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INTEGRAL POLYHEDRA IN THREE SPACE®

by

Herbert E. Scarf

I. Introduction

In a series of recent papers {Scarf, 1977; 1982, Part I; 1982,
Part 1I], I have introduced a particular class of convex polyhedra in
R" , arising in the study of integer preogramming problems with n wvar-
iables. I; the present paper a detailed analysis of these polyhedra will
be given for the case in which n = 3 ; the analysis is based on an
unpublished theorem demonstrated several years ago by Roger Howe, which
seems to have no immediate generalization to higher values of n .

The arguments of the paper are elaborate. It is possible, however,
to state an important consequence without any reference to the details
of these arguments, and this will be done in order to provide the reader

with some appreciation of the scope of the paper.

Let

a a a
L 31 %32 %33

*The research described in this paper was supported by a grant from the
National Science Foundation. I am deeply grateful to Roger Howe, Sergiu
Hart, Andrew Caplin and Philip White for the many significant conversa-
tions I have had with them about the subject of this paper.



be & matrix with real entries. We shall be concerned with the set of
integral vectors h = (hl, h2, h3) which satisfy the linear inequalities
Ah >b , where b = (bO’ bl, b2’ b3)' 3 for each such b we assume
that fﬁe cardinality of this set is finite,

The set of solutions to a system of linear inequalities is a convex
set when the variables are permitted to assume arbitrary real values.
The property of convexity is indispensible in developing the simplex
method for the solution of linear programming problems and in demonstrat~
ing the major theorems of linear activity analysis. The absence of
convexity, when the solutions to the system of linear inequalities are
required to be integral, is the basic difficulty in the study of integer
programming prohlems.

Qur major conclusion will be to show that a very weak but useful
version of convexity can be established for the integral solutions of
Ah > b, when A has four rows and three columns. We ghall demonstrate
that each such matrix A has associated with it a family of parallel
planes

2 h1 + lzh

1 + 2.h, = ¢

2 33

with El s 22 » Ay specific integers whose greatest common divisor

is unity, and with ¢ assuming arbitrary integral values. The planes
will depend only on A and not on the right hand side b ; they will
possess the following property:

For any b, if the system Ah > b has integral solutions on
each of the two planes thl + £2h2 + 23h3 = ¢ and llhl + zzhz + £3h3 =

then the same system will have integral solutions on each intermediary

plane £1h1 + £2h2 + £3h3 = " . with ¢" an arbitrary integer between

¢ and c'.

cl



As we shall see, a knowledge of this family of parallel planes
will permit us to solve the integer programming problems associated with
A, by solving the corresponding two variable problems on each such plane.
Specifically the solution on such a plane will permit us to say on which
side of the plane the optimal solution to the original three variable prob-
lem lies. This is an unexpected form of decoupling which would be of
great significance for integer programming if a suitable analogue could
be found for higher values of n .

Let us now introduce the class of convex polyhedra whose analysis

forms the basis for this conclusion.

1.1 [Definition]. Let Zn be the lattice of points with integral
coordinates in R® . A bounded convex polyhedron in R" 1s defined to

be an integral polyhedron if its vertices are in o , and if it contains

no members of Zn other than jts vertices.

The basic problem is to provide a characterization of integral
polyhedra, up to auniwmodular transformation, i.e. a linear transformation
which preserves the lattice . The following theorem provides an upper

bound on the number of vertices of such a polyhedron.

1.2 {[Theorem]. The number of vertices of an integral polyhedron

is less than or equal to 20 .

The proof of this theorem is based on the observation that 1f there

are more than 2" vertices, then there will necessarily be at least one

pair, say vl and vz y» with vi vi mod (2) for 1i=1,2, ..., n.

The point (v1-+v2)12 will therefore be in the polyhedron, contradicting

the definition.



The unit hypercube in R® 1s an example of an integral polyhedron
with the maximal number of vertices. As we shall see, however, when
n >3, the typical integral polyhedron is much more complex and cannot
be reduced to the unit hypercube by a unimodular transformation. In par-
ticular the volume of such a8 figure--which is a unimodular invariant--
can be arbitrarily large. Our inability to draw on theorems from the
Geometry of Numbers, which relate the volume of convex polyhedra to the
number of lattice points they contain, is based on the fact that integral
polyhadra need have none of the symmetry properties which are indispens-
able in this area.

Integral polyhedra have a very simple characterization when n = 2
(see Scarf, 1981, Part II). Thenumber of vertices iseither threeor four; in
the former case a necessary and sufficient condition that a triangle with
integral vertices be an integral polyhedron is that it have an area of
1/2. Moreover it can be transformed by a unimodular transformation to

the triangle of Figure 1.

(0,1)

(0,0) (1,0

FIGURE 1

A planar polyhedron with four vertices is an integral polyhedron
if and only if it ie a parallelogram with integral vertices and unit area;
therefore equivalent under & unimodular transformation to the wnit square.

Prior to such a transformation the parallelogram may take a more general



form, as illustrated in Figure 2, where the vertices are given by

NN MWL

(p,q)

(0,0

FIGURE 2

with (p,q) positive integers which are prime to each other, with (B8,Y)

and (B',Y') non-negative integers satisfying
Bg -~ yp=1,

and R+B'=p, Y+y'=q.
When n = 3, the number of vertices of an integral polyhedron

can be 4, 5, 6, 7 or 8. Figure 3 provides an example of such a polyhedron

FIGURE 3



with eight vertices. Four of the vertices lie on the plane h, =0,

1

and form the vertices of the square; the remaining four vertices are those

of an arbitrary parallelogram of unit area on the plane h1 =1 , sBay

(1,0,0) , (1,8,v) , (3,8',¥') and (1,p,q) , withthe samenotation asbefore

The ¢onvex hull of these eight points ¢learlycontains no other lattice points.
An easy way to see that this polyhedron is not equivalent to the

unit cube under a unimodular transformation is to notice that it contains,

as a proper subset, the tetrahedron

lpq

001

010

100

FIGURE 4

with vertices

—
o
o
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-
[
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whose volume is given by (p+q)/6 . An alternative argument is that the
number of faces of this polyhedron will, in general, be larger than the
number of faces of the unit cube.

Howe's remarkable result is that the polyhedra of Figure 3 are--
up to a unimodular transformation—-the most gene;fal integral polyhedra

in 3-space.



1.3 [Howe's theorem]. An integral polyhedron with eight vertices
in 3-space can, by a unimodular transformation, be brought into the form

where the vertices are given by

with p,q positive integers which are prime to each other, and with
(8,y) , (B8',y'") non-negative integers satisfying fq - yp=1, B +8' =p,
Y+ y' = q . Moreover an integral polyhedron with fewer than eight ver-

tices is a subset of an integral polyhedron with eight vertices.

An argument for Howe's theorem will be provided in Section III of
this paper. An equivalent statement of the theorem, given our description
of planar integral polyhedra, is that there is a unimodular transformation
which places the vertices of an integral polyhedron in 3-space on the
two planes h1 =0 and h1 =] . It will be useful for us to describe
Howe's theorem in a form which does not involve a unimodular transforma-

tion; we introduce the following definition:

1.3 [Definition]. A plane in 3-space will be termed a lattice
plane if it passes through three non-colinear lattice points. Two parallel
lattice planes will be said to be adjacent 1f there are no lattice points

between them,
An slternative form of Howe's theorem 1s therefore

1.4 [Alternative form of Howe's theorem]. The vertices of an

integral polyhedron in 3-space lie on two adjacent lattice planes,



- The term characteristic plane will be used to describe the lattice

plane (or one of its parallel translates) associated with a given inte-
gral polyhedron. Typically such a polyhedron will have a unique char-
acteristic plane associated with it, though there are examples, such as

the unit cube, with several characteristic planes. Howe's theorem gives
rise to an obvious conjecture about the form of integral polyhedra with

2" vertices in n-gpace, i.e. that all of the vertices lie on two adjacent
lattice planes of dimension n-1 . Unfortunately there are simple examples
which show that this conjecture is false when n = 4 , and the true

nature of integral polyhedra in higher dimensions is not known.

II. The Collection of Integral Polyhedra Associated with an Integer Program

Integral polyhedra arise in a very natural way in the study of
integer programming problems. Let
— -1
201 " %on

11 °°° 21n

ml " amn ,

be an (m+l) xn matrix and h = (h,, ""hn) a typical lattice point
in n-space. We make the following simplifying assumptions about the

matrix A .

2,1 [Assumptions]. The entries in each row of A are independent

over the integers, in the gense that the origin is the only lattice point

satisfying

Ja b, =0, for any 1 .
i 1373



Moreover the set of lattice points satisfying the inequalities

_ — . ]
ao1 cee aOn b0
all e aln b1
. h>1.

L a ml LI N ) amn _ | bm J

is assumed to be finite for any choice of the right hand side.

Consider a placement of these inequalities, given by a particular
value of the right side, so that the region defined by the inequalities
is free of lattice points. Enlarge the region by relaxing the inequali-
ties until no further relaxation is possible without introducing a lattice
point., In this process some of the constraint planes may be relaxed to
infinity; the remaining planes will be relaxed so tﬁat they contain a
single lattice point. Clearly, the convex hull of the lattice points ob-
tained by this process will be an integral polyhedron. Figure 5 illus-

trates the construction with five inequalities in 2-space. The resulting

FIGURE 5
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integral polyhedron is given by the parallelogram of unit area defined
by the dashed lines.

The reader may easily verify that a variety of parallelograms arise
when these inequalities are relaxed in a different order, or if the process
begins with a different lattice free region. In n-space as well, the con-
straint matrix A will have associated with it, a collection of integral
polyhedra obtained by relaxation of the constraint planes from an arbitrary
lattice free region. Many of these polyhedra will be equivalent to each
other under translation; the number of equivalence classes will typically
be finite but large.

In order to describe the role played by the collection of integral
polvhedra associated with the matrix A in the solution of integer pro-
gramming problems, we introduce the following definition of neighboring

lattice points.

