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ON THE DISAGGREGATION OF EXCESS DEMAND FUNCTIONS*

1. Introduction

In the context of & pure exchange economy, an agent is said to be
rational if it expresses excess demand so as to maximize a preference pre-
order subject to the budget constraint. A group of agents is said to be
rational if every member of the group is a rational agent., It is 2 ques-
tion of methodological as well as empirical importance to characterize
the class of functions that can arise as excess demand functions of
rational agents. For instance, suppose an econometrician wants to estimate
the Jacobian A at prices p of the aggregate excess demand function of m
rational consumers {or m aggregate types of consumers) in an economy with
£ goods. What restrictions can be placed a priori on the form of A?
Furthermore, suppose an economist hypothesizes that a function x(p) is the
aggregate excess demand function for prices fluctuating in some open set
(in a short span of time prices may not change much) or even for all
prices. Are there any further restrictions that can be stated a priori
about x{p) beyond those on the Jacobian A which must hold for the point
case? In other words, does the rationality assumption allow us to be
skeptical of any hypothesized x(p) so long as x(p) satisfies Walras Law
and homogeneity?

Gerard Debreu solved the hardest case, showing that even with global
information no restrictions may be placed on x(p) when m > 2. We solve in

this chapter the infinitesimal or point case for any m and & (of course



for m > % the point case follows immediately from Debreu's theorem). In
addition we show that in the Tocal case (for x(p) # 0) once there are
-1 agents the aggregate excess demand function x{p) can be arbitrary
except for Walras Law and homogeneity.

It is well known that when m = 1 the Jacobian A can be decomposed
into a substitution and income effect. Our proof-for the point case
reveals that this decomposition cannot be determined without knowledge of
the utility function. Thus even if the econometrician knows A with cef-
tainty, he stiil cannot separate the income effect from the substitution
effect without knowing the utility function of the agent as well. In the
remainder of the introduction, we summarize our results and give the intui-
tion that Ties behind them,

Under the assumption of non-vanishing Gaussian curvature of the
indifference hypersurfaces, the excess demand function of a single rational
agent is differentiable and its Jacobian can be decomposed into the sum of
two matrices, one symmetric and negative semidefinite {(the Slutsky substi-
tution matrix) and the other a matrix of rank one with rows colinear with
the vector of excess demands (the income effect matrix). Conversely, we
show that given an arbitrary price vector p and an arbitrary matrix A
which can be expressed as the sum of a substitution matrix K and an income

effect matrix vit. A=K- vxt

» there exists a locally quadratic utility
function u and an endowment vector w such that the excess demand function
x(p) derived from {u,w) satisfies x(p) = X and has Jacobian A at p. This
is the object of our Proposition 1 which thus completes the characteriza-
tions--at a point--of the class of functions that can be derived as excess

demand functions of a rational individual. Given any Jacobian A = K - vxt
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we can always find E # K and ; ¥ v such that A=K - v t (take

ﬁ = (K - exxt) and ; = v - ex for some small positive number ¢} and E,;
satisfy all the necessary conditions of Proposition 1. Thus either decom-
position could arise from a rational consumer and the econometrician can-
not know which one is correct without also knowing something about the
utility function of the agent.

It was Sonnenschein's original argument (1972,1973a) that Walras Law
and homogeneity exhaust the restrictions that can be imposed on rational-
ity grounds on an aggregate excess demand function. A subsequent series
of papers, Debreu (1974} McFadden, MasCollel, Mantel and Richter (1874),
Mantel (1974, 1976, 1977) and Sonnenschein (1973b) demonsirated that this is
indeed the case: An arbitrary, continuous (or, at least, bounded from
below) function satisfying homogeneity and Walras Law can be decomposed
into rational individual excess demand functions. Furthermore, Debreu (1974),
gave an example to show that for the decomposition theorem to be true the
number of rational individuals to be aggregated can not be reduced below
the number of goods in the economy. Consider the offer curve in Figure 1,
and observe that it clearly violates the Weak Axiom of Revealed Preferences.
Consequently, no single rational individual can generate the offer curve
in Figure 1. Finally, Diewert(1977) derived the analogue of the Slutsky
symmetry ccnditions for an aggregate excess demand function, as a function
of the number of agents in the economy.

Apart from giving what we think are short and elementary proofs of
known results we demonstrate that the decomposition of aggregate excess
demand into rational individual excess demand functions can be carried out

gradually. In an exchange economy with £ commedities, given an arbitrary






differentiable function x(p) satisfying homogeneity and Walras Law,

given an arbitrary price vector p e Ei and given any subspace M containing
b (of dimension m < &) we can find m agents with utility functions
u],...,um defined everywhere on Ei and quadratic near p, and initial endow-

ments w’,...,wm e R, such that the derived excess demands x](P)....,xm(p)

m

m
sartsty (2) ny( Lx(B)) = my(a(p) and (8) 0 ] X(5)) and ox($)

define the same linear function on M. (By the symbol m, We mean the pro-

=

jection onto M.} If x(p) # 0, and M is not perpendicular to x(p), we can
get the same result using only m-1 agents.

