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0. ABSTRACT

This article proposes a new approach to small sample theory that
achieves a meaningful integration of earlier directions of research in
this field. The approach centers on the constructive technique of
approximating distributions developed recently by the author in [10].
This technique utilizes extended rational approximants (ERA's) which
build on the strengths of alternative, less flexible approximation
methods (such as those based on asymptotic expansions) and which simul-
taneously blend information from diverse analytic, numerical and experi-
mental sources. The first part of the article explores the general
theory of approximation of continuous probability distributions by
means of ERA's. Existence, characterization, error bound and uniqueness
theorems for these approximants are given and a new proof is provided
for the convergence result obtained earlier in [10]. Some further
aspects of finding ERA's by modifications to multiple-point Padé
approximants are presented and the new approach is applied to the non-
circular serial correlation coefficient. The results of this applica-
tion demonstrate how ERA's provide systematic improvements over Edgeworth
and saddlepoint techniques. These results, taken with those of the
earlier article [10]1, suggest that the approach offers considerable
potential for empirical application in terms of its reliability, conven-
ience and generality.

*This article is a development of ideas which were first presented at the
1980 World Congress of the Econometric Society [10)} and which were sub-
sequently extended in [111. Deborah Blood and Christopher Sims deserve
my thanks for their comments on this work. Alison Gold deserves special
mention and thanks for her help in performing the computations reported
in Section 5. It is a pleasure alsc to thank Glena Ames and Lydia
Zimmerman for their time and skill in preparing the typescript,
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1. INTRODUCTION

Analytical research on the small sample properties of econometric
methods of estimation and testing has taken three main directions. The
first of these has involved the mathematical task of extracting the form
of the probability density function (pdf) or cumulative distribution
function (cdf) of the relevant statistic under stated assumptions con-
cerning the structure of the model and the stochastic properties of the
errors that drive its equations. The second has been concerned with char-
acterizing the distribution by the analysis and approximation of its
moments. This has included work on the question of the existence of moments
and conditions for asymptotic approximations to them to be valid. Finally,
there has in recent years been a growing literature concerned with the deri-
vation of direct approximations to the distributions themselves. These
approximations have frequently been obtained by truncating asymptotic series
expansions after a small number of terms. This literature has also investi-
gated the validity of the expansions as asymptotic series, explored questions
of higher order optimality and considered the actual numerical performance
of the approximations in a variety of situations.

In addition, and largely in parallel to this analytical research,
are the experimental and purely numerical investigations. The former
have continued traditions established in the 1950's and 1960's with an
attempt to improve certain features of the design and efficiency of the
experiments, together with the means by which the results of the experi-
ments are characterized. The létter have grown in usefulness with advances

in computer technology which have, in particular, facilitated numerical



integration on a much larger scale in recent years.

It is the purpose of the present article to suggest a new approach
to small sample theory that allows for a convenient integration of analy-
tical, experimental and purely numerical directions of research. The
approach centers on a flexible technique of approximating distributions
which was first introduced by the auther in [10]; and it brings into play
a new family of extended rational approximants (ERA's) which are designed
to accommodate information from sources as diverse as the following:

(i) exact analytical knowledge concerning the distribution, its moments

or its tail behavior; (ii) alternative approximations based on crude
asymptotic theory or more refined asymptotic series; (iii) purely numeri-
cal data arising from numerical integrations of moments or numerical evalu-
ations at certain isolated points in the distribution; and even (iv) soft
gquantitative information of the Monte Carlo variety. The technique itself
is not based on an asymptotic series expansion in terms of the sample size
or any other parameter. This means that accurate approximations can be
obtained even in very small samples. As a result, the technique has its
greatest advantage in cases where existing methods based on asymptotic
approximations run into difficulty.

The idea that underlies the new technique is very simple. It is mo-
tivated by the observation that, in spite of the complex analytic forms of
many of the exact pdf's presently known for econometric statistics, when
we do turn around and obtain numerical tabulations or graphical plets of
the densities we typically end up with well behaved, bounded, continuous
functions that tend to zero at the limits of their domain of definition.
The form of these pdf's strongly suggests that we should be able to get

excellent approximations to them in the class of much simpler functions and



certainly without the use of multiple infinite series. We need to deal with
approximating functions (or approximants as they are called) that are capable
of capturing the stylized form of a density; in particular, we want the ap-
proximant to be able to go straight for long periods in a direction almost
parallel to the horizontal axis and yet still be able to bend, quite sharply
if necessary, to trace out the body of ﬁhe distribution wherever it is lo-
cated. One class of functions that seem particularly promising in this
respect, as well as being simple in form, are rational functions. Even low
degree rational functions ecan go straight for long periods and then bend
quite sharply. In this, of course, they are very different from low degree
polynomials whose graphs typically display a distinct roly-poly character.

With these promising features rational functions are well suited
to the task of approximating 2 wide class of continuous distributions.

Their own intrinsic qualities as approximants are enhanced by the use of
an extended family of rational functions which exploit analytic informa-
tion about the true distribution in the formation of a suitable coeffi~
clent function. The coefficient function is a vehicle for importing a
primitive but relevant analytic structure to the approximant, whose per-
formance is then fine tuned by the shape of the rational function itself.
It is this extended family of approximants that we call ERA's.