2.2 |[Definition]. Let the matrix A be given, Two lattice points
h and k are defined to be neighbors i1f they are vertices of an integer
polyhedron obtained by relaxing the constraint planes from a lattice free

region.
Consider an integer program of the form

max aolh1 + .. ¥ aOnhn

auh1 + ... + alnhn 3_h1

aﬂwh“+%ﬁi%‘

with h = (hl, ...,hn) integral. An integral point h which satisfies

the inequalities of the programming problem is said to be & local maximum
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if every neighbor of h either violates one of the inequalities, or yields
a lower value of the objective function than does h . The following

theorem is demonstrated in [Scarf, 1982, Part 1).

2.3 [Theorem]. For any value of the right hand side, a local

maximum to the integer program is global.

It is of interest to inquire whether there are alternative defini-
tions of neighborhoods, based on the matrix A , for which a local maximum
is global. For each lattice point h , 1let N(h) be a finite set of
lattice points called the neighborhood of h . We require the neighbor-
hood system to have the following two properties:

1. N(h) = N(0) + h,
2. The neighborhoods are symmetric in the sense that h € N(0)
implies that -h € N(O) .

The first property states that neighborhoods associated with two
different lattice points are translates of each other, and the second implies
that 1f h € N(k) , then k € N(h) . Figure 6 illustrates a typical

neighborhood of the origin for a matrix A with two columns.

(0,0)

FIGURE 6

The following converse to Theorem 2.3 is also demonstrated in

[Scarf, 1982, Part I].
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2.4 [Theorem]. Let N{(h) be a neighborhood system with the
property that a local maximum to the integer programming problem is global,
for all right hand sides. Then N{h) contains all of the neighbors of

h gilven by Definition 2.2.

These two theorems imply that the collection of integral polyhedra
obtaining by relaxing the constraint planes from a lattice free region
provides the unique minimal neighborhood system for which a local maximum
is global for all integer programs obtained by specifying the right hand
side. This result motivates the study of the particular class of integral
polyhedra which are associated with the specific matrix A .

The second major result of the present paper—-in addition to Howe's
theorem—-will be the demonstration that an important property is shared by
all of the integral tetrahedra associated with a matrix A with four rows
and three columns. This property will suggest a rapid computational pro-
cedure for integer programs with three variables and three inequalities,
Before describing this result, however, it is useful to discuss the two
variable problem drawing on the material presented in [Scarf, 1982, Part II].

If the matrix A has three rows and two columns the associated
integral polyhedra are planar triangles of area 1/2. It may be shown
that, up to translation, only two triangles arise, which may, by a uni-
modular transformation be brought into the form displayed in Figure 7,
i.e. the two triangles obtained by slicing the unit square along one of
its diagonals. For such a problem the minimal neighborhood system con-

tains gix lattice points.

FIGURE 7
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When A has four rows and two columns the associated integral
polyhedra are triangles of area 1/2 and parallelograms of area 1. The
collection of parallelograms exhibits a very specific structure. Consider

a particular parallelogram with vertices

NI

with B+8" =p, y+y' ' =q, and Bg-yp=1.

®%y") (@)

(0,0) (8,7)

(0,0) (0,0)
FIGURE 8

The two parallelograms obtained by replacing either (B8,y) or (B',y')
by their reflections through (p,q) will be called successors of the
original parallelogram, as in Figure 8. The two parallelograms obtained
by replacing (p,q) by its reflection either through (8,yY) or (8',y")

will be called predecessors of the original parallelogram. A chain of

paraljelograms is a linearly ordered finite sequence of parallelograms,

with each parallelogram followed by one of its two possible successors.

-1

There are, of course, 2 different chains of length 2 , starting

with a specific initial parallelogram. Figure 9 illustrates a particular
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chain beginning with the unit square. Since the chain is linearly ordered

- &ﬁ:i:::;;? — —

FIGURE 9

there will be no ambiguity in using the terms right and left to refer to
successors and predecessors.
A proof of the following theorem may be found in [Scarf, 1982,

Part II].

2.5 [Theorem]. The integral polyhedra associated with & 4 x2
matrix consist of triangles and paralielograms. Up to translations, the
parallelograms form a chain. There are two pairs of triangles, the first
- palr obtained by slicing the initial (or leftmost) parallelogram through
the diagonal not containing the origin, and the second pair obtained by
slicing the final (or rightmost) parallelogram through the diagonal which

does contain the origin.

If the chain is given as in Figure 9, the two pairs of triangular
polyhedra are as in Figure 10. Each of the triangles is obtained by
relaxing the constraint lines from a lattice free region, with a particu-~

lar line being relaxed to infinity.
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FIGURE 10

Now let us turn our attention to a matrix A of size 4 x3. Each
integral polyhedron associated with A will be a tetrahedron, and by
Howe's theorem will have a characteristic plane so that the four vertices
are contained on this plane and an adjacent plane. Two tetrahedra which
are translates of each other will, of course, have parallel characteristic
planes which are identified as being the same. There may however be an
substantial number of non-translation equivalent tetrahedra arieing from
the same matrix A , and there is nc apparent reason to think that they
share a common characteristic plane. But as the following theorem indi-

cates they do indeed.

2.6 [Theorem)}. The integral tetrahedra arising from a 4 x3 matrix

have a common characteristic plane.

The proof of theorem 2.6 is quite difficult, and will be given after
Howe's theorem is demonstrated in the next section. The latter theorem,
of course, implies Howe's theorem for tetrahedra, since any particular
integral tetrahedron is the relaxation from a lattice free region of some
system of four inequalities in three space. No generalization of this
theorem to higher dimensions is known.

The theorem may be interpreted in terms of the minimal neighbor-

hood system for which a local maximum is global when the integer program
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consists of three variables and three inequalities. It states that, after

a unimodular transformation, the neighbors of any lattice point (h,, h,, hj)
will have their first coordinates equal to hl -1, h,, or h1-+1 .

If the three variable problem is solved as a two variable problem on the
plane h1 = a , a sufficient condition for optimality is that no improve-
ment be possible on the two planes hl =a+1.

I1I. Howe's Theorem

We begin by demonstrating Howe's theorem for tetrahedra. We have

the following preliminary lemma:

3.1 [Lemma]. An integral tetrahedron can, by a unimodular trans-

formation, be brought to the form in which the four vertices are

1 0 0 X
0 1 r 0 3 y »
0 0 1 z

with x>0, y>0, 2z2>1.

Take an arbitrary face of the tetrahedron, and by a unimodular
transformation, bring it to the plane 2z = 0 . The three vertices on
this plane form an integral triangle which can therefore be put in the

form

and without loss of generality we may assume that the fourth vertex
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(%,¥,2) has z >1 . For any integers & and b the transformation

x' = x - az
y' = y - bz
z' = z

is a unimodular transformation which leaves the first three vertices un~
changed. By an appropriate choice of a and b, we can make
0<x'"<z and 0 <y' <z . Without loss of generality we may therefore

assume that the fourth vertex satisfies
0O<x<z and O <y<z.
If z<x+y, then

1 0 1 0 | ox
0} +a 0/{+a,|1 | + ol ¥

1 0 0 0 z

with a, = 1/z , ay = l-y/z>0, a, =1~ x/z >0, and

@ =1l=-ay;=~o0g3=a = (x+y-z-1)/z > 0 , contradicting the assumption
that the tetrahedron ctontains ﬁo lattice points other than its vertices.
It follows that 2z > x+y .

The unimodular transformation

z2'' = x~-y+z+1

brings the four vertices to the form
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o 1 0 X
0 0 1 v,
1 0 0 z!

with x>0, y>0, z'>1 . This demonstrates 3.1.

Let the four vertices now be as in Lemma 3.1. These vertices will
clearly lie on two adjacent lattice planes if x <1, or y <1, or
z <1 . In order to demonstrate Howe's theorem it is therefore sufficient
to show that there is a fifth lattice point in the tetrahedron whenever

X, y, 2z are all strictly larger than unity.

3.2 |[Lemma]. Let the integral tetrahedron have the four vertices

of Lemma 3.1, with x, y, 2z >1 . Let D = x+y+tz-1 , and for

h=1, 2, ..., D1 , let f(h)=l-—,5—1§’_[+li—l§‘_[+l_£—l;'—l, where rt-l is
the least integer > t . Then f(h) = h+2 for all h =1, 2, ..., D-1 .
In order to demonstrate Lemma 3.2 we assume first that f(h) < h¥l

for some h =1, 2, ..., D-1 , and define a lattice point (a,b,c) by

azF‘Tﬂ’ blllﬂ’ “3"%;['

and atb+c = h+l . Then

-] O
a] 1 0 o x| ¢
[4 3
bl=fo 1 o y|| 2
[+
cL“OOIz3
=
L %4

with
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h
34"33_0,

4
and ZGj =1, It follows that if the tetrahedron is indeed an integral
1

polyhedron, we must have f(h) > h+2 .

To complete the proof of Lemma 3.2 we distinguish two subcases:

1. x, y, and 2 are all prime to D . 1In this case it is
trivial to verify that f£(h) + £(D-h) = D¥4 . The simultaneous inequali-
ties f(h) > h+2 , and £(D-h) > D~h+2 , therefore imply that each 1is
an equality.

2. One of the integers, say x , has a common factor with D .
But then xh/D is an integer for some integral h with 1 < h < D-1,

and for that value of h we must have
f(h) + £(D-h) < D43 ,

It follows that either f(h) < h+1 or f(D-h) < D-h+l , and either one
of these inequalities 1s sufficient to produce & fifth lattice point in
the tetrahedron. Lemma 3.2 has therefore been demonstrated.

We complete the proof of Howe's theorem for tetrahedra by showing
that the conditions f(h) s h+2 , and x, y, 2 each prime to D,
are inconsistent with x >2, y>2, 2z > 2 . Several arguments are
available; we adopt one using elementary number theoretic considerations.

