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INEFFICIENCY OF NASH EQUILIBRIA IN A PRIVATE GOODS ECONOMY

by

P. Dubey* and J. D. Rogawski

1. Introduction

In this paper we consider the following question: to what extent
are the Nash equilibria (N.E.) of a private goods economy (given in the
form of a smooth strategic market game) efficient? Suppose there are
n players (traders) and that the jth player has a strategy set S_j
and an outcome space Yj , Wwhere Yj is a smooth manifold. A market

mechanism is a set of n maps

¢j : 5 ~» Yj (=1, ...,m)

where S = S5, x..,x§ . ¢j(§) is the jth

1 0 plaver's outcome .when the

strategies s = (sl, ...,sn) are chosen. Utility functions are defined
on the outcome spaces Yj . When the Yj and ¢j are the same for all
j ,» this may be viewed as a public goods economy (and has been discussed
in [3]). The focus of the present paper is on the private goods case,

when the ¢

j and Y_i are distinct.
In Sections 2 and 3, we assume that the Yj are the spaces of
allocaticns of privately owned commodities. Thus each Yj =‘Rf where

£ 1is the number of commodities and the market mechanism ¢ = (¢1, ...,¢n)

*The first named author's work was supported by ONR Grant NO0G14-77-C-0518
vissued under Contract Authority NR.047-006,



defines reallocations of the initial endowments. A basic assumption on

the (Assumption 1 of Section 1) is that each player j can, by

¥

changing his own strategy, span a submanifold of ¥, of codimension one

i

when all other players remain fixed. This is analogous to the "budget

1

plane"” of Walrasian analysis and was also made in [2]. We show (2.2) that

there is a disjoint decomposition S = SUO U SUI R

on the market mechanism ¢ , such that: for any choice of utilities

which depends only

(satisfying some standard assumptions) if a Nash Equilibrium lies in
Syo it is efficient, and it is inefficient if it lies in SUI . We
therefore nickname SUO and SUI the set of ultra-optimal and ultra-
inoptimal points. The.analysis of the efficiency of Nash Fquilibria is

reduced to that of SUo . Typically, SUO is contained in a finite union

of submanifolds of codimension at least t > 0 1in S #nd then, as is
shown in Section 2, the set of efficient N.E. is contained in a finite
union of submanifolds of codimension at least t in the set of all N.E.

In fact, two notions of efficiency ("economic' and 'game~theoretic,"
see Section 2} are considered. The conclusions above also carry over to
game-theoretic efficiency and here it is no longer necessary to assume
that the range of ¢ 1is the space of reallocations. Depending again

only on ¢ , there is a decomposition S = SG o U SG (5.1).

U Ul

For any choice of utilities, all efficient N.E. lie in SGUO and all

N.E. which lie in SGUI are inefficient (but now there may exist N.E.

in SGUo which are also inefficient). SGUO typically has positive co-
dimension in S and when this is the case, the set of (game-theoretically)
efficient N.E. has the same codimension in the set of all N.E.

In Sections 4 and 5, we apply the above results to the Shapley-

Shubik models (bid-offer and sell-all). In both cases we find that a Nash



equilibrium can be economically efficient only if it leads to the outcome

which leaves each player with his initial endowment and can be game-theoretically

efficient only if at least one player is left with his initial endowment.

Such Nash equilibria can exist robustly (in utiiities) only for the bid-
offer model. This clarifies the inefficiency result for the sell-all model
in [1], which is a precursor to the present paper, and throws light on the
nature of efficient Nash outcomes.

Throughout we deal only with "interior" Nash Equilibria. This is
largely a matter of technical convenience and the method of this paper
can be applied when the Sj have "mice" boundaries, e.g. are simplices,
and when ¢ is defined smoothly in a neighborhood of S . Here we re-
strict outselves, when the Sj are simplices, to Nash Equilibria occurring

in the interior. See [1) and [3) for treatment of similar questions

without this restriction.

2. Ultra-Optimal and Ultra-Inoptimal Points

We begin with the following set-up: a private goods economy in
strategic game form. Assume that there are n players and that asso-
ciated to each player are:

(i) a strategy set S

h|

(ii) an outcome space Yj
(iii) a map ¢j : Sl X, .. xsn -+ Yj .

let § =8 x.,, xSn . A choice of strategies s = (s

1 .,sn) €S

1* °°
determines the outcome ¢j(§) € Yj for the jth player.