In [10]  the author addressed the basic theoretical issues of
existence and convergence of best uniform rational approximants to con-
tinuous pdf's and demonstrated a practical method of comstructing a good
rational approximant from limited information about the true distribution.
The method in [10] is based on the idea of working from local Taylor
series approximations at certain points of the distribution towards a

global approximation which will perform well in the whole domain over



which the distribution is defined, while retaining the good performance
of the Taylor series approximations in the immediate locality of the
points of expansion. This is, in part, achieved by the use of multiple-
point Padé approximants which are rational functions comstructed so as
to preserve the local Taylor series behavior of the true pdf at certain
points to as high an order as possible. The points selected for local
expansion in the application reported in [10] were simply the origin
and the tails. Such local expansions can, in fact, be obtained from
information about the characteristic function of the distribution so
that direct knowledge even of the local behavior of the true pdf is not
necessary for the application of the technique. The final step in the
method involves modifications to the crude multiple-point Padé approxi-
mant which are designed to improve its global behaviour. This may
involve the removal of unwanted zeroes and poles which occur in the
bridging region between the points of local expansion.

The present article extends the theory of rational approximation
given in [10] and reports a numerical application of ERA's in a time
series context which may be of some interest to practitioners. The theory
of [10] is recast in terms of [n/m] approximants where numerator and deno-
minator polynomials are not necessarily of equal degree. A function analy-
tic proof is provided of the convergence result in [10], showing that uni-
formly close approximation by ERA's is possible for a general class of con-
tinuous distributions. Error bound, characterization and uniqueness
theorems are also established for best ERA's, As in the classical theory
of approximation [ 1], these results help to identify best approximants
in applications and indicate the extent and nature of possible improvements

in preliminary trial cases. However, some interesting divergences with



the classical mathematical theory arise in the alternation result which
characterizes the best ERA. This and the other theoretical developments
are presented in Section 3 of the paper. Section 4 describes some useful
modifications to preliminary approximants of the Padé class, which extend
the suggestions made earlier in [10]. The application is reported in Sec-
tion 5 and deals with the non-circular serial correlation coefficient.

It is hoped that this example will illustrate how FRA's can build on the
strengths of a variety of asymptotic methods and successfully temper with
data from other sources what would otherwise be rigid analytic formulae.
Future extensions of this work and additional applications of ERA's are

outlined in Section 6,

2. A FAMILY OF ERA'S

In selecting a suitable class of approximants, the requirements we
need to take into account are largely dictated by the shape of the true
function and the interval over which the approximation is to be used.

As in [10] our discussion will concentrate on probability densities that
belong to Co[-W,m] s, the class of continuous, positive valued functions
that vanish at += ., This covers a very wide class of continuous distri-
butions and, although further generalizations of the methods we present

are possible, they will not be pursued here. Rational functions are them-
selves promising candidates in thelr capacity to capture the various shapes
of distributions within this class. But their capabilities are almost
always enhanced by the use of a well chosen coefficient function which
serves to provide a relevant analytic scaffolding for the rational func-
tion to do its work.

These considerations lead us to make explicit the following class



of approximating functions:

DEFINITION (A Family of ERA's). We define the class G(m,n) of extended

rational approximants of maximal degrees m and n as the class of fune-

tions R of the form

(1) Rmn(X;S.Y) = s(x)

"
0
~
L
S~

where
(i) 8 € CO[—m,W] 3
(i1} the numerator and denominator are reduced to their lowest
degree by the eancellation of identical factors;
(ii1) m and n are even integers with m < n ;

(iv) ' = (ao, ays seesas bo, b

n 1° ...,bn) € T, the parameter

space, which is defined as the following subset of nim+2 dimensional

Euclidean space: T = {y : Z?=obi =1, Qn(x) >0 for all x € (-=,=)} .

This Definition of the family G(m,n) of ERA's of the form (1)
extends that of [10] and allows for fractions with numerator polynomials
of any degree up to m and denominator pelynomials of any degree up to
n . The normal approximant1 Rmn(X) in this family will involve polynomials
Pm(x) and Qn(x) of degrees m and n , respectively. This terminology
is to be distinguished from what is called an abnormal, degenerate or de-
fective approximant in which the numerator and denominator polynomials
are of lower than prescribed degree. Since we will be dealing with prob-

ability densities in Co[-w,w] , 1it is natural to set m and n as even

11n what follows and where there is no risk of ambiguity we will simplify
the representation of the rational fraction (1) by using the notation

R (x) = Rmn(x;s,v) .



integers: good global approximation over the entire interval [—=, =]
within G(m,n) will always require n even to exclude poles and m even
also if we wish to exclude negative probabilities. Similar conditions
apply in the case of defective approximants.

The coefficient function s(x) in the ERA (1) is a vehicle by which
additional information about the true density can be readily embodied in the
approximant. This can be soft or hard quantitative information. Simple
examples of the former are: (i) the information already explicit in s(x) ,
namely that pdf >0 and - 0 as |x| »« ; or (ii) nonparametric prob-
ability density estimates of pdf(x) obtained from Monte Carlo experimental
data. Examples of the latter are: (i) knowledge that pdf(x) has moments
up to a certain order, suggesting a specification of s(x) with the same
tail behavior; or (ii) knowledge that pdf(x) takes a simple primitive
form in an important leading case; or (iiil) saddlepoint or Edgeworth ap-
proximations to pdf(x) suitablyimodified if necessary to ensure that
these are everywhere positive and vanish at infinity; or (iv) the crude
asymptotic approximation to pdf(x) . [10] provides a detailed illustra-
tion of the second type of hard quantitative information. An illustration
of the use of the third and fourth types will be given later in the present
paper in Section 5.