Begin by constructing the table:
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i
_ -
i X y z
2 2x 2y 2z
3 3x 3y 3z

. L] * L]
* . - .
- -

D-1 L(D-l)x (D-1)y (D-1)z l

with all entries reduced modulo D . Observe that the sum of two rows
this table, or an integral multiple of any row in the table, when reduced

modulo D, is either identically zero or equal to amother row of the

Since F’Tﬂ = Fl%l—)—i] +1 1f hx mod(D) < x , and F’T{[ " l‘(h-&)x’{

otherwise, it follows that in each row of the table (other than the first)

table.

precisely one of the three conditions (hx)mod(D) <x , (hy)mod(D) <y,
(hz)mod (D) < z must hold if the function f£f(h) is to be linear,

For example when (x,y,z) = (2,3,7) , D =11 and the table is

given by

h f(h)

11

®
C)

10

w

8 ®J_ .12
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In each row an entry 1is encircled if it is less than the corresponding
entry at the top of its column. As may be seen f(h) - £(h-1) 1is equal
to the number of encircled elements in row h . There are no encircled
entries in row 3; this implies that f 18 not linear and the tetrahedron
whose vertices are the three unit vectors and (2,3,7) contains an addi-
tiocnal lattice point,

Since x, y, 2 are prime to D each column of the table must
be a permutation of 1, 2, ..., D=1 . It follows that there are 3 rows

of the table of the form

D-1 a, a3
b1 D~1 b3
¢y cy D-1

Observation 1. If x, y, z > 2, the three rows are distinct.
If this were not so, there would be an h with, say, hx = D-1 mod(D)
and hy = D-1 mod(D) . But then (D-h)x =1 mod(D) , (D-h)y =1 mod(D) ,
and row D-h of the table would contain at least two encircled elements.
Observation 2. If x, y, z > 2, the entries in the above three
rows are all different from 1. Suppose to the contrary that & = )

But then

y(O-1) , ¥, ya, mod (D)

is a row in the table. Since the entry y appears in the second column

in the first row only, we must have y(D-1) = x mod(D) , and therefore

(x+y) = 0 mod(D) . But D = x+y+z-1 and this implies 2z =1 .,
Observation 3. If a, <y then by <2z and ¢; <Xx . Assume

to the contrary that a, <y and b1 < x . Then
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D-1+b D=-1+a +b

g s 83%bg mod (D} ,

1 ]
or b1 =1, a, -1, 33-+b3 mod(D) 4is equal to hx , hy , hz mod(D)
for gome h . Since a,-1 ¢ 0, this 18 an actual row in the table
with at least two encircled entries. This contradiction implies b3 <z,
and a similar argument shows that ¢y <X .

Without loss of generality we may therefore assume that the encircled

entries in these three rows are

Observation 4. b1 + ¢y <b, a, + ¢y < D, ay + b3 <D, To

see this we again add the first of these two rows mod(D) , and obtain

bl—l s . 33+b3 mod (D)

But a3 + b3 < D-1+z . We cannot therefore have a3 + b3 >D, slnce
this implies that a, + b3 mod(D) < z . The other two inequalities are
verified by similar arguments.

The final argument which contradicts x, y, 2 > 2 1s obtained

by adding the three rows together mod(D) and obtaining the row

b1+c1*1 . a2+c2—1 ’ 33+b3-1.

But b1+c1-1 >x, a, +c2—1 >y, a3+b3-=-1 > 2 , & contradiction
which demonstrates that at least one of the three coordinates x , y, =z
must be 0 or 1, and the four vertices of the integral tetrahedron lie on

two adjacent lattice planes. This verifies Howe's theorem when the integral

polyhedron has four vertices.
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One final observation before proceeding to the case in which the
integral polyhedron contains more than four vertices: Let one of the

coordinates, say x., of the fourth vertex, be equal to 0. Then

BENEEM

constitute an integral triangle with y >0, 2z >1 . We must have

vy, 2 = (1,1) and the four vertices are

a tetrahedron of volume 1/6. It follows that if thg integral tetrahedron
has volume > 1/6 , all three of the coordinates x, y, 2z are >1,
and at least one of them is equal to unity. If, say, x =1, then Yy
and z must be relatively prime and the tetrahedron is as in Figure 4.

We begin our analysis of integral polyhedra with five vertices:

3.3 ([Lemma)]. If four of the vertices of an integral polyhedron
with five vertices lie in a single plane, then the fifth vertex lies in
an adjacent plane.

Without loss of generality we may assume that the four co-planar

vertices are given by



24

and that the fifth vertex is given by x, y , 2z .with x > 2 . By
subtracting suitable multiplies of the first coordinate from the second
and third coordinates we may assume that 1 <y <x ; and 1 <z <x .

But if x < y+2-1 , then

; N
1 0o 0 o x| *
1|l=10 1 0 vy "2 ’
1 o 0 1 2|3
ey
with @ = (y+z-x-1)/x , a, = 1 -y/x, a, = 1-2z/x, a, = 1/x ,
and Euj =1 . If, on the other hand x > y+z-1 then
1 r 1
1 (0 0 o x| |
1 (=11 1 0 vy %2
1 1 0 1 z |3
\ o |

with o = (x-y-z+1)/x , a, = (z-1)/x , a; = (y-1)/x , a, = 1/x ,

4
and Zaj = 1 . This contradiction demonstrates Lemma 3.3.
1

We now assume that no four vertices of the five vertexed integral
polyhedron are co-planar, and demonstrate a lemma which permits us to

draw upon our earlier analysis of tetrahedron.

3.4 [Lemma). Consider an integral polyhedron with five vertices,
no four of which are co-planar. Then there is a subset of four vertices,
say vl . v2 . v3 , va with the following two properties:

1. The volume of the tetrahedron geﬁerated by these four

vertices is > 2/6 , and
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2. The line joining the fifth vertex and one of these four ver-
tices passes through the interior of the triangle formed by the remaining

three vertices.

FIGURE 11
In order to demonstrate lemma 3.4 we begin by finding a; s @y
5 5 j
Ay 5 @ s Gg not all zero, with ;Gj = ( , and §ajv = ) ., None

of the a's are equal to 0, since otherwise the remaining four vertices
are co-planar. If four of the a's have the same sign, say Gyy «aes Qg < 0

and al <0, then

o a a [+
Vdaeo22_ 133 Ju I3
Gl Gl 01 Cll

and v1 would be a convex combination of the remaining four vertices,
contradicting the assumption that the five-vertexed figure is an integral
polyhedron. It follows that three of the a's are of one sign, and two
of the other are of opposite sign, say ays G, Uy > 0, and

@ Og X 0 . But then
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4 5 1 2 3
aav + asv ulv + a2v + uav

a4 + a5 al + uz +“a3

which demonstrates the second part of the lemma.
In order to demonstrate the first part let us assume that the

2, v3, v4) , and (vl, vz, v3, vs) both

tetrahedra with vertices (vl, v
have volume 1/6. We may then employ the arguments of lemma 3.1 to bring

the first of these tetrahedra to the form

with vi, v; >0, and vg > 1 . Since the volume of the tetrahedron
is |v4-+v4-+v4 -1|/6 it follows that Voavhevtan , and v* must
1 "2 '3 1 2 3
be one of the feollowing three wectors
1 0 0
0 ¥ l 1Y 0 :
1 1 2
1 .2 3 .5
The volume of the tetrahedron with vertices (v, v, v7, v7) 1is
also 1/6, and therefore vi + vg + vg = (0 or 2, But if the latter alterna-
&

tive were to hold, a convex combination of v and v5 could not pass

through the triangle generated by the remaining three vertices. It follows

that vi + vs + vs -

2 3 0, and
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4 5
(v1-+v1)/2 >0

4 5
(v2-+v2)/2 >0
(vg +v§)/2 >0 .

4 5 5

If v’ = (1,0,1) these inequalities imply vy 2 0, vy21, V; 20,
contradicting vi + vg + vg =0 . A sgimilar argument holds if v4 = (0,1,1) ,

and finally if v4 = (0,0,2) , we arrive at a contradiction because
vi >1l, vg >1, vg 2 -1 . It follows that one of the two tetrahedra
has volume > 2/6 , and lemma 3.4 has been demonstrated.

We are now prepared to prove the following theorem which provides

a canonical form for an integral polyhedron with five vertices.

3.5 [Theorem]. An integral polyhedron with five vertices, no
four of which are co-planar, can be brought by a unimodular transforma-

tion, to the form

=
o
o
=t
o

with y and 2z positive and relatively prime.



28

(1,y,z)

(1,0,0)

FIGURE 12

By lemma 3.4, there is a unimodular transformation bringing four
of the vertices to those of Figure 12, and with the fifth vertex, with
coordinates a , b, ¢ 1ying strictly in the cone with vertex (1,vy,2) ,

i.e.

a 1 0 -1 -1
b|=1}y |+ ay | -y + oy l-y | + ag| -¥ ’

c 2 -z -2 l-2

~ . .

with Gys Opy Gy > 0 . Solving these equations we obtain

Q
[

p=at (1-a-b-c)/(y+z)

b + y(l-a-b-c)/{(y+z)

¢ + z(l-a-b-c)/(y+z) ,

Q2
[}

and therefore

a; > fr(a/(y+2)) ,
a, > fr(yA/(y+z)) ,

&, > fr(za/(y+z)) ,
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with A = l-a-b~c , and fr(t) the fractional part of ¢t .

These inequalities permit us to demonstrate that (a,b,c) <0 .