We assume throughout that Y, is a smooth manifold and that the

3

utility function uj of the jth player is a Cz—functiOn on Yj . A

choice of utilities u = (u .,un) together with the maps ¢j , defines

1° °°



the strategic market pgame. Let Y = Yl X ,ou X Yn and ¢ : 5>Y be

the map ¢1 X ca. X ¢n .
Generally, if M 1is a manifold of dimension d , we will use
the following notation:
a) Tm(M) is the tangent space to M at m (it is a vector space
of dimension d )
b) T;(M) is the cotangent space to M at m ,
Recall that the cotangent space T;(M) is, by definition, the dual vector
space to Tm(M) . For v € Tm(M) and w € T;(M) , Wwe denote the value
of w at v by w«v €R ,

For this section, there is no need to impose any differentiable

structure on the Sj or ¢j . We consider market mechanisms ¢ which

satisfy the following assumption:

Assumption 1: If all but the jth player fix their strategles, then the

jth player can, by changing his own strategy, svan a submanifold of Y

3

of codimension one. (A submanifold of codimension one is called a hyper-~

surface.)
Let s = (sl, ...,sn) €5 ., Let Yj(ED denote the hypersurface

in Yj that the jth player can span when the kth player remains fixed

at s, for all k # j . We will call Yj(E) the jth player's holding

hypersurface at s . For y € Yj(E) , the tangent space Ty(Y

j(s)) is

a codimension one linear subspace of Ty(Y Y . Set

3

— * e o -
Vj(s) = {w € T¢ ) YV 0 for all v € T¢j(§)(Yj(s))} .

i

Thus Vj(E) is the one-dimensional space of linear functions on T¢ (ED(Yj)
k|

which vanish on T¢



Let Vuj be the gradient of uj ,» that 1s, the gradient of deri-

vatives of uj with respect to outcome variables on Y For vy €Y

i’ i’
Vuj(y) € T;(Yj) and Vuj(Y)-v is the directional derivative of uy in
the direction v .

A choice of strategies s = (8y» -+.»8 ) €5 is called a Nash

Equilibrium for the utility functions u = (u5 «veyu ) if for all 3§,

uj(¢j(sli ""S“)) iuj(¢j(51, * o0y Sj_l, t, Sj+1, .y Sn))

for all t € Sj .

Let N(u) denote the subset of S of Nash equilibria for the utilities u .
Lemma 2,1: Let s € N(u) . Then
Yu, (¢ .(s)) € V (s
UJ(¢j(S)) 5(s)
for a1l j =1, ..-, n.

Proof: Suppose that for some j and s € § , Vuj(¢j(§)) ¢ Vj(E) .

Then there is a vector v € T -(Yj(§)) such that Vu

¢j(s) (¢j(s))'v >0,

3

and v defines a direction in Yj(E) along which u, 1is increasing.

3
Player j can move in this direction by changing only his own strategy,

hence s € N(u) .

Remark: Suppose that the Yj(E) ~are contained in Euclidean space ®
and the sets {x € K" : x <y for some y in ijg)} are convex. Then
if utilities are concave and non-decreasing in each variable, any local
maximum on Yj(g) will be a global maximum and the condition of Lemma

2.1 in this case is also sufficient for s to be in N(u) .



Definition: Given utilities u = (ul, ...,un) » & strategy choice

s €S is called:

a) economically efficient if there does not exist a reallocation

y o= (yl, ...,yn) € Y such that

uj(yj)_iuj(¢j(s)) for all 31 =1, ..., n

with strict inequality for some j .

b) game-theoretically efficlent if there does not exist a strategy

choice s' € § such that

uj(¢j(s » Z-uj(¢jFS)) for all 3 =1, ..., n

with strict inequality for some j .
Definitions a) and b) differ only when themap ¢ : S + Y is not onto.
Let E(u) and EG(G) be the sets of economically efficient and game-
theoretically efficient strategies respectively. Then E(u) E.EG(G)

Set
EN(u) = E(u) N N(u)

ENG(E) = EG(E) N N(u)

For the rest of this section, we consider a market game where the

Yj represent the spaces of final holdings of the players. Let

= {y = (yl, ...,yk) er' : yi >0 for all i} and assume that

Yj = Rf+ for all 1 . For each player j , let aj = (a%, ...,ai) €Y

be the "initial endowment" of player j and set

<44

J

n
Y0=‘[(Y1, -.-,Yn)ele... X>Yn H j{ yj" Za.} .



