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0, ABSTRACT

Cramér's inversion formula for the distribution of a quotient is
generalized to matrix variates and applied to give an alternative deriva-
tion of the matrix t- distribution.
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1. INTRODUCTION

Useful inversion formulae that apply for scalar ratios of random
variates and proceed from the joint characteristic function of the com—
ponent variates have been known for some time. In particular, if the
scalar random variate n > 0 and has a finite mean Cramér [1] and Geary

[3) give the following formula for the density of the ratio 7z = £/n
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where ¢(sl, 82) is the joint characteristic function of (E,n) . Gurland
[4] generalized (1) by considering the multidimensional case of a vector
of ratios and relaxed the requirements that n necessarily be positive or
have a finite mean (by using principal values in the integrals tha£ define
the inversions).

Closely related statistics that take the form of matrix quotients
arise frequently in multivariate analysis. A common situation (leading,
for example, to the matrix t-distribution) is the following. Let A be

a positive definite nxn matrix variate partitioned as
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where A22 is a square submatrix of order k ; and suppose interest centers

on the distribution of the quotient X = AE%AZl . (For example, when A

is central Wishart with degrees of freedom T > k , X is a regression



coefficient matrix for multivariate normal samples and is known to have a
matrix t-distribution [2], (6], {7]). Corresponding to the matrix

F= (fij)nxn we define the matrix nF = (nijfij) where nij =1, 1/2

for i =3, 1 # j respectively. We denote the joint characteristic

function of A by ¢*(Fn) = E{etr(inFA)} . Partitioning F and F

conformably with A in (2), we define
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(3) ¢(F21, anz) = E{etr(iF 21Aél . 22A22)}
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which is the joint characteristic function of the distinct elements of

(A21, A22) . With this notation we develop an inversion formula for the

joint density of the matrix quotient X = AEéAZI which generalizes (1)

above.

THEOREM. Suppose the joint density funciion f(A21, A22) of (AZI’ Azz)

exists everywhere and’ Agy 18 a positive definite matrix. Then, 1f

E(det A,,) extsts, the density function of X = A£§A21 ig8 given by

L
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2[D22¢(F21" (XFy) + FpyX)/2)] dFy,

where D 18 the differential operator det(a/Banz)
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2. PROQF OF THE THEOREM

By direct transformation of (A A22) - (X, A ‘we deduce that

21° 22)

(5) £(X) = [ E(Ay,X, Ayy)(det Ay,) dAy, -

A22>0



We observe that the joint density

1

(6)  £%( A,y = [E(det Azz)l] (det A22)2f(A A

Agypo 210 A22)

defines a new distribution whose characteristic function
. ] B
E{etr(1F21A21-+inF22A22)} is given by
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(7) = [E(det A22) ] D22¢(F21, anz)

where the absolute convergence of the integral allows us to interchange
the order of integration and differentiation.

Now consider the distribution of the matrix variate W = A21 - A22X
given X where the joint distribution of (A21, A22) is defined by (6}.

The density of W is
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From (5) and (6) we see that f(W) reduces to [E(det AZZ) ] £(X) when
W=20. We further note that the characteristic function of W is ob-
, _1ogr, ' .
tained by setting nF22 = - 2(XF21+F21X } in (7), that is
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The required formula (4) for the density function f(X) now follows from
inversion of the characteristic function (9) and from taking its value at

W=20.



3. APPLICATION TO THE MATRIX t-DISTRIBUTION

Consider the canonical case of a central Wishart matrix A with

degrees of freedom T and covariance matrix I The joint characteris-

tic function of A is

¢*(F ) = [det(1 -ZiFn)]_T/Z

and simple manipulations yield

= - ’ t _T/2
(10) ¢(F21, anz) [det (T 2inF22-+F21F21)] ;

Moreover,

2 9z ' ‘T/Z-R'
(11) D22¢(F21, nF22) « [det(I 21nF22-+F21F21)]

(see, for example, [5] pp. 479-480). Substitution of (11) in (4) leads

to the following expression for the density function of X = A_l
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We transform F21 > 7 = (I+XX')_1/2(F21-—iX) in the integral in (12).

This transformation has Jacobian [det(]:+XX')]JL/2 and we deduce that

a3 £ = [derx)]1" T 2) decrzzy ) az

Rkl

The domain of integration in (13) can be taken to be Bkj' as before since
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. . L ;
the integrand is analytic in a strip of Ck that contains

ki

R

-1/2

- 1(I+XX") X . It follows directly from (13) that the density

1

function of X = A._.A is

22721

£(X) = c[det(I+xx')]‘(T+£)/2

where the constant in (14) takes the value

- ok2/2, (1 Lomio_
=5 TQ[Z(T+£)]/I“E[2(T+2 k)]

as can be determined by elementary integration ([2] p. 512).
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