If Az Q0 mod(y+z) , then @, s @y, a, are positive integers, there-
>1, and
a -1 0
bl<t!l-2y | <|O0].
c 1-2z 0

On the other hand if A # 0 mod(y+z) , then we may easily show that

fr(yA/(y+2)) + fr(za/(y+z)) =1 ,

and therefore

a O 0
b | <] -y fr(aA/(y+z)) +£fr(yA/(y+2)) | < | O | .
c -z fr(A/(y+z)) +£fr(za/ (y+z)) 0
But if (a,b,c) 4s not equal to (0,0,0) , then
4 1
. . 8
0 1 0o o0 all?
8,
0O]=7170 1 0 b ’
By
0 0 0 1 ¢
\ \ LB&J

4
with ZBJ =1 . This contradiction demonstrates Howe's theorem for an
1

integral polyhedron with five vertices.

In order to complete the proof of Howe's theorem it is necessary
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to consider integral polyhedra with 6, 7 and 8 vertices. The arguments
are quite elementary extensions of our previous considerations; it will
be sufficient to illustrate the basic ideas when the integral polyhedron
contains six vertices.

We consider, first, the case in which no four of the six vertices

are co-planar. By Theorem 3.5 such a polyhedron can be put in the form

woh o o

with y and =z positive integers prime to each other., By an alterna-

tive application of this same theorem the vertices v2 ’ v3 . v4 ’

v5 . v6 lie in two adjacent lattice planmes. If, however, y and z
are both strictly larger than one, the only adjacent lattice planes con-
taining vz s v3 . v4 » v5 are x =0, 1, and therefore v6 must
be on one of these planes as well., On the other hand if y =1 and
z >1, the four vertices also lie on the adjacent lattice planes
y =0, 1, but not on a third pair of adjacent lattice planes. It follows
that Ve lies either on one of the pair x = 0, 1 or on one of the pair
y=0, 1 ; din both cases the six vertices lie on two adjacent lattice
planes. Finally if both y and z =1 , three pairs of adjacent lattice
planes are possible for v6 .

The argument is also quite simple if four of the six vertices are

co~planar. By a unimodular transformation the co-planar vertices can be

brought to the four vertices of the unit square in the plane x =0 .
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By Lemma 3.3 the fifth and sixth vertices lie on the planes x = %l .

I1f both of them are on the same plane then all six vertices lie on two
adjacent lattice planes. Assume therefore to the contrary that the fifth
vertex is on the plane x = 1 (without loss of generality we may take

it to be 100), and that the sixth vertex lies on the plane x = -1 , and

is given by -1, vy, 2.

(001) (011)

(000) (010)

(100)

FIGURE 13

The four vertices of the integral polyhedron lying on x =0 ,
are extreme points of the polyhedron. By drawing supporting hyperplanes
to the integral polyhedron through these four vertices, and examining
the intersections of these hyperplanes on x = -1 we see that either

y or z=1 . In either case the six vertices lie on two adjacent

lattice planes.
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IV. A Sufficient Condition

We now turn our attention to a 4 x3 matrix A satisfying assump-
tions 2.1, and begin our demonstration that all of the integral tetra-
hedra obtained by relaxing the constraint planes from a lattice free region
share a common characteristic lattice plane. The argument is complex,
and it will be useful to start with a description of a condition which
permits us to recognize when a given lattice plane is indeed the common
characteristic plane.

Let the lattice plane be given by x = 0, and consider the col-
lection of triangles and parallelograms obtained by relaxing the four
inequalities from a lattice free region on this plane. Theorem 2.5 tells
us that the parallelograms will, up to translation, form a chain, as
illustrated in Figure 9. There will be an initial, left-most parallelogram,
and each parallelogram in the chain will be followed by one of its two
possible successors. One pair of triangles will be obtained by slicing
the initial parallelogram along the diagonal not containing {0,0) , and
the other pair by slicing the final parallelogram along the diagonal which
does contain (0,0) .

Consider a particular p;rallelogram in the chain with the four

constraint planes placed at their respective vertices. This involves a

FIGURE 14
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particular specification of the right hand side of the inequalities
Ah > b, 80 that each vertex of the parallelogram satisfies all four
of the inequalities, and a particular one of them with equality. We

say that the parallelogram has a lattice point in front, if there is a

lattice point (hl’ h2, h3) satisfying these inequalities with h1 >1,
and has a lattice point in back if hi <1 . The parallelogram is said

to be doubled if there are lattice points in front and in back.
If the relaxation is a triangle, as in Figure 15, three of the
constraint inequalities are placed at the vertices of the triangle, and

one of them is relaxed to infinity. Again if there is a lattice point

FIGURE 15

(h h2, h3) satisfying the three inequalities it will be said to be in

1’
front if h; 21, in back if h, < -1, and the triangle will be said
to be doubled if it has lattice points both in front and in back. If the’
relaxation is a parallelogram, lemma 3.3 tells us that there will be a
lattice point in front if and only if there is a lattice point satisfying

the inequalities with h, = 1 , and similarly for lattice points in back.

1
The situation 1s somewhat more complex for triangles.
As we shall see, if a given lattice plane has the property that

none of the relaxations on that plane are doubled, then it is, in fact,



a characteristic lattice plane for all of the tetrahedra obtained by re-

laxing the four inequalities from a lattice free region in three space.

4.1 [Theorem]. Let the lattice plane x = 0 have no doubled
relaxations. lLet b = (bo, bl, b2’ b3)‘ be such that the inequalities
Ah > b have a pair of integral solutions (hl’ hys h3) , and
(h!, hé, ha) with hi 3_h1 + 2 ., Then there are integral solutions satis-

fying the inequalities strictly for every x = h1 +1, ..., hi -1.

FIGURE 16

In order to demonstrate 4.1 we draw the intersections of the con-
staint equalities on the planes x=hl , x = h1 » 4and on any intermediary
plane. If no lattice points satisfy the inequalities strictly on the
intermediary plane, then there will be a relaxation on that plane which
is doubled, contradicting our assumption.

Theorem 4.1 implies that x = 0 1is a common characteristic plane
for all of the tetrahedron arising from the relaxation of the four in-

equalities, starting with a lattice free region in three-space. If two
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vertices of such a tetrahedron had their first coordinates differing

by more than 1, the relaxation would already have encountered a lattice
point on some intermediary plane. We see that the search for a common
characteristic plane may be accomplished by finding a lattice plane on
which no relaxation is doubled. It will therefore be useful for us to
analyze in greater detail the relaxations appearing on an arbitrary lattice
plane, allowing for the possibility that gome of the relaxations are

doubled.

4.2 [Lemma)]. Consider a parallelogram P in the chain of relaxa-
tions on the plane x = 0 , which contains no lattice points on the plane
X =a . Assume that a relaxation of this lattice free region on the plane
x = a is to the left of P . Then every parallelogram to the left of
P on x=0 1s also free of lattice points on x = a , and has a relaxsa-
tion on the plane x = a , which is to its own left.

Let the parallelogram P on x = 0 , have the vertices

NI

with p, q positive and relatively prime, and with 8, vy, B', ¥’

non-negative integers satisfying B +8'=p, v+ y'=q, and

Bq -yp=1.
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(r,q)

FIGURE 17

When the four inequalities are placed as in Figure 17, there are assumed
to be no lattice points on the plane x = a , and the relaxation on this
lattice free region is assumed to be to the left of P . Let us first
consider the case in which this relaxation is a parallelogram--rather than
a triangle--which, without loss of generality, we take to be the unit

square. When the four constraint planes are placed on the vertices of

(01)o o (11)
X =2
(00)o °(10)
FIGURE 18

P , their intersections on x = g are as in Figure 18.

The immediate predecessor of P 1s obtained by reflecting (p,q)
either through (B8,y) or (R',Y') . There is no loss in generality in
assuming that, as in Figure 17, (B',v') > (B,y) ; this assumption in

conjunction with the inequalities on the slopes of the four lines implied
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by the fact that the unit square is a relaxation tells us that the pre-

decessor of P has the vertices

DUE 19 B e B ) PR

(B',¥")

FIGURE 19

We must show that this predecessor is free of lattice points om x = a ,
and that the relaxation on x = a2 is to the left of the unit square.
The predecessors of the unit square, 1f they are not triangles,
are obtained by reflecting the vertex opposite to (0,0) through one
of the vertices adjacent to (0,0) . Llet us continue the sequence of
predecessors until we first reflect through a vertex above (0,0) , as
in Figure 20. We shall demonstrate that when the constraint planes are
placed at the vertices of the irmediate predecessor of P , on the

plane x = 0, the region on the plane x = a 1s free of lattice peints
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(-1,r+41)
(01)
(00)
AN r>0

FIGURE 20

and has a relaxation with vertices

NI TN

We make the following observations about the transition from Figure

17 to Figure 19.

1. The constraint plane through (0,0,0) has not been moved and
it rejects the point (a,0,0) .

2. The constraint plane through (0,8,Y) has not been moved.
Since it rejects (a,1,0) it will certainly reject (a,l,-r) .

3. The constraint plane through (0,p,q) originally rejected
(a,1,1) . When it is shifted to (0,8',y') 41t will reject (a,1-8,1-y) ,
and therefore (a,0,1) since B8 >1, v >0.

4. The constraint plane through (0,8',y') originally rejected
(a,0,1) . When shifted to (0,8'-B,Y'-y) it will reject (a,-B8,1-y) .
In order to show that it rejects (a,~l,r+l) it is sufficient to show

that it rejects (a,-1,1) ; this follows from the observation that this
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('B!I-Y) o

FIGURE 21

constraint plane, at its original position of (0,B8',y') , certainly
rejects (0,p-1,q) (see Figure 17).

The above argument is predicated on the assumption that the chain
of predecessors of the unit square continues until a parallelogram is reached
by reflecting through a vertex above (0,0) . One alternative possibility

is illustrated in Figure 22, in which the chain ends with the pair of

(-1,r+1)

(0,1) (01) _(11)

(0,1)
(0,0) (00) % Q (o0) (10)
(1,-r)

r >0

P

FIGURE 22

triangles with vertices

LB AT L) L) 1)

Arguments identical to those just given show that when the constraint
planes are placed on the vertices of the predecessor of P , the region

on the plane x = a 1s free of lattice points and has a relaxation given
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by the first of these triangles,

The chain may also end with the pair of triangles with vertices

R ER Nl R P R O

0,1) (01) ~\(11)
(0,0) s (0,0) — - ‘ 00\~ (10)
(1s-r) (1"‘"r)
° r>0

(.1 1 -r”'l),

FIGURE 23

as in Figure 23. When the constraint planes are placed at the vertices
of the immedlate predecessor of P , the region on the plane x = a has
a relaxation given by the first of these triangles.