YO represents the space of reallocations of the £ commodities such
that each player holds a positive amount in each commodity. Assume that

¢ maps S to Y, <Y, x...,xY

0 1 a’ i.e.,

n n
Zl¢j(5) = Ja

3 =1 3

for all s €S .

Definition: A strategy s € § 1is called

a) Ultra-optimal if the one-~dimemsional subspaces Vj(g) coincide

for all j

b) Ultra-inoptimal if for some pair j and k, Vj(g) ¥ Vk(E)

Let S and SUI denote the subsets of ultra-optimal and ultra~inoptimal

1o

points of § . It is clear that S = SUO U SUI and Suo 0 SUI =4 .,

Let U be the space of Cz-functions u on 'Rl such that:

a) u is strictly concave: u(tP+(1-t)Q) > gu(P) + (1~t)u(Q)
for all 0 <t <1 and P,QGRR.

b) Vu(y) = (au(y)/axl, ...,au(y)/axl) is a vector with strictly

positive components for all vy E'Rl .

Proposition 2.2: Let ¢ : 8§+ Y  bea market mechanism satisfying Assump-

0

tion 1. Then the decomposition 8§ = SUO U SUI has the following property:

- n
for all u (ul, ...,un) €U

EN(u) = § o N N(Q)

U

In other words, if s € N(u) N S5 then s is economically efficlent

0 k]
then s 1is economically inefficient.

and if s € BQu) n Syr *



Proof: Let s € N(u) N SUO .

j and since the Vj(E) all coincide, there is a single vector v with

By Lemma 1.1, Vuj(daj(g)) € Vj(;) for all

positive components such that

Vu, (¢

3 (s)) = Ajv

3

for some positive number Aj , for all j . If s were not economically

n
efficient there would exist vectors X <y X 3 I{2 such that z xj =Q,
j=1

1° "

r,bj(g)_ + xj € Yj , and such that

uj(tbj(g) +Xj) >u (¢j(§)) for all j

3

with strict inequality for some j - OSince the “j are strictly con-

cave
uj(¢j('s_) +txj) > uj(<15j (s))

for all 0 <t <1 with strict inequality for some j . Hence
Vuj(cbj (_s.-))-xj > 0 for all j with strict inequality for some j . Since

Vuj(¢>j (s)) = Ajv , Wwe have Vexg 2 0 for all j with strict inequality
n

for some { and this contradicts the assumption }: x, =0.
j=1

Now suppose that s € Syr M N(u) . Then there is a pair j and
k such that vj(?s_) # vk(g) , and since Vuj(d:j (s)) € Vj (s) and
Vuk(fbk(_é_)) € Vk(E) , there is a vector x € R' soch that

Vuj(¢j(§))-x >0

Vuk(ttk(g))'(-x) >0 .

Hence for t sufficiently small and positive, dij(.s') + tx € Yj .

¢k(§) -tx €Y , and:



uj(¢j(§) +tx) > uj(¢j(_§))
uk(¢k(§)-tX) > uk(¢k(§))

and the reallocation assigning ui(¢i(§)) to player 1 for 1 # j, k

and ¢j(§) + tx (resp. ¢k(§) -tx ) to player i (resp. k ) shows
s

that is not economically efficient.

3. Inefficiency of Nash Equilibria

In this section we retain the set-up of Proposition 1.2 and assume

3

maps. When the initial endowment vectors aj are fixed, the set of pos-

in addition that the S, are smooth manifolds and that the ¢1 are smooth

sible reallocations to the jth player is bounded in Bi+ . In the next
proposition, we take the space of utility functions U to be as in Sec-
+2
tion 1 except that now we must also require that all u € U be c* ™’ -functions
where r = dim S - n(2-1) . The topology on U will be as follows.
Choose a compact set C € RR which contains the set of all possible re-
allocations and let
[lull = sup sup|Du(y)]
D ye€C
where Du ranges over all derivatives of u of order 0, 1, ..., v¥2 .