: : 2
The normalization condition Z? b

i=0P1 = 1 on the parameter space

I' eliminates the redundancy that results from the multiplication of

Pm(x) and Qn(x) by an arbitrary constant. This form of the condition

is useful for the theoretical development, as in [10]; but other normali-
zations éuch as b0 = 1 are often more useful in applications, simplifying
as they do the analytic equations that need to be solved to find the

rational coefficients. Note that the alternative condition b0 = 1 ensures



that the ERA (1) is always well behaved as x passes through the origin.
In distribution function rather than density approximation it is addi-
tionally convenient to set m =n , a = bn and replace s(x) in (1)
by a primitive cdf of the form S(x) = ffms(t)dt appropriately weighted.
These modifications ensure desirable behavior in a cdf approximant at the
limits of its domain.

The above Definition of G(m,n) does not exclude the possibility
of approximants which possess zeroes and which become negative over part
of the interval [-»,»] , This possibility can be eliminated, of course,
by the further requirement that Pm(x) > 0, parallel to the pole elimina-
tion conditicn on Qn(x) . But such a requirement seems unnaturally re-
strictive. For it excludes functions which become negative only on the
extreme tails and which may, nonetheless, be excellent approximants over
a wide domain. Since densities in Co[um,m] vanish at infinity and the
best ERA displays the error alternation property (Theorem 4 of Section 3),
small negative probabilities in the distant tails of a good approximant
are not uncommon. While these can be removed, some deterioration in the
quality of the approximant is to be expected elsewhere in the distribution.
In making such a choice an element of judgment is required concerning the impor-
tance of errors of different magnitudes in different parts of the distri-
bution. Similar considerations may also apply in practice to the occurrence
of poles, provided these lie outside the relevant domain in which the ap-
proximant is to be used. However, for the theoretical development that
follows, the latter are excluded in our Definition of the class G(m,n)

by the condition Qn(x) >0 .



3. BEST UNIFORM APPROXIMATION BY FRA'S

In its general form, we consider the problem of approximating a
pdf in CO[—m,m] by an ERA of the form (1). We take the domain of ap-
proximation to be the infinite interval (-=,») and, as in [10], we use
the uniform norm |le(x) | = supx|e(x)| . Other choices of norm are cer-
tainly possible and will generally lead to different best approximations,
where they exist. However, for accurately approximating a given pdf over
a wide interval the choice of the uniform norm seems most appropriate.
Moreover, with the modifications that were discussed in Section 2, ERA's
of the same general form as (1) comprise a suitable class of direct approxi-
mants to continuous cdf's as well as probability densities.

As defined above, the problem of approximation comes close to the
framework of rational approximation in the space C[-=,»] of all continuous

functions f over (-=,=) for which limxgmf(x) = limx Jf(x) and the

-
limit is finite. Some aspects of rational approximation in C[=x,»] have
received attention in the classical mathematical literature of approxima-
tion theory,l notably by Walsh [18], [19], Achieser [1] and Timan [17].

Of these authors, Achieser's treatment comes closest to our own. He de-
velops a theory of uniform approximation applicable to a restricted version

of our class G(m,n) . His restriction operates on the class of admissible

coefficient functions s(x) , which are required to satisfy

(2) lim s(x)xk = lim s(x)xk £ 0

K0 b it

lA general discussion of this literature and its bearing on the problem
of approximation considered here was given by the author in an earlier
version [11] of this paper, which is available upon request.
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where k = m-n (our notation). In our context, (2} is too restrictive.
For example, we may wish to impose rather different behavior on s(x)

at infinity. Thus, if we know that as ]x[ + o pdf(x) = 0(|x|_u) with
p>0, or O(e-u[xls) with o,B > 0, it makes sense to incorporate
similar behavior in the coefficient function s(x) and then set m = n

in the ERA (1). These possibilities are excluded by (2). Moreover, (2)
provides an essential simplification of the theory in that infinity becomes
an allowable extreme point in the approximation error. Under this simpli-
fication the theory of best uniform approximation in C[-w,=] 1is essent-
ially the same as it is for the space of continuous functions Cfa,b]

over a finite interval {a,b] . In particular, all the major results

apply as for a finite interval. When we relax (2) and require only that

s € Col-w,m] as in our Definition of (1), this is no longer the case.
While the existence, uniqueness and convergence results apply as for finite
intervals, the usual characterization theorem (Achieser [1], p. 55, Meinardus
f6], pp. 161-162, Rice [15], p. 80) fails. This theorem tells us that a
necessary and sufficient condition for the best uniform approximant is

that its error curve oscillate a specific number of times, which depends

on the degree of the approximant. Theorem 3 below shows that for ratiomal
approximation of pdf(x) over [-~,2] within the class (1), this condi-
tion is sufficient but not necessary.

Thus, while the classical work of Achieser in the mathematical liter-
ature is very relevant to our problem of best approximation to pdf(x)
within the class of approximants (1), we cannot completely rely on this
work in the development of our own theory. Moreover, with regard to the
important problem of characterizing the best approximant, our theory in-

volves an important departure from existing results. The following theorems
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form the basis of this theory. Proofs, together with some subsidiary tech-
nical material, are given in the Appendix in order to facilitate the read-

ing of the paper by those interested in its main ideas.