One further argument is required to complete the demonstration
of lemma 4.2, We have assumed that when the inequalities are placed at
the vertices of P, the lattice free region on x = a has a relaxation
given by a parallelogram which we have taken to be the unit square. It
is possible, however, that the relaxation is a triangle at the left hand
side of the chain. A similar analysis to that given above demonstrates
that when the constraint planes are placed at the immediate predecessor
of A (be it a parallelogram or triangle), the region on x = a 1s free
of lattice points and has a relaxation given by a translate of that same

triangle on the left hand side of the chain., This completes the proof
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of lemma 4.2, which has the following important implication for the struc-

ture of the relaxations appearing on a given lattice plane.

4.3 [Theorem]. Subject to a possible reinterpretation of the
words "back" and "front™:

1. If a relaxation is free of lattice points in front, then every
relaxation to its left is free of lattice points in front, and

2. If a relaxation is free of lattice points in back then every

relaxation to its right is free of lattice points in back.

Let us assume that there is a relaxation on x =0, say the unit
square, which has a lattice point in front, say (1,0,0) , and such that
the predecessor of the unit square has no lattice points in front, as

in Figure 24. 1In order to demonstrate the first part of Theorem 4.3 we

SlOl)
o ° 0(110)
(1-10)
(10-1;
FIGURE 24

must establish two facts: first that all predecessors of the unit square

are free of lattice points in front, and secondly that all successors of
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the unit square do contain lattice points in front. The first argument
is.quite easy. From the fact that the immediate predecessor of the unit
square has no lattice points in front, we can argue that the constraint
plane through (0,1,1) must eliminate (1,0,1) and (1,1,0), and the con-
straint plane through (0,0,0) must eliminate (1,-1,0) and (1,0,-1).

The predecessor of the unit square must therefore have a relaxation on
x =1 to its own left. From lemma 4.2 all predecessors of the unit
square are free of lattice points on the front plane.

It is somewhat more subtle to establish that every successor to
the unit square contains lattice points in front. What is clear is that
as we move to the right of the unit square we cannot encounter a relaxa-
tion which is free of lattice points in front followed by a relaxation
which does contain a lattice point in front; the argument we have already
given rules out this possibility. But 1t does seem possible, without :
any additional argument, that several consecutive successors of the unit
square do contain lattice points in front, and the remaining successors
are indeed free of lattice points in front.- To eliminate this possibility
I will show that every successor of the unit square has its own successor
which contains lattice points in front.

In order to demonstrate this last fact we must examine the planes
behind the plane x = 0 . From assumption 2.1 the immediate predecessor
of the unit square on x = 0 will be free of lattice points on the plane
x = -a for some pufficiently large value of a . The relaxation on the
plane x = -a will contain lattice points on the plane x =0, and
therefore must be to the right of the immediate predecessor of the unit
square. It follows from lemma 4.2 with left replaced by right, that the

unit square and all of its successors on x = 0 "are free of lattice



43

points on Xx = -a , and have relaxations to their own right on this
plane. Any such relaxation will, of necessity, have lattice points in
front. This demonstrates that any successor of the unit square has its
own successor with lattice points in front and concludes the proof of
the first statement of theorem 4.3. The second statement follows from
a similar argument.

Theorem 4.3 suggests some very substantial simplifications in
testing whether a given lattice plane is the characteristic plane for
the collection of tetrahedra obtained by relaxing the four inequalities
from a lattice free region in three-space. For example, if a single
parallelogram on a given lattice plane has no lattice points either in
front or in back, then there can be no doubled relaxations on that lattice
plane and it is indeed the characteristic plane. Another way to state
this 1is that if one of the tetrahedra is degenerate, in the sense of
having all four vertices in the same plane, then that plane must be the
characteristic plane. In the next section I shall describe a condition
which implies the existence of a degenerate tetrahedron.

Another sufficient condition for a given lattice plane to be the
characteristic plane is the existence of a pair of adjacent parallelograms
in the chain, one of which is free of lattice points in front, and the
other free of lattice points in back. This observation will be used
repeatedly in demonstrating the existence of a characteristic plane asso-

ciated with the matrix A .



44

V. A Special Case

In order to display the quality of the arguments developed in Sec-
tion IV, let us examine a special case in which information about a single
tetrahedron is sufficient to yield a characteristic plane for all of the
integral tetrahedra associated with the matrix A . Let us assume that

the tetrahedron has the four vertices

of the type guaranteed by Howe's theorem, with the additional assumption
that p and q are both > 2 . Moreover when the constraint planes are
drawn through the four vertices they will be assumed to intersect the

planes x = 0, 1 as in Figure 25.

FIGURE 25
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On the plane x = (0, the inequalities relax to the unit square;

on x=1, they relax to the parallelogram with vertices

NI RE RN

The immediate predecessor of this.latter parallelogram is obtained by
reflecting (p,q) either through (B8,y) or (B',y') . Without loss
of generality we assume, as in Figure 25, that (B,y) > (8',y') and that

the predecessor is given by

MR R RN Y

Let us show that when the constraint planes are placed at the vertices
of this latter parallelogram on x = 1 , there will be no lattice points
satisfying the inequalities on x = 0 .

Observe first of all that in Figure 25, the point with coordinates
(1, B -B', y-y'+l) 1lies above the line connecting (1,0,0) and (1,P,q)

since

Y-Y'+13_%(B—B‘)

foliows from

PY -PY' +P-q8 +qB' =p-2>0.
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This point is therefore accepted by the constraint plane through (0,1,0) .
When this constraint plane is translated to (1, 8-B', y-v') it must
therefore reject the point (0,1,-1) , and any lattice points below and
to the right of this latter point., In a similar fashion the constraint
plane through (0,0,1) when translated to (1,8',y') must reject

(0,-1,1) and any lattice points above and to the left of (0,-1,1) .

ByY)

FIGURE 26

The plane through (1,0;0) rejects (0,0,0) , and any lattice
points below and to the left of (0,0,0) . And finally the plane through
(1,p,q) when translated to (1,B,yY) must reilect (0,0,0) and any lattice
points above and to the right of (0,0,0) . This demonstrates that while

the parallelogram with vertices

NI

does have lattice points in back, its immediate predecessor-—-and therefore
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all predecessors--do not,

In the same fashion the successors of the unit square are free of
lattice points in front, and from the arguments of Section IV, the lattice
plane x = 0 1is a characteristic plane for all tetrahedron obtained by
relaxing the four inequalities from a lattice free region.

At first glance this argument seems very promising. It does,
however, depend on the special assumption that there is at least one
relaxation which ylelds a tetrahedron with a unique characteristic plane.
The argument becomes extremely tedious when this assumption is not satis-
fied, and while it probably can be carried out I have chosen to select

the alternative approach followed in the remainder of this paper.

VI. Perturbations of the Matrix A

Let the matrix A satisfying assumption’'2.]l have the characteristic
plane x = 0 . This will be revealed by the fact that none of the relaxa-
tions on that plane--either parallelograms or triangles--has lattice points
both in front and in back. If the matrix is perturbed slightly the same
property will persist, and the characteristic plane is therefore locally
constant. The disappearance of x = 0 as the characteristic plane will
be revealed by the appearance of a doubled object, which may either be
a new relaxation on x = 0, or one of the relaxations which previously
appeared. In either case such a change can only occur when a constraint
plane passes through more than one lattice point, an event which we call
a singularity of the perturbation.

Our argument for the existence of a characteristic plane associated
with a matrix A satisfying 1. 2, will be to select & different matrix

A' which does have a characteristic plane, and perturb it until the original
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matrix A 1s reached. We shall show that, along the path of perturba-
tions, a new characteristic plane appears whenever the previous charac-
teristic plane is lost.

The collection of lattice planes in three-space, i.e. planes passing
through three non-collinear lattice points, is denumerable; we can there-
fore assume that in this series of perturbations, none of the constraint
planes is ever parallel to a lattice plane. We need only be concerned,
therefore, with the change in characteristic planes that occurs when one
of the constraint planes passes through a l-dimensional line of lattice
points. Moreover we may assume that this violation of assumption 1.2 does
not occur simultaneously for more than one constraint plane. Such a line

of lattice points will be called a singular line,

6.1 |[Lemma)]. Let the characteristic plane immediately prior to
a singularity be x = 0 , and assume that the singular }line is contained
in this plane. Then x = 0 persists as a characteristic plane after the

singularity.

Let us assume, to the contrary, that after the singularity there
is a tetrahedron with vertices hl s h2 s h3 » h4 -=obtained by re-
laxing from a lattice free region--two of whose vertices have first
coordinates differing by more than one unit. This tetrahedron must be
lost, as a relaxation, when we reverse the perturbation, and that can
only occur in one of the following two ways:

1. The constraint plane passing through one of the vertices,
say h1 , eliminates another vertex, say h2 s OF

2. The constraint plane passing through one of the vertices, say

1

h™, admits a number of lattice points which are eready accepted by the

constraint planes passing through the remaining vertices.
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FIGURE 27

The first case is illustrated schematically in Figure 27; by as-
sumption h1 and h2 have the same first coordinate. We cbtain a
different relaxation (after the perturbation), by pressing the constraint
plane through h1 to h2 » leaving the constraint planes through h3
and h4 as they were, and relaxing the constraint plane through h2
until a new lattice point is reached, which is accepted by the other
three constraint planes. This new tetrahedron will be of the second type,
and of course, two of its vertices will have first coordinates differing

by more than one unit.

