Xx')
0(m) K Fl
K

where k 1is a partition of k into not more than m parts, we deduce that

[—12—] @) p'm*

[ (tr(pa'u))(am) =

(39) 0(m)

rolg |

k

It follows that (37) is equal to

1] , Lk
5| (a'a)
3,

(40) _[_]__fe"P'P/Z(p.p)kdp )
2
k

w8
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The additional factor of (1/2) in the expression arises because the domain
of p 1s taken to be unrestricted (i.e. -« < Py <@ all 1 ) while
that of q 1in (37) satisfies 0 < q, <= -

We transform p + (s,h) according to the decomposition

/z(pl(p'p)l/2 1/2

p= (p'p)1 ) =8 ""h . The measure changes in accordance with

the relation

(41) ap = 271D/ 240 any

where (dh) denotes the invariant measure over the Stiefel manifold,

Vl o {see James (1954, equation (8.19)). Under this transformation (40)
»

becomes

k j e's/23k+(n_l)/2dsf

(dh)
4 ‘% 0 Vi o
k L ]

k. in+l

=| (a'a) r{*——-kkJ

[ZJk 2 21T(n+1)/2
m

. _]k[%J(n+l)/2+k r{g%l]

We deduce from (36) and (42) that

[_1.] At /2, [—“‘5—1 +k] r [5*2—1] (1+r')¥
k

2
pdf(r) = 1
(T=K.)/2/,4 (n+1)/ 24k n+= [T-K (T-K,)/2
G oo T
k
Since k = (T-—Kl'—m)/2 = (T-—K1 -(n+l1))/2 , it follows that
Y
(43) pdf(r) = 2
1T(n+1)/2(1+_r|r)(n+l)ff
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Thus, BLIML has a multivariate Cauchy distribution.

6. DISCUSSION

The exact distributionsobtained above apply when H22 = 0 and cor-
respond, therefore, to a particular structure of the model (1) and (2) in
which the true coefficient vector B is not identifiable. None of the
exact finite sample demsities (7), (15) or (43) actually involve B .

All are, in fact, centered on the origin, When B is itself zero, there
is an absence of simultaneity in the model and, in this case, OLS (with

K3 =T -~ Kl in (7)) is a consistent estimator. We observe, on the other
hand, that the exact densities of LIML, LIMLK and 2SLS (the latter with

K3 = K2 in (7)) are invariant to changes in the sample size T . Thus, _
as T -+ « these distributions (unlike that of OLS) continue to demonstrate
the uncertainty about R that is due to its lack of identification.

Qur results show that LIML and LIMLK have identical finite sample
Cauchy distributions in this leading case. Knowledge of the error covariance
matrix therefore adds nothing to the precision of the LIML estimator. While
the lack of identification of B has a role in explaining this fact, the
crucial factor behind the result is that an entire block of reduced form
coefficients, viz. [“21 E H22] , 1is zero under the null hypothesis.

This implies that the system of equations n,. - H228 = 0 which usually

21
define B , also carry no real restrictions on the reduced form. Estimation
by LIML or LIMLK under these conditions is essentially (that is, from the
point of view of their distributional properties) equivalent to estimation
under conditions of (apparent) just identification. This explains not only

why LIML and LIMIK have identical distributions; it also explains why these

distributions, viz. (15) and (43), are invariant to changes in the (apparent}
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degree of overidentification. Readers who find these intuitive arguments
convincing can rely directly on the elementary proof given in Section 3 of
the exact distribution of the IV estimator for the (apparent) just identi-
fied case to deduce the results for LIML and LIMLK obtained by more
sophisticated methods in Sections 4 and 5.

Finally, it is of interest that the exact distributions studied
here in primitive forms retain certain important properties, notable their
tail area behavior, when the null hypothesis lyp = 0 1is relaxed. This
is already confirmed in the two endogenous variable case where the exact
distribution of the LIML estimator was derived under the alternative
sz # 0 by Mariano and Sawa (1972). A sequel to the present paper will
provide the exact distribution of LIML under the same general alternative
H22 # 0 but for a structural equation containing an arbitrary number of

endogencus variables.
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