THEOREM 1 (Existence). JIf pdf(x) € CO[-m,m] s then there exists a best

uniform approximant to pdf(x) in the class of ERA's defined by (1).

This theorem ensures that, given pdf(x) and s(x) in Co[—m,m} .
there exists a set of parameters v* and a corresponding ERA R&n(x;s,y*)
in the class (1) for which

(3) |lpdf(x) - R! (x38,v*) || = inf||pdf(x) ~R (x38,7) || .

mn mo
YET
The prime in R;n(x) is used to distinguish this rational fraction from
a limiting function Rmn(X;s’Y*) which does not necessarily belong to
the class (1) (it may not even be continuous) because the set T is not

closed.1

THEOREM 2 (Uniformly Close Approximation by ERA's). Suppose
pdf(x) € C0[~w,m] and let € > 0 be given. Then there exists an ERA

R of the form (1) for which ||pdf(x) ~R__(x) | < e
COROLLARY (Convergence [101). If pdf(x) € CO[-m,m] and 1f we define

(4) E(nss) = ||pdf(x) = R! (x55,v%) ||

where Rﬁn(X;S’Y*) i8 the best uniform approximant to pdf(x) in the

elass of ERA's defined by (1) with m =n , then

(5) 1lim E(n;s) =0 .

n->ro

lThis problem is discussed in detail with an example in [10} and [11].
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Theorem 2 shows that, for any choice of density function in
CO[-w,W] » there is an arbitrarily close rational approximant in the class
(1). Moreover, the best approximant of the form Rnn converges to the
given pdf uniformly over (-»,») as n = = ., Note that neither of these
results gives an order of magnitude on theerror of approximation as n—+« . Some
theorems on error magnitudes and rates of convergence are available in the
approximation theory literature but these apply, in the main, to special func-
tions. To take two examples: (i) it is known [7 ] that whereas the error
on an nth degree polynomial approximation to |x| over [~1,1] has order

n-1 ,» theerror on arational approximant of type Rnn(x; s{x) =1) hasorder at

1/2

most exp(-n ) 3 {(ii) 1t is also known [4] that the error on a rational

approximant of type R__(x; s(x)=1) to the function exp(-|x|) over

1/2} for some constant o > 0 . Both

(~=,=) has order at most exp(-aon
of these rather specialized results on rational approximants suggest that,
at least for certain classes of functions, the rate of convergence of
polynomial approximants can be dramaticallysimproved by the use of rational
functions with numerator and denominator of equal degree. These results
corroborate the numerical experience discussed in [10] which suggests

that rational functions of this type tend on the whole to provide better

approximations than those for which the numerator and denominator poly-

nomials differ markedly in degree.

THEOREM 3 (Error Baund). et the ERA of the eclass (1)

P_(x) a, +ax+...+a x= V¥
(6) Rhn(X;s'Y) = s(x)Q:(x) = g(x) 0 1 Ll "

be in its lowest terms with no common factors in P (x) and Q,(x) »
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with 3, ¥0, b, ¥0 and 0<w<m, O<v<n. Weset
d = min(u,v) and N=m+n-d+2 . If at the eomsecutive points

X; € Xy €. <X in the interval [-=,»] we have
i
(7) pdf(xi) - Rm(xi) = (-1) )‘i

where all X, have the same sign and are cll different from zero, then

(R) ig[}pdf(x)—amcx;s,y) I} 3min{|A1|, 1121, cans [AN[} .
The same result 18 true if Rmn(x;s,y) = 0 1in (6), in which case we take

N=mt2 .

This theorem can be used to find a lower bound for the deviation
of the best approximation. It suggests that when the error curve oscil-
lates a sufficient number of times (which will usually be N = n4mt2 ,
with the "defect™ in the rational fraction 4 = 0 ) and the extreme values
of the oscillation are close in absolute value, the rational fraction is
also close to the best approximant in that class. When the error curve
oscillations differ markedly in magnitude or when there are insufficient
oscillations, there will usually be considerable scope for improvement

in the approximant. This idea is formalized in the following result.

THEOREM 4 (The Equioscillation or Error Alternation Theorem). Suppose
Rmn(x;s,y) i8 an ERA of the elass (1), having the same form as (6) above.

Let d = min{(u,v) ae in Theorem 3 and let
(9) h = ||Pdf(X)‘-Rmn(x;s,Y)l| >0 .

We define
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(10} e(x) = pdf(x) - R o (x38:7)

and we call the rumber of consecutive points of the interval [—=,=] at

which e(x) takes on its marimum value h with alternate changes of

ign "the number of altermations of e(x) ".

Part A: Necessary Conditions

I Rmn(x;s,Y) 18 the best uniform approximant to pdf(x) then
egither
(1) d = v (nuwmerator most degenerate) and the rumber of alterma-
tions of e(x) is at least N = pim-d+2 ;
or (ii) d = v (denominator moet degenerate) and the number of alter-

natione of e(x) 1ig at least N = n+m-u-v+[v]e+2 :
where [u]e denotes the largest even integer less than or
equal to v ;

or (iii) <f Rmn(x) 2 0 then the mumber of alternations of e(x)

18 at least N = m+2 .