The second case is 1llustrated in Figure 28, which is drawm

FIGURE 28
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immediately after the singularity under the reverse perturbatioms. If
the constraint plane through h1 is pressed in to the last point on the
half-line of lattice polnts accepted by the remaining constraint planes
(a point whose first coordinate is identical with that of hl ), we
obtain a tetrahedron which contradicts the assumption that x = 0 dis

a characteristic plane., This demonstrates lemma 6.1.

The lemma tells us that we need not be concerned with a change in
the chain of triangles and parallelograms on the characteristic plane
in examining the consequences of a perturbation. The only relevant con-
cern is whether one of the previously undoubled objects becomes doubled
in passing through a singularity. At such a singularity one of the con-
straint planes will be pivoting around a particular vertex of each relaxa-
tion and will suddenly admit a half line of lattice peints either in front
or behind the original characteristic plane; to be specific let this occur
behind the original plane. It follows that aome of the objects may gain
lattice points in back and some may loose lattice points in front.

We shall assume that the terms "back' and "front" are interpreted
as in theorem 4.3, and we consider the left-most object in the chain which
is doubled after the singularity. From the above argument we can say that
a lattice point has just been introduced behind the eoriginal plane, and
that the predecessor of this object has no lattice points in front. In
the next section we shall show that a new characteristic plane is available
after the singularity when the left most doubled object is a parallelo-

gram, and then consider the case in which the object is a triangle.
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VII. A Doubled Parallelogram

Let us assume that the left most doubled object after the singu-
larity is the unit square on the plane x = 0 , that it contains the
lattice point (1,0,0), andthat its immediate predecessor contains no
lattice points in front. A particular lattice point will just have been

introduced on the plane x = -1 . From Figure 29 we see immediately that

-103;//’ o =122

01

1 o 001 011 s ° °

1-10° ’110 000 010 -100° ° //1:120
10-1

FIGURE 29

the new lattice point must be of the form (-1,p,1) or (-1,1,q) . Without
loss of generality wemay assume that the point isgivenby (-1,p,1) with p>1.
From the assumption that the immediate predecessor of the unit
square contains no lattice point in front we can easily see that the con-
straint planme through (0,0,0) must eliminateboth (1,-1,0) and (1,0,-1);
it must therefore accept (~1,1,0) and (-1,0,1) . In the same way thecon-
straint plane through (0,1,1) must accept (-1,2,1) and (-1,1,2) . Weare
now prepared to exhibit the new characteristic plane, by a series of argu-
ments which breaks into three major cases depending on whether p =1 ,

p=2, or p>3.

Case 1. p=1 . We shall demonstrate that the new characteristic
plane is given by z = const. Let us begin by remarking that Figure 29

can be drawn with greater specificity, since the plane through (0,0,1)
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must eliminate (-1,0,1) and (-1,1,2), andthe planethrough (0,1,0) must

eliminate (~1,1,0) and (-1,2,1) . The information in this figure can

/ (001)
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be translated to the two planes 2z = 0, 1 , as in Figure 31.
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The constraint plane throvgh (0,0,0) hasbeen drawn with a dashed line
to distinguish it from the plane through (0,0,1) whickhas a similar
slope. The shaded regions indicate lattice points which are eliminated
by the various constraint planes.

It is easy to see that all of the relaxations in this plane are
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\ 110
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FIGURE 32

triangles. The two triangles on z = 0 are free of lattice points on
z=1, and the two triangles on 2z = 1 are free of lattice points on

z= 0 . This concludes our argument for the case p =1 .
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Case 2. p=2.

We shall demonstrate that the new characteristic plane is either
x +y=const. or z = const. Let us redraw Figure 29 with the addi-

tional information that (-1,2,1) has just beenaccepted, and translate this

-102 122
101 001 011 . :///
1-10, 2110 . ; .
000 010 Lo 20
10-1
FIGURE 33

information to the planes x 4+ y = 0, 1 in Figure 34. The slopes of the
constraint planes permit us to select two adjacent parallelograms which
are relaxations on this plane. Let us draw one of these on the plane

x+y=1, as in Figure 35.
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Consider the region to the lower right on the plane x+y =0,
consisting of lattice points (-a,a,-q} with a >1, q >0 . All of
these points must be eliminated by the original inequalities, as in
Figure 34, since none of them lies on a possible line of singularities
containing (~1,2,1) . The constraint plane through (0,1,1) accepted all of these
lattice points, each of which must therefore have been rejected by one
of the other three constraint planes in their position in Figure 34.

But these other three constraint planes have been compressed, or remained
where they were, in making the transition from Figure 34 to Figure 35.
Therefore all lattice points in the region to the lower right are rejected.

Now consider a lattice point (a,-a,q) with a>2, q>1 in
the region to the upper left on the plane x+y = 0 , 1If this point is
accepted by the plane through (0,0,0) translated to (1,0,0) , and by the
plane through (0,0,1) translated to (0,1,1) , then

1. the plane through (0,0,0) accepts {a-1,-a,q)

2. the plane through (0,0,1) accepts (a,-a-1,q) , and therefore
(a-1,-a+1,q) |

3. the plane through (0,1,0) accepts (1,0,0) and therefore
accepts (a-1,-a+2,0) .

Let us draw this information on the plane x = a-1l . It follows

(:a’q) o
(-a+l,q)

x = a-]1
(-a+2,0).

FIGURE 36
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that the plane through (0,1,1) must reject (a-1l,-a+l,q) , since other-
wige the predecessor of the unit square, obtained by pressing in the plane
through (0,0,0), will contain the point (a-1,-a+l,q) in front. But
then the plane through (0,1,1) translated to (1,0,1) must reject

(a,-a,q) . This permits us to conclude that the parallelogram on x+y = 1

000 e T

-110
x+y=0 ’2%;K§QQ\

l;\

xty =1

FIGURE 37

is free of lattice points on x4y =0 .

Now let us draw the adjacent parallelogram on the plane x+y = 0 .
The only possible lattice points satisfying these inequalities on the
plane x+y = 1 lie in the wedge with vertex (-2,3,1) . Aside from one
special case these can be ruled out by considering which of the original
constraint planes has just accepted (-1,2,1) . For example if the planme
through (0,1,1) has just accepted (-1,2,1) , the only points in the
wedge are very far from the vertex and they will be eliminated by the
fourth inequality to the right of (-3,4,1) . A similar remark is valid
if (-1,2,1) has just been accepted by the plane through (0,1,0) . In
both of these cases we have therefore demonstrated that the new charac-
teristic plane is given by x+y = const.

1f the plane through (0,0,1) has just accepted (-1,2,1) , then
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when translated to (-2,2,1) , it will just have accepted (-3,4,1) .

The only possible points on x+y = 1 which might satisfy the inequalities
are therefore (-2,3,1) and (-3,4,1) . The first of these points can

be eliminated, since if it were accepted by the translated planes, it would
follow that the plane through (0,1,1) , and the plane through (0,1,0)
both accept (-1,3,1) , which is impossible. The second possibility can,
however, actually occur when the planes through (0,1,1) and (0,1,0)

both accept (-2,4,1) , and the plane through (0,0,1) has just accepted
(-1,2,1) . Aside from this special case we have demonstrated that x+y = const.
is the new characteristic plane when p=2 . We shall show that in this
special case the new characteristic plane is given by 2z =const. , making
use of a different argument whichdoes not require adrawing on the new plane.

Consider the three planes x =1, 0, -1 as in Figure 38, drawm

1’-1|2 o
-] o -
001 011 ° e -121 °
000 010 ° ° °
(-]
x=-]1 x=0 x=1

FIGURE 38

immediately before the singularity, From Figure 37 we see that the plane
throogh (0,1,0) translated to (-1,1,0) must accept (~3,4,1) as well

as (-2,3,1) . In its original position it wust accept (-2,4,1) , and
therefore rejects (2,-2,-1) . It must also accept (-1,3,1) . The plane
through (0,1,1) must then reject (~1,3,1) and therefore accept (1,-1,1) .

Moreover since this latter plane accepts (~2,4,1) it mustaccept (-1,3,0)
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and consequently it must also reject (1,-1,2) .

Now let us translate these planes as in Figure 39. Since the plane
through (0,1,0) rejects (1,-1,0) when translated to (-1,2,1) there

are no lattice points strictly satisfying these inequalities on either

001 011

x=1 x=0 X =]

FIGURE 39

of the three planes. Since x = const, 1is a characteristic plane there
are no lattice points satisfying these inequalities on any other plane

X = const. , just prior to the singularity, Immediately after the singu-
larity the only possible lattice points satisfying the inequalities must

lieon z =1 . But there are none on this plane and it follows that

the parallelogram with vertices

1 0 0 -1
-1 » 0 [ 1 » 2
1 1 1 1

has no lattice points either in front or in back, after the singularity.
The plane 2z = const. must therefore be a new characteristic plane.

This concludes our argument for p = 2 .
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Case 3. p > 3.

We shall demonstrate that the new characteristic plane 1s given
by z = const. or x+y = const. Let us redraw Figure 29 to show that

the point (~1,p,1) hasjust been accepted. The point (-1,p-1,1) wmust

001 011

000 010

FIGURE 40

be rejected by the plane through (0,0,1) , the point (-1,1,0) either
by the plane through (0,0,1) or the plane through (0,1,0) , and the
point (-1,p+l,1) either by the plane through (0,1,1) or the plane

through (0,1,0) . Consider the two configurations of Figure 41.

-] [}
011
011
x=0 x=1

FIGURE 41
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Depending on the slope of the plane originally at (0,0,0) and now at
(0,0,1) , at least one of these two configurations contains no lattice
points strictly on the two planes x = 0, 1 . Since x = const. was a
characteristic plane prior to the singularity, the only lattice points
satisfying the inequalities, immediately after the singularity, lie on
the line of singularities. If (-1,p,1) has just been accepted elther by
the plane through (0,0,1) or the plane through (0,1,1) the line of
singularities is in the plane z = 1 itself and the corresponding paral-
lelogram is free of lattice points in front and in back. 1In either of
these two cases z = const. 1s the new characteristic plane.