The compact set C exists but will depend on the initial endowment vectrors.

The norm ||u]] makes U into a Banach space.



i0

Proposition 3.1: Let ¢ : S > Y, be a market mechanism as in Proposition

0

2.2. Then there exists a dense set (open dense if the S, are compact)

3

n - _ .
Uy © U" such that for all u (ul, ...,un) € U0 :

1) N(u) is contained in a submanifold of codimension n(2-1)
in § .

2) 1If SUO is contained in a union of submanifolds of § of

codimension at least t , then EN{(u) 1is contained in a union
of submanifolds of codimension at least n{2-1) + t (the sub-

manifolds containing S must be compact if we want to take

vo

UO open dense).

Proof: Let U = Cr+2(c) and let ¢ be the map

ngs v, § xMat(n,t)

4
" Bas

Vul
(u,s) — |s,

vu

L 0l

J

where Mat(n,2)} denotes the set of nx% matrices. For A € Mat(n,2) ,

A An will derote the rows of A . Let

1° ce

N = {(s,A) € § Mat(n,?) : A € vj('s') for 3 =1, ...,n} .

Then N 1is a submanifold of § xMat(n,%) of codimension n(g-1) . It

is clear that ¢ 1s transverse to all submanifolds of S xMat(m,2) and

that for fixed u € U, N@ c {s € S : p(u,5) € N} . Conclusion 1) follows

from the transversal density theorem since U is open in U1 . If

SUO c Ml v ... U Mr , Where the Mj are submanifolds of S of codimen-

sion at least t , set
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T
EN = {(5,A) € (UM, x Mat(n,2) : A, €V, (s) for 3 =1, ..., n} .
Then EN(u) « {s € Suo v(s,u) € EN} and conclusion 2) also follows

from the transversal density theorem.

Remark: For s € S, the condition that all vy (s} coincide is defined
“in general" by (n-1)(&-1) equations. It seems likely that if the Sj
are bounded open subsets of Euclidean space, then a rigorous argument
could be given to show that the codimension of SU0 in S is (n-1)(2-1)
for a generic class of market mechanisms. We indicate briefly how this
might be done. Let § be the set of smooth maps ¢ from 5 to Y

0
which satisfy Assumption 1. Them ¢ = ¢, x...x¢ = where ‘¢j 1§+ Y

b
and for each s € S , vj('E) defines a 1line in R* . Let P*1 denote
the projective space of all lines in B& . It is a compact manifold of

dimension (2-1) whose points correspond to lines in RY . Let v be

the map

n
v o3 QXS———>S><(P2_1)

(¢’E) — (3’ Vl(g)s ---:Vn(;)) .

- 2-1."
and let U0 = {(s, Vl,...,Vn)GSXCIP )

: Vl = V2 = ,,. = Vn} . Then

for alX ¢ € o ,

Syo($) = (s € 5: y(¢,8) € U0}

where SUO(¢) denotes the set of ultra-optimal points in S with respect

to the market mechanism ¢ . It can probably be shown that, with respect

to suitable topologies, there is a dense open set ﬂo c §t such that Qo
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is a Banach manifold. One would then show that ¢ restricted to 90 x5

. n
is transverse to the submanifold UQ of S><GP2 1} . Since the codimen-~-

n
sion of UO in S><(P£—l) is {(n-1)(2~1) , the desired conclusion

would follow from the transverssl density theorem.