Part B: Sufficient Conditions

If R (x;s,Y) has the form (6) and the number of altermations
of the error e(x) 18 at least N = ntm-d+2 then Rhn(x;s,y) i8 the
best uniform approximant to pdf(x) in the elass (2).
This theorem characterizes the best approximant. Specifically,
Part B tells us that if the error curve takes on its maximum value with
alternate changes of sign at least N = nim-d+2 times then this is suf-
ficient to ensure that the rational function (6) is a best approximant.
In the classical characterization theorem ([1], pp. 55-57; [6 ], pp. 161-62),

this condition is also necessary. It is an interesting feature of the
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present problem that the condition is no longer necessary. This divergence
from the classical theory only occurs when the best approximant has a de-
generate denominator as in Part A(ii). (Readers may refer to [12] for
a detailed discussion and a counterexample to the classical theorem.)
In the usual non-degenerate situation where the best ERA in the class (1)
has numerator and denominator polynomials of full degree (with
u=v=d=0) the standard alternation theorem applies with the number
of alternations being at least N = n+m+2 .

Finally, we have the following result which establishes the unique-

ness of the best ERA.

THEOREM 5 (Uniqueness). The best wuniform approximant to pdf(x) in the

class of ERA's defined by (1) ie unique when reduced to ite lowest terms.

4. PRACTICAL ISSUES IN THE CONSTRUCTION OF ERA'S

The first steps in the practical implementation of our approach
require important elements of judgment in the following three areas:
(i) choice of the coefficient function s(x) ; (ii) selection of the de-
gree of the ERA Rmn(x) ; and (iii) determination of the coefficients
of the polynomials in Rmn(x) . The problem is one of constructive func-
tional approximation within the general family of approximants defined
in (1). The solution to this problem in any particular case will rely
intimately on the information that is available about the true distribu-
tion. Typically, we will want the approximant to embody as much analytic
information and reliable numerical or experimental data about the distri-
bution as possible. This will directly affect the choice of s(x) and

the prescribed degree of Rmn(x) . As argued in [10] and {11], important
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theoretical and practical consideratioms suggest g specialization of the
family of ERA's to that in which numerator and denominator polynomials
are of the same degree (that is, m = n ). Leading case analyses such
as those developed in [13] and applied in [10] will often lead to a suit-
able choice of s(x) ; and a variety of other choices involving both soft
and hard quantitative information were discussed earlier in Section 2.
Knowledge of the local behavior of the true distribution in certain regions
can be used to determine the polynomial coefficients in the ERA, which
will then magnify or attenuate as appropriate the shape of the leading
coefficient function s(x) . Local information about the distribution
may take the form of Taylor expansions at certain points, evaluations by
numerical integration or estimates of the function values obtained from
Monte Carle simulations. Some operational guidelines for this aspect of
the constructive process were laid out by the author in the earlier article
[10} and were based on modified multiple-point Padé approximants. The
ideas given there will be extended in the discussion that follows to deal
with nearly defective ERA's, a problem not considered in [10].

It is sufficient for our purposes to take a multiple-point Padé
approximant whose coefficients have been determined by solving the genefal

system of equations given by (43) in [10]. We use the following notation

Pm(x)

Q, (x)

(11) R_(0) = s(x) = s5(x) [m/n](x)

for rational functions obtained in this way which have the same general
form as members of the family (1) but which may possess unwanted poles
on the real axis. To illustrate, we consider a case which arises later

in the application of Section 5. Here, we attempt to approximate a
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distribution which is symmetric about the origin. We correspondingly select
s(x) and [m/n](x) to be even functions of x , the latter defined ex-
plicitly in terms of x2 rather than x . Now consider a case such as

this in which m = n = 4 and [4/4](x) takes the form

02X a0 -y v G - =)

Obixzi b4(x2 -6, (x? - 52)(x2 -8 2 -7)

4
12)  [4/41(0) = 5=
i=

where (Yl, Yz) and (6 62) are the real zeroes of the numerator and

. . , 2
denominator pelynomials considered as functions of z = x° . Zerces and

l’

poles of [4/4](x) arise.for real values of x when Yy > 0 and 6, > 0
for either i =1, 2 .

We recall from Section 3 that the best ERA is defective when it
is the same as that for a lower maximal degree. In practice, nearly de-
fective ERA's tend to show up in cases such as (12) when after many trials
the numerator and denominator polynomials are found to have a nearly iden-
tical factor. This induces a difficulty in the approximant when the factors
produce a real zero and pole, which will then be in close proximity to
each other. The resulting discontinuity in the approximant can most simply
be removed by cancellation of the troublesome factors. Thus, if Yy él

in (12) with both numbers positive, we would obtain in this way the new

function:

8, ~ 1) (F =) (= -7

4
b, (x° - 6,) (x” - 8) (x> =8)

(13) [3/31(x) =

A more sophisticated modification would be obtained by the use of the fol-

lowing:
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a4(6x2 +Y1) (x2 -Y2) (x2 -Y) (x2 -¥)

(14) [4/4)7(x) =
al‘(nxz +6) (%2 ~6,) (x” - 6) (x? - )

in which € and n are small positive quantities selected so that the
additional factor will behave substantially like the constant function

Yl/ﬁl over a wide interval symmetric about x = 0 ., This additional modi-
fication will be most suitable if x = 0 4is itself ap interpolatiom point

in the original multiple point Padé. Frequently, it will be sufficient

to set € =n = 10-6 (or thereabouts) but the separate parameterization

of € and n may be helpful in some cases, particularly if we wish to further
improve the performance of the approximant in the tails.