This result follows easily from our main theorem (similar to a result
already derived by Mantel), which shows that a slight strengthening of
Diewert's conditions is a complete characterization of the Jacobian of the
aggregate excess demand function of m rational agents in an economy with
R goods. The Jacobian, A = K - vxt, of an individual rational excess
demand function is symmetric and negative semidefinite on the orthogonal
complement of the excess demand vector, [xj-: This follows at once from
the decomposition into a substitution matrix, K, and an income effect
matrix, vxt, the symmetry and negative semidefiniteness of the former, K,
and the colinearity of the rows of the latter, vxt, with the excess demand
vector, x. Consequently, the Jacobian of the excess demand function of m
agents is not arbitrary but must be symmetric and negative semidefinite
on the orthogonal complement of the space spanned by the excess demand vec-
tors of the m agents. Agreement with an arbitrary homogeneous function
satisfying Walras Law and its Jacobian can thus only be attained, and we
prove indeed can be attained, on the subspace spanned by the excess demand

vectors of the m agents, and p, the price vector, since, by homogeneity, p



1ies in the kernel of the Jacobian. If the arbitrary function is not
equal to 0 at p, x(p) # O, we can choose the excess demand vectors for
the m agents so that the space M = [x1,...,xm,B] has dimension (m+1).
Thus if there is given an arbitrary functicn x(p) satisfying homogeneity
and Walras Law and a price vector p with x{p) = X # 0 such that the
Jacobian Dx{p) is negative definite and symmetric on a subspace N perpen-
dicular to x of dimension %£-m-1, then there exist m rational individual

agents (uk,wk), k =1,...,m, such that the derived excess demand functions

1 m cern © Kpmy o= v oakisy - onors .
X (p)see. X (p) satisfy kzlx (p) = X and kZ]Dx (p) = bx{p). 1I1f x{p) = 0,
m

since } XX = x{p) = 0, N must have dimension 2£-m. This completes the
k=1

characterization of aggregate excess demand as a function of the number
of agents in the economy by demonstrating that a slightly stronger version
of the symmetry conditions of Diewert (1377)is not only necessary but also
sufficient for rationality. Furthermore, our result precludes the dis-
covery of any additional properties of the aggregate excess demand function
of m rational agents for % goods.1

We demonstrate in Part 2 that the results proved at a point can be

extended to large open neighborhoods (in a sense to be made precise).

2. The Point Case

We consider a pure exchange economy with £ commodities indexed by a
subscript i, 1 = 1,...,2. An agent is characterized by its consumption
set X, a convex subset of di. its endowment vector w, a point in RQ, and
its utility function u defined on X. We shall make the following assump-

tions:



Assumption 1: X = R_.

Assumption 2: we X.

Assumption 3: The utility function u is twice continuously differ-

entiable and strictly quasi-concave. For all x € X, Du(x) > 0; further-
more, the indifference hypersurface through x has no-where vanishing

Gaussian curvature, and its closure with respect to Rl is contained in X.

In the discussion to follow we hold the consumption sets of agents
fixed. Consequently, an agent can be characterized as an ordered pair
(u,w). The excess demand function of an agent (u,w} is derived as the

solution to the following pr_ob'lern:3

Max ulw + x)
xe X-{w}
(1)
s.t. ptx = 0.

By Assumption 2, given p e Ri, there exists a unique x{p) ¢ X - {w} which
solves {1). Furthermore, by the Kuhn-Tucker Theorem, x(p) solves {1) if

and only if there exists A(p) > O such that

pulw + x(p)) - Alplp = O
(2)
ptx(p) = O .

By Assumption 2 and the argument in Debreu(1974), x(p) and A(p) are contin-
©
uwously differentiable functions of p on Ri. Their Jacobians can be com-

puted by totally differentiating (2), giving

oZulwex(p))  -p\ 7dx Al

-pt 0 dx X



setting
? -1
[ s(p -v{p) D u(wex(p))  -p
\x-v(p)t e(p) -pt 0
which exists by Assumption 3, where v(p) € Rz and e(p) € R and
K{p) = a{p)s(p) ,

we obtain

bx(p) = K(p) - v(p)x(p)®

palp) = -AlpIvip)t + e(p)x(p)t .

The following is well known:

Proposition A: Let x(p) be the excess demand function of an agent

(3)

(4)

(5)

[-]
(u,w) satisfying Assumptions 2 and 3. Then, everywhere on Ri, ptx(p) = 0,

x{p) is continuously differentiable and homogeneous and Dx(p) = K{p)

- v(p)x(p)t such that

1) K(p) is symmetric and negative semidefinite;
2) rank (K(p)) = 2 - 1;

3) p'k(p) = K(p)p = 0;

4) pb(p) = 1.

Proposition A leads to the-following:



Corollary A: Restricted to the orthogonal comp1ement4 of x(p),

[x(p)ﬂ—, Dx(p} is symmetric and negative semidefinite. Furthermore, on

[x(p),pﬁ— Dx(p) is_symmetric and negative definite.

proof: From (5), Dx{p) = K(p) - v(p)x(p)t. let y e [x(p)ﬁ—. Then

y ox(p)ly = y k() Iy - yrIvip)x(p) iy - yt[K(p)]y < 0. ' Symmetry follows
from the symmetry of K{p). Note that diagonalizing the quadratic form

K(p) shows that for any y ¢ [p], ytx(p)y < 0 since K{p} has rank 2-1. Q.E.D.