If (-1,p,1) has justbeen accepted by the line through (0,1,0)
the possible lattice points accepted by the inequalities are (-2,2p-1,2),
(-3,3p-2,3), ... in the first figure, and (-2,2p-2,2), (-3,3p-3,3), ...
in the second figure. 1In order to complete the argument it is necessary

to consider several subcases.

3.1. The plane originally through (0,0,1) rejects (-1,p,2) .
In the first figure the point (-2,2p-1,2) , and all subsequent points
on the iine of singularities, are eliminated by this plane translated
to (-1,p-1,1) . In the gsecond figure (-2,2p-2,2) , and all subsequent
points, are eliminated by this plane translated to (-1,p-2,1) . The

new characteristic plane is therefore 2z = const.

3.2. The plane originally through (0,0,1) accepts (-1,p,2)
and the plane through (0,1,1) rejects (-1,p+l,1) . In this case the
first figure is free of other lattice points on x = 0,1 . The plane
through (0,1,1) eliminates (-2,p+2,2) and therefore (-2,2p-1,2)
if 2p-1 > p+2 or p > 3 . The new characterisﬁic plane is therefore

Z = const.
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3.3. The plane originally through (0,0,1) accepts (-1,p,2)
and the plane through (0,1,1) accepts {(-1,p+l,1) . We then draw

Figure 42. Since the line of singularities lies in the plane xt+z =0,

000 010

FIGURE 42

we can conclude that the parallélogram with vertices

0 0 -1 -1
0 ] 1 » P ) p-l
0 0 1 1

contains no lattice points on either side, immediately after the singu-

larity. It follows that x4z = const. is the new characteristic plane.
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VIII. A Doubled Triangle

In this section we consider the case in which the left-most doubled
object immediately after the singularity is a triangle, again making the
assumption that lattice points have been introduced behind the character-
istic plane x = 0 , but not in front, and adopting the convention of
theorem 4.3. The following lemma will be useful in demonstrating that
this doubled triangle must be one of the pair appearing at the right end

of the chain.

8.1 [Lemmal. Consider the two triangles at efther end of the
chain on the plane x = 0 . If precisely one of the pair has lattice

points on the plane x = -a , with a ¥ 0, then it is doubled.
Let the two triangles be as in Figure 43, and assume that the first _

ol 0 11

10 °

00 10

FIGURE 43

of these triangles contains a point on the plane x = -a , say (-a,0,0) .
If the other triangle is to contain no lattice points on this same plane,
then the configuration of Figure 44 must obtain, and the first triangle

must contaln at least three lattice points on x = a ,
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Fow let us assume that one of the triangles to the left of the
chain on x = 0 is doubled immediately after the singularity., Since
new lattice points are only introduced behind x = 0 , that triangle
must contain a lattice point in front prior to the simgularity. If
x = 0 is a characteristic plane, prior to the singularity, lemma 8.1
implies that both triangles to the left have lattice points in front,
and from theorem 4.3 all relaxations on x = 0 have lattice points in
front. Therefore none of them have lattice points in back, prior to the
singularity. But it 1s easy to see that assumption 2.1 is violated if
none of the relaxations on x =0 have lattice points in back. In such
a case if the four constraint planes are placed so as to yield a lattice
free region on x=0 , there will be no lattice points on any plane be-
hind x=0 . Conversely if there is a lattice point satisfying the in-
equalities on any plane x=a , there will be lattice points on every
parallel plane in front. This contradiction to assumption 2.1 implies
that if the left-most doubled object, after the singularity, is a triangle
it must be one of the two at the right end of the chain.

Let us begin our analysis by assuming that the chain of relaxationms
on the plane x = 0 does contain some relaxations which are parallelo-
grmas, deferring to the next section the case in which all of the relaxa-

tions on x = 0 are triangles. Without loss of generality we may take
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the last of these parallelograms to be the unit square, and assume that

the pair of triangles to the right are given by Figure 45. In each of

11 0l 11

00
10 00

FIGURE 45

these triangles the plane originally through (0,0,0) has been relaxed
to - . We assume that the unit square centains no lattice points in
front, and to be specific let us assume that the point (-1,1,1) has
just been admitted in the first of the above triangles as we pass through
the singularity, Immediately after the singularity the configuration of

Figure 46 must obtain. It follows that when the dashed line is placed

\-122

FIGURE 46

ar (0,0,0) it must eliminate (1,0,0) and therefore accept (-1,0,0) .

The argument which provides & new characteristic plane immediately
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after the singularity depends on which of the three constraint planes has

just admitted the point (-1,1,1) .

Case 1. The plane through (0,1,1) has just admitted (-1,1,1) .
Observe first of all that the plane through (0,0,0) 1in Figure 46 must
eliminate (~1,0,0) since otherwise the other triangle has a lattice
point in back prior to the singularity, and from lemma 8.1, it would al-
ready have been doubled.

1.1. The plane through (0,1,1) eliminates (0,0,2) . We then

have the configuration of Figure 47. 1In this figure the line of singu-

FIGURE 47

larities lies in the plane 2z = 0, which is therefore the new charac-
teristic plane.

1.2. The plane through (0,1,1) accepts (0,0,2) . In this
case Figure 48 permits us to argue that y = 0 1is the new characteristic

plane.

-101 °

FIGURE 48
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Case 2. The plane through (0,1,0) in Figure 46 just admits
(-1,1,1) . Observe that the plane through (Q,1,1) must reject {-1,1,2)
since otherwise the other triangle contains a Jattice point in back prier
to the singularity and from lemma 8.1 it would already have been doubled.

2.1. The plane through (0,0,0) accepts (-1,0,0) . Consider

Figure 49, drawn immediately after the singularity. Since the line of

-101 ciil

FIGURE 49

singularities lies in the plane =x+z = 0 , it follows that this plane
is the new characteristic plane.

2.2. The plane through (0,1,1) accepts (-1,2,1) , and there-
fore rejects (1,0,1) . When this plane is translated te (-1,1,1) ,
as in Figure 49, it will reject (0,0,1) and the parallelogram with

vertices

will again be free of lattice points on the planes x = 0, 1 . The line
of singularities lies in the plane of this parallelogram and therefore

x+z = const. 18 the new characteristic plane.
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2.3, The plane through (0,0,0) rejects (-1,0,0) , and the
plane through (0,1,1) rejects (-1,2,1) and accepts (-1,0,2) . Figure
50 illustrates this configuration immediately after the singularity.

We shall demonstrate that y = const. 1s the new characteristic plane.
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Let us translate the above information to the two planes y = 0,1 , as
in Figure 51. The slopes of the constraint planes permit us to recognize
two adjacent parallelograms which gre relaxations on the planes Yy = const.
We shall demonstrate that one of them is free of lattice points in fromt
and the other in back.

In Figure 52 one of these relaxations is drawn on the plane ¥ =1 .
The only possible lattice points satisfying these inequalities on y = 0
lie in the wedge with vertex (1,0,2) , and are of the form (a,0,c)
with a >1, ¢ > 2 . But such a lattice point must be eliminated by
one of the four inequalities in their position in Figure 50. It camnnot
be eliminated by the plane through (0,1,0) , and is therefore eliminated
by one of the remaining planes. These planes, however, are compressed,
in the transition from Figure 50 to Figure 52, and there are, therefore

no lattice points on y = 0 .
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In Figure 53 an adjacent relaxation is drawn on the plane y = 0 .

-

y=0
FIGURE 53

and

The only possible lattice point satisfying the inequalities on y =1
(0,1,1) accepts (-1,0,2) ,
it rejects

But the plane through
(1,0,0)

is (2,1,-1) .
when translated to
is the new characteristic

therefore rejects

1,2,0) ;
This demonstrates that y = const.

{2,1,-1) .
2.4, The plane through (0,0,0) rejects (~1,0,0) and the plane
. In this final

plane.
and (-1,0,2)

rejects both (-1,2,1)

through (0,1,1)
subcase we consider the configuration of Figure 54, drawn immediately
There are no lattice points on either of the planes

after the singularity.
=102
4

FIGURE 54
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x = 0,1 , and therefore the only possible lattice points satisfying

the inequalities are on the line of singularities (-1,1,1), (-2,1,2), ... .
But the plane through (0,1,1) eliminates (-1,2,1) and (-1,0,2) ;

it therefore eliminates (-2,1,2) and we conclude that the new charac-
teristic plane is given by 2z = const.

Case 3. The plane through (0,0,0) has just admitted (-1,1,1) .
Observe, first of all, that the plane through (0,1,0) must reject
(-1,2,1) since if this were not true the other triangle at this end of
the chain would contain a lattice point prior to the singularity, and
from lemma 8.1 it would already have been doubled. We also remark that
prior to the singularity the unit square contains the point (-1,1,1)
on the back plane and therefore none of the quadrilaterals in the chain
are free of lattice points both in front and in back. We shall, following a
suggestion by Philip White, consider three subcases, the first of which
yields a new characteristic plane after the singularity, and the second
and third of which yfeld a new characteristic plane prior te the singu-
larity which contains a relaxation free of lattice points on both sides.
If this latter plane 18 lost as we pass through the singularity we enter
a case different from the present one.