The theoretical results of Section 3 can be used to sharpen our
understanding of the behavioral characteristics of modified Padé approxi-
mants such as (13) and (14). Thus, if our objective is an ERA that has
reliable global as well as local behavior, we will usually have to give
up some degree of local performance in a crude Padé to ameliorate the global
characteristics of the approximant. The existence result shows that this
is possible. It is achieved in practice by trading off near perfect fits
in certain reglons of the distribution in exchange for much better fits
in other regions than are attained by crudely constructed Padé's of the
same maximal degree. The equioscillation theorem formalizes this process.
As stated, it does not rigorously apply to always positive approximants
but the idea of trading off error magnitudes in different regions to improve
global behavior will still ordinarily apply. Moreover, as argued in Sec-
tion 3, small negative probabilities (eften around 10-6) in the extreme
tails may not be unacceptable if the gains elsewhere are sufficiently im-
portant. 1In practice, troublesome singularities rather than negative prob-

abilities present the real difficulty with Padé approximants. The constructive
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modifications suggested above, together with those given earlier in [10],
provide an effective (if ad hoc) procedure for tackling this problem and
they bring the approximants within the general arena of FRA's in the family
defined by (1) where the tradeoffs that underlie the strict equioscilla-

tion property apply.

5. AN APPLICATION TO THE SERIAL CORRELATION COEFFICIENT
The model we use is the autoregression

(15) Yo Ta¥e_q t U, (t=...-1, 0, 1, ...)

in which the u_ are i.i.d. N(O,Gz) . We look, in particular, at the
distribution of the least squares estimator of a in (15) given by
AT 2 Ther

o = (Zt=1yt-1) (Zt=lytyt—l) . This statistic is a noncircular serial
correlation ceoefficient, which can be used to estimate the correlation
between consecutive observations in an ordered sample. However, its dis-
tribution is supported over the entire interval (-—~,®») rather than (-1,1)
and approximations to the distribution which remain adequate in the tails,
at least for moderate values of the sample size T , are difficult to
obtain. Recent work in this and related contexts has been done by Reeves
[14}, Goldsmith [5], Phillips [8], [9] and Evans and Savin [3]. Our appli-
cation of the methods of this article concentrate on the case where o« =0
and T = 10 but can easily be extended to deal with other cases of impor-
tance in econometrics (such as the random walk with o =1 ). Such exten-—
sions together with the treatment of a variable sample size are currently
under way and will be reported in later work.

In the first stage of our procedure we need to select the coefficient
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function s(x) . Several interesting choices are presented by our analy-
tic knowledge of the distribution of a . oOf these, the most obvious are

the following:

(i) the asymptotic normal:

(16) an(x) = (T/Zﬂ)llzexp{—sz/Z} ; —® <X <™
(11) the noncircular saddlepoint approximation [9]:

9 (T+1) /2
(T-3)T[ ](l -x)

2 -1/2
[ ](1 PSSV

(17) sp(x) = ~1/2

(iii) the circular saddlepoint approximation [2]:

-1 , (T-1)/2
(18) ip(x) = B[%; I%é} (1 -x%%) s -l<x <1

(iv) the Edgeworth approximation to O(T—l) [9]:

(19) ed(x) = an(x)l: (1 +2'D(2-T X )] —-® < X < ® ,

Figure 1 about here

As distinct from the examples given in [8] and [10], the asymptotic
normal approximation (16) provides a reasonable overall picture of the
exact density (Figure 1). This performance is helped by the symmetry of
the exact distribution and the fact that a is unbiased in the special
case a = 0, Note, however, that tail area probabilities are distorted

upwards as shown in Figure 2. Thus, for a one sided test of o =0 (no
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serial correlation) at the nominal size of 5%, the asymptotic distribution
gives a critical value of 0.52, whereas the true size of the test with
this critical value is 3.8%. When the nominal size of the asymptotic test

is 1% (with a critical value of 0.66) the true size of the test is 0.4%.

S — o — e e T g e

Before they can be used in the construction of ERA's, the saddle-
point (SP) approximations (17) and (18) need modification to ensure that
they exist and are positive over the entire real line. This can be simply

and satisfactorily achieved by splicing the SP with the tails of a t

2 -(T+1)/2
distribution of the form c(1+x“/d) where the parameters are

chosen to ensure an osculating interpolation at a suitable point. We chose

to work with the noncircular SP approximant (17), largely because of the

-1/2

challenge of dealing with its singularity at x = + 2 (see Figure 3).

Figure 3 about here

The Edgeworth approximation (19) is shown against the exact density
in Figure 4. This is the best of the crude approximants (16)}-(19) and
only encounters difficulties in the tail area, where the density is nega-
tive for |x| > 0.86 . This leads to the underestimation of tail prob-
abilities shown in Figure 2. In view of the negative tail area we decided
to design an ERA which would correct for the absolute error in the Edgeworth

approximation leading to an approximant of the form:

(20) Rnn(x) ed(x) + an(x) [n/n](x)

an(x){l + f%(1-+2112 -sza) + [n/n](x)} .
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Here, the asymptotic distribution an(x) i1is used as the coefficient func-—

tion in (1), so that the ERA is, in fact, an error corrected Edgeworth

approximation.