The results of Proposition A and Corollary A characterize the observable
restrictions implied by utility maximization on the behavior of a single
agent. We shall now turn to the related question of the conditions satis-
fied by an aggregate excess demand function. Different agents are denoted
by a superscript k, k = 1,...,m. Agent k is an ordered pair (uk,wk) satis-

fying Assumptions 2 and 3, and its excess demand function is denoted by

m .
xk(p). The aggregate excess demand function is given by x(p) = } xk(p)u

Corollary A can now be employed to yield the following:

Proposition B (Diewert): Let x{p) be the aggregate excess demand

function of agents {(uk,wk), k=13,...,m} satisfying Assumptions 2 and 3.

(-]
Then everywhere on Rf. Dx{p) defines a symmetric, negative semidefinite

quadratic form on [xl(p),....xm(p)i— and a symmetric, negative definite

quadratic form on [x1(p),...,xm(p),piﬂ.

L v ok ke vk gt
Proof: By definition, Dx{p) = Y Dx (p) = } K'(p) - v (p)x (p)".
k=1 k=1

m
Let y & [x'(p)oe (@)1 Then v [0x(p)ly = y'L T K(R)1y

b © oKy Ky aty . Ttk
+y [kZ]V (p)x"(p) 1y = kzly [K'{p)]y < 0. Symmetry follows from the
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symmetry of Kk(D) k=1,....,m. Forye [* {p)snersx (p),pj— and y # 0,
JK5(ply < 0, k= 1,....m; hence yiDx(p)y < 0. Q.E.D.

Propcsitions A and B and Corollary A cover one side of the character-
ization of the class of functions that arise as excess demand functions
of individual agents (Proposition A and Corollary A), or of groups of
agents (Proposition B): They give a set of necessary restrictions on the
Jacobian matrix of an excess demand function. To complete the characteri-
zation, one would like to show that these restrictions are not only
necessary but sufficient as well. That this is indeed the case will be

demonstrated in the remcinder of this section.

Proposition 1: Let A be an (2x2) matrix. Llet K be an (2x2) matrix,

- o — - .
v and % vectors in R and p a vector in Rf such that A = K - vx' and

1) K is symmetric, neqative semidefinite, of rank (2-1) and

P = ¥ = 0
2) B
3) Pk = 0.

Then there exists an agent (u,w) satisfying Assumptions 2 and 3 whose

excess demand function x(p) satisfies the following:

a) x(p) = x, and

b) Dx(p) = K - ¥ W e A,

Furthermore, u can be chosen to be guadratic on a neighborhood of (x+w).

Proof: Let e be an arbitrary rea) number, and consider the matrix

Koo -t -t .
D= ( -t .} Observe that, since pv =1while pK=0,vg [K]
-V e R
Consequently, the (2+1)xg matrix ( ) has rank 2 and the {241)x(2+1)
-t
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Un _a

matrix D is invertible. Let 0! = ( )--the form of ™' follows

- -

-q z
from the symmetry of D. Since K" + Gﬁt = I, premultiplying both sides of
this equation by Bt gives ﬁt = Bt; since -Kq - vz = 0, we have v = O,
hence Z = 0. We shall now show that restricted to [pj—, G" defines a nega-
tive definite quadratic form. By a theorem of Debreu (1952}, 9t suffices to
demonstrate that the quadratic form [U" - upptl is negative definite for
some p £ R. Llet y=1-e. Then [U" - pﬁﬁt][f - ﬁGt] = 'K - 0%t +

t, eEVt - pﬁ?t = J. Since X is negative definite on [pi—

wpvt = 1 - BV
and v ¢ K1, [K - GQt] is negative definite. Since [U" - pﬁﬁt] = [K - Vit]'1,
[o" - uﬁﬁt] is negative definite--as desired. Furthermre, since e is

chosen arbitrarily, we may set it equal to 1. In this case p = 0 and hence

U" is negative definite. To compiete the proof we shall demonstrate that
there exists a utility function v satisfying Assumption 3 and w ¢ Ei such

that the excess demand function x(p) of the agent (u,w) satisfies (a) and

(b). Choose w such that {w+x) >> 0, and let u{w+x) = %{x+w)tﬁ“(x+w)

+ (ﬁt - {§+w)tU")(x+w). Then Dzu(i+w) = U" and Du{x+w) = (i+w)tﬁ“ + Bt

- (xw)tUr = Bt. Consequently, if x(p) is the excess demand function of

the agent (u,w), x{p) = x and Dx(p) = K - vt Finally it remains to
demonstrate that the utility function u satisfies Assumption 3. There exists
an open neighborhood of X in Rl. ¥, such that everywhere on V + {w}, the
quadratic utility u{x+w) satisfies Assumption 3. We can choose a compact
subset of V, W, and modify .u on R* - W so that Assumption 3 is satisfied

o
everywhere on Ri. Q.E.D.