3.1. The plane thyough (0,1,1) accepts (-1,1,2) . Consider
the configuration of Figure 55 drawn immediately after the singularity.
Since the line of singularities lies in the plane x+y = 0, this

plane is the new characteristic plane after the singularity.
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3.2. The plane through (0,1,1) rejects (-1,1,2)} but accepts

(0,0,2) . We consider Figure 56 drawn immediately prior to the singularity.
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We see that the parallelogram on the plane y = 1 , with vertices

0 -1 -1 0
19, 114, 13, 1
0 0 L1 1

contains no lattice points on back or on front. The plane y = const.

is also a characteristic plane prior to the singularity which, if it is

lost, leads to a case other than the one currently being considered.
3.3. The plane through (0,1,1) rejects both (-1,1,2) and

(0,0,2) . We consider Figure 57, drawn ilmmediately ﬁrior to the singu-

002 =112
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» -1 121
“‘. [} ) ]
-100,_
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x=0 x=1

FIGURE 57

larity, and conclude that z = 0 {s also a characteristic plane prior
to the singularity, but contains a parallelogram free of lattice points

on both sides.
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Our argument for determining a new characteristic plane when the
left-most doubled object is a triangle is now complete, in the case where
the chain contains at least one relaxation which is a parallelogram,

The final case, to be considered in the next section, involves the special

case of & chain all of whose relaxations are triangles.

IX. The Conclusion of the Argument

As before we take x = const. to be the characteristic plane prior
to the singularity, but address the final case in which all of the relaxa-
tions on this plane are triangles. Without loss of generality we may take

them to be the triangles of Figure 58. 1In the first pair of triangles the

o011 001 011

000

010 L~ 000

FIGURE 58

dashed line is relaxed to infinity, and in the second pair the solid line
originally through (0,1,1) 1s relaxed to infinity. We assume that prior
to the singularity there are no lattice points behind the first two tri-
angles, and no lattice points in front of the second pair. We &lso assume
that in passing through the singularity the triangle in the upper left
of Figure 58 admits the point (-1,1,1) on the back plane. Figure 59

describes the configuration immediately after thé singularity. The dashed
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line through (0,1,1) must reject (1,1,0) since otherwise the lower
left triangle of Figure 58 would contain this point in front.

As before the argument which produces the new characteristic plane
depends on which of the constraint planes has just admitted (-1,1,1)

in passing through the singularity.

Case 1. The plane through (0,0,0) Jjust admwits (-1,1,1) . In
this case the plane through (0,1,0) .must reject (-1,2,1) since other-
wise the triangle in the upper right would contain a latticepoint in back
prior to the singularity. Moreover the dashed line through (0,1,1) must
eliminate (1,0,0) , and therefore accept (-1,2,2) . Consider the con-

figuration of Figure 60, drawn immediately after the singularity.

FIGURE 60

Since the line of singularities lies in the plané'containing the parallelo-

gram with vertices
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0 -1 -1 0
0 3 1 ] 2 ’ 1 ]
0 1 2 1

we conclude that this parallelogram is free of lattice points on both
sides after the singularity, and that y-z = const. 1s the new charac-

teristic plane.

Case 2. The plane through (0,1,0) just admits (-1,1,1) . In
this case the plane through (0,1,1) must eliminate (-1,1,2) since
otherwise the triangle in the upper right contains a lattice point in
front prior to the singularity. Moreover the dashed line through (0,1,1)
must eliminate (1,0,-1) and therefore accept (-1,2,3) . 'The informa-
tion in Figure 59 may be translated to the two planes x-y+z = 0, -1 as

in Figure 61.
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The slopes in this Figure permit us to recognize a relaxation which

is the parallelogram on the plane x-y+z = 0 as in Figure 62, This
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FIGURE 62
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parallelogram contains no lattice points on the plane x-y+z = -1 . In
order to verify that this plane is the new characteristic plane we must
verify that an adjacent relaxation on x-y+z = -1 1is free of lattice
points on x~y+z = 0 . It is necessary to distinguish two subcases.
2.1, The plane through (0,0,0) rejects (-1,1,2) . In this

case there is a parallelogram to the left of the one previously drawn.

LEE T LT LY T et iy

X-y+z = ~]1

FIGURE 63

We see that the only possible lattice points satisfying these inequali-
ties on the plane x-y+z = 0 1lie in the wedge with vertex (1,0,-1) ,
i.e. points of the form (a,-b,~a~b) with a >1, b >0 . The follow-
ing argument shows that this is impossible when the four planes are trans-
lated to their position in Figure 63.

a. 1f the plane through (0,0,0) translated to (~1,2,2) accepts
(a,~b,-a-b) , then in its original position it accepts (a+l,-b-2, -a-b-2)
and therefore accepts (a,~b=1, -a=-b-1) .

b. If the dashed line through (0,1,1) translated to (0,2,1)
accepts (a,-b,-a-b) then in its original position it accepts
(a,-b-1,~-a-b) .

c. Let the plane through (0,1,0) accept (a,-b,-a-b) .
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These three statements imply that if the constraint planes are
drawvn in their original position as in Figure 59, then the configuration

of Figure 64 will arise on the plane x = a . The triangle to the lower

12;(3,-b,-a-b)

\ \ |

° \ 000

X=a

FIGURE 64

right will therefore contain the lattice point (a,-b-1,-a-b) in front
immediately after the singularity. ' Since lattice points are not admitted
in front of x = 0 in passing through the singularity, we have a contra-
diction to our assuymption that this triangle contaimns no lattice points
in front prior to the singularity. We conclude that x-y+z = const., is
the nev characteristic plane ié case 2.1,

2.2, The plane through (0,0,0) accepts (-1,1,2) . 1In this
case the relaxations to the left of the parallelogram previously drawn
are the pair of triangles of Figure 65, which when drawn on the plane
x-y+z = =1 are free of lattice points on x-y+z = 0 . This demonstrates

that x-y+z = const. 18 the new characteristic plane after the singularity.



80

S

'~

N/ o022
011 ~

',

/\
011 j;/
bt -] ]

-

k-
~112

x~y+z = 0

FIGURE 65

Case 3. The plane through (0,1,1) Jjust admits (-1,1,1) . 1In
this case the plane through (0,0,0) must reject (-1,0,0) since if
this were not so the other triangle of the pair would contain a lattice
point in back prior to the singularity. Moreover the dashed line through
(0,1,1) in Figure 59 must reject (1,0,0) and therefore accept (-1,2,2) .
We translate this information to the planes y-z = 0, 1 , drawn immediately
prior to the singularity. 1In this figure the plane through (0,1,0)
has been drawn with a dashed line since otherwise it may be difficult

to distinguish from the plane through (0,0,0) .



conclude that y-z = econst.
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A pair of triangular relaxations can immediately be recognized

Bingularity we distinguish two

triangles contain a lattice point on the plane y-z = 0 ,

subcases,

and are drawn on the plane ¥y-z = 1 in Figure 67. Neither of these

In order to

is a characteristic plame prior to the
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y=-z =0

FIGURE 67

3.1. The plane through (0,1,0) admits (1,0,-1) . 1In this

case the relaxation on y-z = 0, given by the parallelogram of Figure

68 is free of lattice points on the plane y-z =1 , except possibly

in the wedge with vertex (1,0,-1) , {i.e. points of the form (a,-b,-b-1)
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with a>1, b >0 . But any such point must be rejected by the plane
through (0,0,0) , the plane through (0,1,0) or the dashed plane through
(0,1,1) 1in Figure 59. 1In making the transition from the position of
Figure 59 to that of Figure 68, two of these planes are unchanged and one
of them has been pressed in. It follows that y-z = const. is a char-
acteristic plane prior tec the singularity. Since the line of singularities
is contained in this plane, it persists as a characteristic plane after
the singularity.

3.2. The plane through (0,1,0) rejects (1,0,-1) . In this
case there are no parallelograms which appear as relaxations on the plane
y-z = const. In addition to those of Figure 67, there are the pair of

trinagles dravn on the plane y-z = 0 in Figure 69, which are free of
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lattice points on the plane y-z =1 . The plane y-z = const. is there-

fore a characteristic plane both before and immediately after the singularity.
We have finally reached the conclusion of this extremely lengthy

argument and demonstrated that if thematrix A is perturbed in sucha wayas to

lose its associated characteristic plane, there always will be an alternative
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characteristic plane which is available after the perturbation. To con-
clude that an arbitrary matrix satisfying 2.1 has a characteristic plane
it is therefore sufficient to exhibit & specific matrix with this property
in order to initiate the perturbations. The reader may wish to construct
such an example, or make use of the following simple observation:

Let A have the sign pattern

+ - -
?
- 4 -
- - 4
3
and assume that E aij >0 for i=1, 2, 3 . Then x = const, ,
j=1

y = const. , and 2z = const. are all characteristic planes.

X. An Application to Integer Programming

Let us assume that the matrix A has been transformed so that

x = const. 1s the characteristic plane, and consider the integer program

max éOIhl + a02h2 + a03h3

a;1hy + 2;5h, + 8,40y > by

h1 +a,,h, +a,,h, >b

a9 222 2373 = P2

a3 hy + agohy 4 ag5hy 2 by

hj integral.

We consider the two-variable problem in which the first coordinate has

been fixed at a particular value, say h1 = a ., When the objective function
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1s placed at the optimal solutionr to this problem, and the ceonstraints
are drawn on the plane, the resulting region will contain no lattice points

in its interior. The inequalities may be relaxed to yield a parallelogram

FIGURE 70

in the chain or one of the triangles appearing at either end of the chain.

Since x = const. 1is a characteristic plane none of these objects

will contain lattice points both in front and in back. If the relaxation
is a parallelogram which is free of lattice points on both sides, the
solution on the plane h1 = a 138, in fact, the optimal solution to the
three variable problem, since there are no lattice points which satisfy
the inequalities and yield a higher value of the objective function.
If the relaxation has lattice points in front, the optimal solution must
satisfy h1 > a, since there are no lattice points with h1 < a which
satisfy the inequalities and yield a higher value of the objective. And
:gimilarly if the relaxation has lattice points in back the optimal solu-
tion must satisfy h, <a.

We conclude that solving the two variable problem on hl = a pro-
vides us with information as to whether the first coordinate should be
increased or decreased in moving to the optimal solution. Perhaps the
simplest way to tramnslate this observation into a working algorithm for

the three variable problem is by repeated bisection of the range of h1 .
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