Figure 4 about here
The promising performance of multiple point [n/n] Padé approxi-
mants in [10] and [11] encouraged us to use similar methods again. We set
n =4 and selected 2n+l = 9 points of interpolation with the exact density
to fit the rational coefficients. The exact density was computed by an ex-

tension of Imhof's procedure which yields the density ordinates directly

and which achieves economies by the use of symmetric matrix eigenvalue

routines.

Figure 5 about here

———

In view of the symmetry of the exact distribution for o = 0 we
defined the polynomials of [n/n](x) explicitly in terms of x2 as in
(12). Figure 5 shows the error curve of a [4/4] Padé approximant whiéh
interpolates at the points {0.02, 0.10, 0.24, 0.42, 0.49, 0.58, 0.70,

0.90, 1.30} . This has the form

a _ aa(x2 -Yl)(x2 - ¥,) % =) (x -7)
(21) R&,A(x) = mp(x) 3 3 3 57—
b4(x —61)(x —62)(x -8)(x" -8)

where
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a, = 3.053840 b, = -6.628521
v, = 0.199577 §, = 0.199636
v, = 2.201005 8, = -2.198206
Y,y = 0.742363 + 0.4793891 6,6 = 0.461869 + 0.361182{

and mp(x) is the SP approximation (17) modified with t distribution
tails as earlier discussed. The singularities of (21) at x = + 0.446806
show up clearly as discontinuities in the graph of the error function
e(x) = pdf(x) =~ R4’4(x) . Elsewhere the approximant performs well.
Examination of (21} reveals that x2 - Y and x2 - 61 are nearly
identical factors to the fourth decimal place. Several attempts were made
to remove the (real) singularities by selection of altermative points of
interpolation. Each of these met with no success and gave rise to an ap-
proximant like (21} with nearly identical factors in the numerator and

denominator. We, therefore, cancelled these factors as in (13) and com-

puted the error curve for the new function

aa(x2 -72)(x2 -Y)(x2 -¥)

(22) R, ,(x) = mp(x) —
73 b, (x° =6 (x ~8) (x° =)

which is shown in Figure 6. R3,3(x) successfully bridges over the singu-
larities in (21) without suffering an appreciable decrease in accuracy
elsewhere. In fact, (22) delivers nearly three decimal place accuracy

over the entire interval (-=,~) ; and its graph is indistinguishable from

the exact density on the scale of Figure 1.

Figure 6 about here

T i e e S S . e s o
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We note that the error curve in Figure 6 exhibits six unequal oscil-
lations, two short of the number required for the direct application of
the error bound and alternation theorems in Section 3. However, the in-
equality in the oscillations indicate that there is room for further im-
provement in this approximant by trading off errors of different magnitudes
in different parts of the distribution. Some tinkering with the coeffi-
cients of (22) would be necessary to achieve this. Ideally (and if cost
were no limitation) this tinkering can be formally embodied in a numerical
algorithm of the type prescribed by Meinardus [6]. This algorithm relies
on arbitrary function and derivative evaluations for the exact density
within its iterations and, in large part for budgetary reasons, has not
yet been investigated by the author within this context.

Instead, we followed the intuitive argument of Section 4 that led

to (14). With a further modification along these lines we obtained

a,(ex” +y) 7 =y (6 = G -7)

b
(23) K (0 = mp(x) -
h by ex” +6) (x% - 6,) (x = 8) (x* - )

and set ¢ = 10-7 . The error curve for (23) is shown in Figure 7. As

expected (since x = 0.02 was an original point of interpolation in (21))
this modification reduces the error in the neighborhood of the origin with
no apparent ill effects elsewhere. The error curve now displays nine
oscillations (one short of the number required for the direct application
of Theorems 3 and 4). Once again the unequal oscillations reveal the scope
for further refinements.

Figure 7 about here
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In our final application we decided to use the error corrected Edge-
worth approximation (20). On our fifth trial we found the following ap-
proximant which interpolates to the error on the crude Edgeworth approxi-

mation (19) at the points {0.04, 0.18, 0.30, 0.44, 0.65, 0.81, 0.91, 1.00,

1.30)
26) BS (%) = an(x){1 + 51 42162 - 1254 4 [4/4](x)
b,k 4T
with
34("2 'Yl) (x2 —Y_,_) (}-:2 -v) (x2 -v)
(25) [4/4](x) = 3 7 7 T
ba(x —61)(x -62)(x -8 (x" -8)
where
a, = 3.393565 b4 = -1.043281
Yl = 0.459718 Gl = 2.689876
Y = -0.036547 62 = ~0.409958
Y,y = 0.158796 + 0.2490001 §,8 = 0.692623 + 0.6240881

The error curve for (24) is shown in Figure 8. The approximant R2,4(x)
can be seen to deliver accuracy to four decimal places within one unit

over the domain -1.5 < x < 1.5 . Inspection of (25) reveals singularities
in the extreme tails at x = +1.640084 . Since the exact density is of

the order 10-5 in this locality, the singularities can be safely ignored

as strictly beyond the domain of interest. Within the domain [-1.5,0]

—— e e e e S S e T Al e i e e

Figure 8 about here
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the error curve oscillates 14 times. The oscillations are of similar mag-

nitude with the exception of the mincr ripples in the error curve around
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the region (-1.00, -0.80). These were confirmed by calculation to be of
order 10_6, corresponding to the accuracy at which the Imhof algorithm
truncation error had itself been set. Thus, while improvements in the
performance of this approximant are still possible, its accuracy is al-
ready approaching that obtained by direct numerical integration. It is
noteworthy that this accuracy is achieved at the greatly reduced cost of
a few numerical integrations at the isolated points of interpolation.
When we account alsc for the trials leading to the selection of (24) and
(25) this still amounts to sizeable economies.