Remark: Observe that in the previous construction e was chosen arbi-

traily, It is easy to see that if e > 0 U" is negative semidefinite and
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hence corresponds to a concave utility function.

Corollary 1: Let X be an (£x2) matrix, X a vector in R* and P2

-]
vector in Ri such that

1) ¥ is symmetric, negative semidefinite, of rank (2-1), and

PR = Kp = 0;
2) ptx = 0.

Then there exists a vector v in r* and an _agent (u,w) satisfying Assumptions

2 and 3 whose excess demand function x{p) satisfies the following:

a) x(p) = x, and

b) bx(p) = ¥ - vki.

Furthermore, u can be chosen to be guadratic on a neighborhood of (X+w).

Proof: Since rank(K) = 2-1, there exists v ¢ RE such that v ¢ [K].

Since [K] = [pﬁ—, Btv # 0. Consequently there exists k ¢ R such that

5t(kv) =1, 'Letting v = kv, the result follows from Proposition 1. Q.E.D.

Proposition 1 and Corollary 1 have at least two important consequences.
In estimating the Jacobian A of the excess demand function of a single
rational agent, the econometrician cannot impose any more restrictions on
the matrix A than that it has the form A = K - vx' with K and ¥ as zbove.

But worse still, even if the Jacobian A is known with certainty at the

point p,x, it is impossible to separate the substitution effects from the

income effects without knowledge of the {unobservable) utility function.

For example, suppose A = K - ¥Xx', Let K=K - ¢Xk* and v = ¥ - eX where

e is a smal) positive real number. Then K is the sum of symmetric and

negative semidefinite matrices and so is itself symmetric and negative
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semidefinite matrices and so is itself symmetric and negative semidefinite.
Furthermore, if we choose ¢ small enough the rank of K cannot be less than
the rank of K. To see this, note that since rank (K) = 2-1, we can find
2-1 linearly independent vectors yq,...,y, y such that Eyi 0,

i=1,...,2-1, But then for ¢ small enough, Eyi = E}i - eiityi § 0. On

~

the other hand, Kp = Kp - xxp = Kp = 0, so rank K is exactly 2-1 and K
satisfies all the assumptions of Proposition 1. Finally,

“ta _ =t _=t-

pY=pV-EepXx= ﬁt %t = ost

v=land K- vx" = K- exxb - (§-ex)xb = K- %" = A

So by Proposition 1 we can find a rational agent with Slutsky substitution

matrix E and income effe.* ; whose Jacobian at p is also equal to A and

who also demands x at p; and another agent with Slutsky substitution

matrix K and income effect v who demands x at p and whose excess demand

has Jacobian A at p. It is impossible to determine without information

about the utilities of the two agents which agent one is observing.
Proposition 1 and Corollary 1 give sufficient conditions for the

characterization of an individual excess demand function at a point P.

We shall now turn to the derivation of sufficient conditions for the

characterization of aggregate excess demand functions at a point.

Theorem: Let x(p) be the aggregate excess demand of m consumers in

- ° - -
an exchange economy with £ goods. Then for any p € Ri. ptx(p) =0,

Bth(B) = -x(p) and Dx(p)p = 0. Moreover, we can find a subspace N of

dimension at least g-m-1 such that N | [x(p).p] and on N, Dx(p) is a

symmetric and neqative definite quadratic form. On N = [N,p], Dx(p} is

a symmetric and negative semidefinite quadratic form. If the individual
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excess demands x](p),...,xm(p) are observable, then N = [x](ﬁ),...,xm(ﬁ),B]L.
excess_demancs

conversely, let A be an (#x2) matrix, % a vector in RY, and p a vector in

ﬁf such that

1) pta

2) % = 0.

L]
t
>
-
>
o
L]
o

3) A defines a symmetric, negative definite quadratic form on a sub-

space N, N | [x,p] of dimension 2-m-1 and therefore by (1) a

negative semidefinite symmetric quadratic form on N = [N,pl.

Then if X # 0, we can find m agents {(uk,wk), k =1,...,m} with oK

quadratic on a neighborhood of p, k = 1,...,m, such that the aggregate
m
excess demand function x(p) = ) xk(p), where xk(p) is Jerived by utility

maximization of the agent (uk,wk), and satisfies:

a) X(E’) = ;!
b) Dx(p) = A, and
&) Dq()ue.. (@), 5L = T

1f x = 0, we need m+1 agents {(uk.wk), k =0,1,...,m}.

Proof: The first half of the theorem follows from Walras Law, the

homogeneity of x(p), and Proposition B.

To prove the second half, choose an orthogonal basis (51,....52'].5ﬂ|5H)

for R® such that N = [@™,....3% " and isx 70, X570, k= 1,...,m.°

Let Q be the orthogonal tr?nsformation of the standard basis"(e],...,ez) of
RY to (a].-..,al'l,ﬁﬂlpu);7 a subscript Q denotes vectors and matrices
expressed in the new basis. Let AQ = Q"AQ. Eﬁ = 0'15. and iq = 0-13-

Then By = (0,...,0J[BI, Xq = (x.0), and
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C A 0 ]
A = -—— 0
Q lll!
e i, e i,
2-1 b

The form of A follows from (1) and (2). But from {3} we can gain additional,

information about A.

m £-m-1 }
Nt N, e’ vl —m——
- n 12 N
AQ AQ 0 }m
_ 21
AQ AQ K 0 }g-m-1
| - 0 o ] »
iipll

where K is the symmetric, negative definite matrix defined by A on the sub-
space N, expressed in the new basis (a]'--°’al_1'5415”)- K is an

{2-m-1)x{2-m-1) matrix, iQ = (x,0) = (x1,0,0), Aé1 is an (mxm) matrix,

AQZ is an {mxg-m-1) matrix and Agl is an (g-m-1xm) matrix.

Define
m 2-m-1 1
St LS Nt
r My
-al A12 0 Im
Q
- 12, t
= 0 - T~
KQ (AQ ) K Yeem-1
0 1] 4] 1

1 —
m <q
the Slutsky substitution effect for each of the m agents, k = 1,...,m.

where o is a very large positive real number. We shall later let be
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Clearly Eb is symmetric (since K is) and KQpQ =0, If ais large

enough, Kh is negative, semidefinite and has rank £-1. 7o see this, recall

K is negative definite and consider the product

oy d t,12
(.V%'.Y;) = "’“.V] IF + ZY]AQ ¥y .Y;K.Yz >
12,t .

and assume H(y],yz)[i= 1. Then we can find constants C and 6 > 0 such that

Zylt

12 t )
AQ ¥p 2 Hy]H ”YZIK.51‘YIHC and _yZKy2 < -5”y2|F if Yo # 0. Notice that
if flyy |l is very small, Hyzllmust be close to 1 in order that H(y],y2)|{= 1,
Hence we can find a level of ||y [l, I¥; 1l such that fly; i - a”yzlf <0 for

all y, with ”ylllg_“}][L Now choose a so big that -d[y1|F + |yl < 6 for

~a] Aée
all y, satisfying “§]||£J|y1|l£,1- This proves that is
(A:JZ)t K

negative definite, hence of rank %1 and thus proves Eﬁ is negative semi-

definite and of rank 2-1.

Assume temporarily that x # 0 and that therefore x, = itak # 0 for

k
=« _ 1= = .
k= ae oo glil, B = = - .
1 m. Then define KQ - KQ and BQ KQ AQ By construction
£-1 1 m 2-m-1 1
e e R W
T OB 0 ] )e-) ’Bé‘ 0 0 7 Im
21
B = = -[-
Q BQ 0 0 }2-m-1 s
“ X
. 0 J 1 L 4 1
- el tell -
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11 2

11 1 12,t 21
where BQ = -gl - AQ and BQ = (AQ ) - AL,

Q
pefine is = (0402040,%,,0,...,0) for k

n

1,...,m and recall that

;k #0,k=1,...,m if x#0. IfXx=0wewill have to change our defini-

tion of Es. But for now assume ;k #0, k=1,...,m

Q
with kth column identical to that of BQ and 0's everywhere else. Then it

Now we shall define Gk, k =1,...,m, such that Gg(ig)t is a matrix

¥ <kpokyt W o
will follow that [ v (x2)" = B ; and since § K. = K, we will have
k=1 Q' Q Q k=1 Q

m
Ay = Ko - Bg = 1, Kg - Yolxg

Ak
By k/ %k
% _ |2 K
VQ - BE—],k/xk -
1
el

Observe that ?; is well-defined under the assumption that it = ;k § 0. By

construction, the following conditions are satisfied:

1) EE is symmetric, negative semidefinite, of rank ¢-1 for all k.

2} BEEE = 0 for all k.
3) EE?E = ) for all k.

A
4) AQ = E](KQ - VQ(xQ) ) .

Consider now for each k, k = 1,...,m, the triplet (?*,Gk,ik) definea by
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if QKEQ -1 'k = qu, and x = Qig. Since ¢ is an orthonormal matrix,

Qt = qF‘. Consequently, Ek is symmetric and has rank 2-1 and is negative

cemidefinite. Since Q is orthonormal, it preserves inner products, hence

5tEk - Bg—g 0, p tk . pa Q- 0, and 5t§k pz-g 1. Proposition 1

yields the existence of m agents {(uk,wk), k =1,...,m} satisfying Assump-

tions 2 and 3 whose excess demand functions {xk(p), k

1,...,m} satisfy:

1) xk(p) = ik, k= 1,0..,m.
2) pxk(p) = B - M.

This concludes the proof for the case x # 0. If x = 0, we proceed in

exactly the same manner, except that we define ig = (0’ -_’0’1’0’.._’0)

k=1,...,m, and ig = (-1,-1,...,-1,0,...,0). Then Gk becomes

Q
C Bk T o %
'k _ ~ : _ -0 - :
VQ - Bl—],k [y k - 1.---'“1' and VQ 0 . QoEoD-
. L

toll ol

From the proof of the theorem, we can deduce several interesting con-

sequences, showing how to decompbse gradually an arbitrary x(p).