The extent of the improvements attained by Rz,h(x) can be gauged
by comparison of Figure 8 with the error curve of the crude Edgeworth ap-
proximation shown in Figure 9.

- ——— vy T e v S S T o A

Figure 9 about here

6. EXTENSIONS

Practical implementation on an appreciable scale of the approach

suggested in this article will require general programmable formulae for

the coefficients of the ERA's in terms of the relevant model and data set.
This will certainly be possible in some of the simpler cases. Some statis-
tical operations will call for direct approximants to the cdf and to tail
area probabilities rather than the pdf, in which case the methods suggested
in Section 2 will be appropriate. Finally, the technique will have inter-
esting applications beyond those we have discussed here. To tzke an example
from Bayesian inference, the technique offers a convenient mechanism for

pooling the information available from analytic study and numerical (Monte
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Carlo) integration in the characterization of multidimensional posterior
distributions. These are some of the many issues that are left for ex-

ploration in later work.
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APPENDIX

PROOF OF THEOREM 1. [10] proves this theorem for the case m =n . The

arguments presented there remain essentially unchanged in the more general
case of [m/n] approximants and are given in full in [11]. []
The following result which extends the Stone-Weierstrass Theorem

to locally compact spaces is useful in the proof of Theorem 2.

LEMMA. Let X be a locally compact Hausdorff epace and let A be a
subalgebra of Co(X,R) , the space of all contimuous real functions de-
fined on X which vanish at infinity. If A separates points of X
-and for each point in X contains a function which does not vanish there,

then A 15 dense in Co(x,R) .
PROOF [16], pp. 166-167. 1

PROOF OF THEOREM 2. Set X = (-=,») and, with the usual topology, this

is a locally compact Hausdorff space. Let s(x) be a positive valued
continuous function on (-=,=) which vanishes at infinity. Consider

the functions s(x) , s(x)[l-#le—l and s(x)[.‘n-+(x-1)2]'-1 defined

on (-~,=) . Let A be the set of all functions generated from these
primitive members by the following three operations: addition, multipli-
cation by real numbers, and pointwise s-multiplication defined by

aja,(x) = s(x)zi(x);é(x) for a, = s(x);i(x) €A and a, = s(x)Eé(x) € 4A.
We note that A is an algebra of real valued functions on (-=,=) which
vanish at infinity. It is, therefore, a subalgebra of Col—w,w] . If

Xy, X, € (-=,=) with %X, ¥ x, then either s(xl) ¥ s(x,) or 8(x,) = s(x,) .

-1
In the latter case we deduce that either [1-+xi] [1-+x§] or
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2.7 2,71
[l+(xl-l) ] # [l-i-(x2 -157] . Thus, A separates points of (-=,»)
Moreover, since s(x) > 0 for x € (-»,=) it follows that for each point
of (-=,») there is a function in A which does not vanish there. Hence,
A 1s dense in C0[-°°.“’] . But pdf(x) € Co[-m,w] so that there exists
an a € A for which |[pdf(x)-a(x)|| <& . Since a(x) is a rationmal

function of the form (1) the theorem is proved. D

PRCOF OF C(ZrROLLARY.1 Given € > 0 there exists an a € A and an integer

n, for which E(n;s) = ||pdf(x)-Rt'm(x;s,Y*) | < |lpaf(x) -a(x)]| < e for

all n > ny . It follows that E(n,s) - 0 as n + =, as required. EI

PRCOF OF THEOREM 3. De la Vallée-Poussin first proved this theorem for

polynomial and trigonometric function approximants. Achieser's proof in
[1] on pp. 52-53 for raticnal fractions holds alsc for our class of rational

fractions {1). [:I

PROOF OF THECREM 4. The proofsof PartB (sufficiency), Part A(i) and Part A(iii)

follow as in Achieser [1], pp. 55-56. Thedifference with the classical theory
in [1] arises in Part A(ii). In this case, when the denominator is most
degenerate, we cannot use the construction that appears in the classical
proof exactly as it stands. Instead (and working in the notation of [1]),
we may find polynomials ¢(x) and ¢(x) of degrees m-u+[\.1]e and
n-v+ {v]e respectively where [v]e denotes the largest even integer
less than or equal to v and for which &(x) = A(x)y(x) - B(x)¢(x)

The remainder of the proof now holds with Q(x) equal to any positive
polynomial of degree [\:]e and N' <n+m-y -v+[v]e+1 s leading to

A(ii) as stated in the theorem. [:[

1{11] provides an earlier proof of this result by a longer but more direct
method which overcomes a flaw in the original proof presented in [10].



PROOF OF THEOREM 5.

[1], pp. 56-57.
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Tail Probabilities of the Serial Correlation Coefficient
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FIGURE 4

Distribution of the Serial Correlation Coefficient
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FIGURE 7

Error Curve of Rb (x)
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