Proposition 2: Let A be an (2x2) matrix, X a vector in”Rl. p a vector

[-]
L
in R,» and M a subspace of R* of dimension m < & such that

1) pta= -3t A =0
2) P = 0.

3) pe M.
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Then there exists m agents {(uk,wk), k =0,1,...,m1} with ¥ Qquadratic on

e e

a neighborhood of p, k = 0,1,...,m, such that the aggregate excess demand

m-1
1 xk(p) derived by maximizing the utility function

L]

function x(p)

satisfies:
Savi>t =2

a) x{p) = x, and

b) Dx(p)ly = Ay YyeM

Furthermore, if (4) x ¢ [Mj*, we need only m-1 agents. Also (3) can be

dispensed with by taking M = M + [p] and then using one more agent.

Proof: Choose an orthogonal basis (al,ﬁz....,ﬁn_],§4|5”) such that
M= [E],...,Em_1,5ﬂlﬁﬂ]. If x ¢ [M}-, the ﬁ],...,am_] can be chosen so
that %G5 # 0, k = 1,...,m-1.

Now proceed exactly as in the proof of the theorem except that, since
we don't know that A is symmetric and negative definite on a subspace N, we

must define

£-1 1
St v st
-1 0 32-1
KQ = L]
0 0 n
Then
m-1 L£-m 1
- 11 12
B -
BQ Q 0 7 Jm-1
- 21 22
= - = B B -
BQ KQ AQ Q Q 0 J-m

X-| XZ }]
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22 _ 22 N
g = 1-8 B

-1 - A]]

21 _ 2
0 0 A

; and BQ Q

B = "AQ H B

Proceeding exactly as in the previous case (and noting that K, is

Q

curely symmetric, negative semidefinite of rank 2-1, and EEEQ = 0) and we

can use m-1 agents to get agreement on the first m-1 columns of B,. Here

Q

only the last column of BQ is necessarily O making a2 subspace M of dimen-

sion m. We need the last agent so that if ;k =0, k <m-1, we can define
k

gg = (0,...,0,1,0,...,0) and (ig)k = 1. Choose any of the agents, say 1,

m-1
and add (0,x__1se.n 0%y 120 to ié. Then ] X = & and the first m-1

columns of AQ plus the last have been realized. Q.E.D.

Corollary 2: Let A be an (#x2) matrix, x a vector in Rl, and p a

-}
vector in Ri, such that

1) pta=-xt, ap = 0.
2) p% = o.

Then there exists 2 agents {(uk,wk), k =1,...,L}, quadratic near p, such

that their aggregate excess demand function x{p) satisfies:

a) x(p) = x;
b} bx(p) = A.

li.i # 0, we can get the same result with 2-1 agents.

Proof: Take M = R in Proposition 2 and note that unless x = 0,

% ¢ (ML
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This completes the characterization of the restrictions. that can be
derived in general for the Jacobian of the aggregate excess demand function
of m agents in an economy with % goods, under the assumption of individual
rationality. Also a technique for gradually decomposing the aggregate
excess demand has been presented. We have tried to make explicit the
difference between the equilibrium X = 0 case and. the disequilibrium x # O
case. This difference can be exploited to show that it is possible to
decompose an arbitrary function x(p) satisfying homogeneity and Walras Law
into only %-1 rational individual agents on an open set not containing any

equilibria, rather than just at a point.

3. The Local Case

We now extend the results derived in the previous section for a point
by showing that to decompose an arbitrary excess demand function globally
it is sufficient (and in general necessary) to use % agents while to de-
compose an arbitrary excess demand function locally away from the aggregate
no trade point, even on an entire quadrant, it suffices to consider £-1
consumers. Furthermore, it is clear from Proposition B that 2-1 is a lower

bound even for local decomposition.

Proposition 3: Llet B(p): R + R be a positive, homogeneous, and

twice differentiable function. Then for any R = {pe R | T_ﬁ > e}, the
ltp

function B(p)ﬁT(p)ek is derivable from a monotonic, quasi-concave utility

function u for all p e RE k = 1,...,2 The same is true if we replace ek

P;
with any v € R and R with {p e R: Lp'y >0, ﬁ_ﬂ > el
P
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Proof: Debreu [1974] constructed indifference curves generating
the excess demand B(p)nT(p)ek, and Geanakoplos [1978] found a utility

function giving rise to the same excess demand.

Proposition 4: Let x{p) be a twice differentiable excess demand

. o
function. Given e > 0 and p0 £ Ri with x(po) # 0, there exists an open

o
set H jg_Rf containing po, and 2-1 individual excess demand functions

x‘(p),....x£'1(p) derivable from utility maximizing individuals {(uk,wk),
2-1

k=1,...,0-13 gg_Rz such_that x(p) = § xk(p) for a1l p € H. The xk(p)
k=1 -

can be chosen to be linearly independent. Furthermore, if xi(po) <0

while xj(po) >0 for al1 § # i, H can be taken to be the set of all

o
pe Rf such that x(p) stays within the quadrant containing x(po) and bounded

away from its boundary.

-]
lemma 1: letpe R&, xe T(p), x # 0. Then we can choose (2-1) of

k] kz-] 2'1 t 2 k.
the standard basis vectors e ',...,e and write x = J .1 - pp-Alp|fle 7,
i=]

with Bi >0, 1

1,...,8~1. If x is negative in only one coordinate, we can

take B, > 0, i=1,...,2-1. Note that T(p)? = 1 - pptﬂlp]f]y for any

ye Rl.

L
. . _ k e s
Proof of Lemma 1: X (xl,...,xk,...,xk) = kél x e . Projecting on

L
T(p) we get x = I} x [T - ppt/lefjek. Let 8% = {1 - pptﬂ|p|5]ek.

L £
k = ],-..,2. ThEH X = i Xke - BUt Z pke
= =3

k=1

)
k tg 124k
= k);]pk[l - pp Alpli e

£ PP 2 ) By
] kZ]pk(ek - “_:_l_F_)= P - (p/"p”z)(k;:] Pi) = p - p = 0_ Hence _ek - ;k(p‘]/pk)e:}’

J
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k=1,...,% Consider row x = ) x & . Since x# 0, p e R, and

Nt~

k=1

ptx = 0, we may, with no loss of generality, assume that x

g < 0. Replace

2-1 .

xléi by -Xg Z (pj/pl)EJ. We now have x expressed as a linear combination
j=1

of (&-1) of the ék's. If Xg < 0 as well, (i # 2) it may be the case that,

th

after 52 has been replaced, the coefficient on the i term is still nega-

tive--i.e., X5 - xz(pi/pi) < ¢, This is no problem. Simply eliminate Ei
in the same manner as above, reintroducing Ek {but with a positive coeffi-
cient), and thus adding a strictly positive amount to all the other
coefficients. Repeat this process until all the coe ficients are non-
negative. Note that since at every step one of the Ek's was entirely
eliminated, no more than (%£-1) of the coefficients can be strictly positive.
On the other hand, it may be that less than (2-1) of the coefficients are
strictly positive, for instance, if X; = xi(pi/pz) = 0 for some i # &,

both &' and e drop out. Q.E.D.

Proof of Proposition 4: We shall first consider the simpie case where

xz(po) < 0 while x](po),...,xz_](po) >0. Define 6= {x¢ R’“[xk >0,

k=1,...,2-1, x, <0, [xk[ >e, k=1,...,8}. Since G is open and x{p)

£
©
is continuous, H = {p ¢ Rilx(p) € G} is open and contains po. We now

define xk(p) = Bk(p)[l - pptﬂlMIz]ek, k = 1,...,21, where Bk(P) =

Max[x, (o) - 31(9)[pk/pg]' €], k =1,...,2-1. Note

that Bk(p) is homogeneous,. and Bk(p) is strictly positive everywhere on
Ri.a Thus, by Proposition 3, xk(p) is derivable from a monotonic, quasi-
concave utility function u for all p e Rﬁ. Moreover, for p e H, x{p) £ G,

Ix (p)] > €, k=1,...,2, and 8, (p) = x,(p) - x,(p}(p,/p,}, and sO
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T (p)e¥ el 221 ¢ 'f (p)E, = x(p) N peH Th
x (ple” - p e = x {ple, = x(p), for all p e H. is
k1 Py k=1 K ke KK

completes the proof of the proposition for the special case where

xk(po) > 0’ k = 1,-0.,2'1. Hhi‘e Xz(po) < 0.

Remark: In the case of a two good market, where except for the point
x = 0 the conditions for the special case considered above are always ful-
filled, given any p0 such that x(po) # 0, the entire segment of the curve
x{p) can be rationalized as the offer curve of a single rational individual
so long as it stays in a compact set in the open quadrant containing x(po).
In the following diagram, x{p} can not be globally explainad as the excess
demand function ¢f a single rational agent since it violates the Weak Axiom
of Revealed Preference: At prices B. x(;) is chosen through Etx(p) <0,
while at prices p, x{p) is chosen even though th(ﬁ) < 0. Nevertheless,
the curve x{p), so long as it stays in the same quadrant and bounded away
from the coordinate axes does satisfy the Strong Axiom of Revealed Prefer-
ence and hence can be considered as part of the excess demand function of
2 single rational consumer.

To complete the proof of Proposition 4, we shall need the following.

-]
Lemma 2: For pe Rf, any {2-1) of the standard basis vectors of Ri.

k k
e ],...,e i'l, satisfy the property that their projections on T{p) span

T(p) and are linearly independent. Consequently, any x € T{p) can be

uniquely written as x = { Bk [T - pp Alp]F]e = Z Bk e .
i=1 i =1 i




{x]ptx=0)
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k k1 k

proof of Lemma 2: Consider the linear map from [e 1,...,e R 1'13

iEI ki £i1 [ tf‘ IF ki 1i1 *ki
to T(p) given by g, e - B, 1 -ppfiplile = g, & '; it
° 51Ky 51 K 51 Ky

maps a space of dimension {2-1) into T(p) whose dimension is (2-1) as well.

k
But its kernel is simply {0} since p ¢ [e 1....,e 2'1].

k k
have dimension {%-1)} and span T(p); hence e 1,...,5 21 are linearly inde-

Thus its range must

pendent and span T(p). Q.E.D.

We can now complete the proof of Proposition 4. Proceed as in lemma }

to get Bi(p) >0, i=1,...,81, and write x(po) =

i1 k., 2-1 k.
.E]Bi(po)[l - po(po)tﬂlpolfle ' = izi Bi(PO)E ‘. From Lemma 2,
i= £

Ky k

] ,...,E -1

are linearly independent and span T(po). Now suppose, to
begin with, that B,(p°) > 0, 1 = 1,...,2-1. Then as p varies around 5’,
since x(p) is continuous so is Bi(p)’ i=1,...,8-1, and hence, in some
neighborhood of po, Bi(p) >0, i=1,...,2-1. The continuity of Bi(p)

following from the continuity of x(p) and the Yinear independence of

k k k k,
e ‘,....e L". We now define xi(p) = Ti(p)[I - pptA]plf]e L yi(p)é ',

where Ti(p) = Bi(p) + Max(G-Bi(p). 0), with & as smal) as we like in the

open interval (O, min{B](po),....81_](90)}). Furthermore, Yi(p) is homo-

-]
geneous and strictly positive on R+. i=1,...,2-1. Thus, by Proposition 3
each, x‘(p), ts the excess demand function of a rational agent. Further-
. [-]
more, for all pe K, H={p e RilBi(p) >8, 1 =1,...,2-1],

A el kol kK X,
I x(p) = Yv.(p)e' = §B.(p)e' =x(p). Note that the & ''s form the
i=1 =1} i=1 "
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poundaries of a "quadrant” in T{p). Consequently, we have shown that as
long 85 x(p) stays bounded away from the boundary inside the same quadrant,
(p) can de explained as aggregate behavior of (2-1) rational agents.
pote, in addition, that the subset of the graph of x(p) that can be
rationalized using (%-1) agents need not be connected.

Figure 2b shows the segment of the original offer curve ih Figure 22
that can be attributed to 2-1 (i.e., 1 in this case) rational agents.
i

2-1 k
Finally, we consider the case where x(po) =} Bi(pDJE and at least
i=1

:nd at least one of the Bi(po)'s is equal to zero. In that case consider

k.
Si'] ={pe Ri lell = 11, Then 32“1 is compact and pte | > & > 0 every-
k.
where on 52'1, i =13,...,2~1. Thus by choosing y ' in an open neighborhood
k. k
around € | it will still be the case that pty i > %u > 0 everywhere on
B-1 t ki L
SE » 1= 1,...,8-1. Hence, p'y > 0 everywhere on Re' Furthermore, the
k k

i,

2-1 Ky 21
y 's can be chosen such that everywhere on RO . p¢ Iy ",....y ].

k. k.
Consequently, defining y 1. {1 - pptﬂip]F]y Y.di = 1,...,2-1, we see that

k k 2-1 k.
M) = 5 'heey 217 and x(p?) - ,z]a‘.(p")& Fwith £:06%) > 0,
1=
. -1 -ki
T=1,...,2-1. For any x(p) let x(p) = ) £.(p)y ". As before, £,(p) is
i=1
continuous in p. Proceeding as in the earlier part of the proof we define
k k.
i , i - s
x'(p) = by {p)}{I - oo /itoifly | - by (ply pe Ré’. i=1,...,%1, where
k,
bi(P) = £i(p) + Max{0, 6-£i(p)}. Hence pty V50 for al p e Ri (but not

o
necessarily on Ri), and bi(p) is strictly positive and homogeneous on Ri.
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k.
Moreover, on H = {p & R§|pt} V56, i =1,...,8-1} we have that

k. k

-1 2-1 . 2-1 ks
{] x'(p) = iI] b.(p)y . iI] g(p)y ' = x(p). Consequently, as long
i: = =

as x{p) lies bounded in the interior of the positive quadrant defined by
Ky kg
[ in T(p), it can be derived as the aggregate excess demand

of -1 rational agents. Q.E.D.
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FOOTNOTES

lye shall now concern ourselves with problems that arise if the aggre-
gate endowment vector is observed (see [ ] for a discussion); neither shall
we consider the case of market demand functions--i.e., demand functions
with prices and nominal income as independent variables (see [ ] for a
discussion).

zwe use the term "homogeneous" to refer to homogeneity of degree zero.

3A11 vectors are column vectors. A superscript "t" denotes the
transpose.

4Given a set of vectors {y1,..., " in Rz, [y1,...,me denotes their

span, and [y‘,...,ym]L-its orthogonal complement. Given a matrix M, [M]
denotes the subspace spanned by the columns of M.

SHe use m, to denote the projection to the subspace M.

6 =2-1

This is done as follows: Let (E‘,...,e‘ » P/|p|) be an orthogonal

-}
basis for R*--this is possible since p e Ri--and let p be a rotation taking

_ e LI k -1, &
X into F—ﬁIIXH, where e = 7 e'. Then q can be defined as p (e ).
e k=1

7The matrix Q has columns (El,....a£'1. p/lpil) -
8Bk(p) is not differentiable everywhere, but by making the function

a bit more complicated we could easily remedy this. The same remark applies
to the yi(p) we define later.
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