4, The Shapley-Shubik Model

We now examine the results of Sections 1 and 2 in a special case:
the Shapley-Shubik bid-of fer model. There are n playersand 2 commodities,
t
vwhere the £ h commodity is treated as money. The initial endowment
1 th

vectors aj = (aj, .‘.,a§) €Y = R@ are given and the j

j - player's

. . i
strategies consist of a bid bj of money to purchase commodity 1 and

an offer to sell a quantity q; of commodity i (1 < i < #-1) . Player

1

j's strategy is represented by two vectors
1 -1 1 £~1
b, =(b,, ..., Db . , = iy wes
3 (J, » by ) q; (qJ, » 9y )
and
o R-1
-1 -1 i i i
S, = {(b .) €ER R : d .
j (b qJ) +H T PGy <8y @ i£1bj ) aj}

2(2-1)

Sj is an open set in R and dim 5 = 2n(&-1) . Let

3=t

be the total amounts bid and offered on commodity 1 . Then

[

i_B
pl = B

Q

is the price formed on commodity 1 .
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The outcome is given by distributing the total amount of each
commodity offered among the players in proportion to their bids and the
total amount of momey bid on each commodity in proportion to the offers.

The cutcome of player j will be denoted by Xj = (x:;, ...,xn) € Y, and

3 i
is given by:
bi
deatodted a1
3 i/ 3 i - -
P
J }:b+Zpii.

1-1

We compute the hypersurfaces Y (s) and the lines Vj (s) (or equivalently,

3

the normals to the holding hypersurfaces Yj (8} ) in the next lemma.

Set

Then pi is the price on commodity i formed by the players other than j .
i

Lemma 4,l: a) The hypersurface Yj (s) 1s defined by the equation

-1 B %(ai-x%)
x'?' = ap' + E —-J—j—;'— .
J J i=]1 Q§+ai-xi

i 73

b) A vector normal to Y,.(s) at ¢,(s) is given by:

i i

2 2 2

(b p;, oh pﬁ. R Rt W S

;D -
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Proof: To prove a), we have to show that for i =1, ..., &1,

Bi(a:.i—xi)
Pq. - b. = ._j___J__._j_

R S
s B I

and then summing over i gives the result. Since pi = BiIQi

B; = B* - b} , and Q? = Qi - q§ , we have to check that

1 i_ i

%3 ~ bj - 1, ,1_4

Q (Q -qJ a, xj)

Since

i id

b b.Q

ai - x = -1 q - , this 1s easily verified.
3 3 j pi 3 gt

To prove b), note that Bi

3

normal to a hypersurface in parametric form, as in a}, is given by

(Bx%/&xl, eeos /axl 1 ,-1) where x% is a function of x%, ceey x%ﬁl
b I | J k| i

as in a). From a), we have

and Q; do not depend on player j and a

R

ax_j-'; (Q;' +a§ -x;')2
and it is easy to check that Q; + ai - x§ = B;/pi . Hence a normal is
given by ((pl)zp;, .--,(pl-l)zpi'l, 1)

A strategy is ultra-optimal when the lines spanned by the normals

to the hypersurfaces Y,(s) coincide. Since the prices pi colncide

3

for all players, s € SUo if and only if the quantities p; are inde-

pendent of j for 1 =1, ..., 21 . This gives the (n-1}(2-1) inde-

pendent equations defining SUO
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Suppose that p; is independent of j for all i , say pg = Ai .

Then we have

i i

B: - b

3o, or

-4 1

3

i i 1 4
* B = by = A -
(%) i jl(Q qj)

for all j . Summing (%) over j shows that Ai = pi . Substituting

this back in (%) gives:

When this holds, the outcome to each player is simply his initial endow-

ment. We have:

Proposition 4.2, In the bid-offer model, the set SUO of ultra-optimal

strategies consists of those strategies such that each player's outcome

is his initial endowment, that is, such that:

b; - piqg for all 4 and j .

Corollary 4.3. The codimension of SUO in S in the bid-offer model

is  (n-1)(2-1)

A variant of the bid-offer model is the sell-all model, in which

all players are required to offer their entire endowment for sale, i.e.,

q? = a} for a11 4 and j
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Corollary 4.4. In the sell-all model, § consists of the strategies

uo
such that b§ = aﬁpi for all i and j and each such strategy gives

each player his initial endowment as the outcome. The codimension of

Suo in § is (n-1)(&-1)

It turns out that the market mechanism in both of these models
blows up at strategies at which the total bid or offer (or both) is zero
for any commodity. However if we confine ourselves to the subset V
of U given by V={u€ U:a<Vu<bl, for some positive vectors
a and b , then there exist positive numbers ¢ and d such that (in

either model)

N cT={s€S:c<p(a) <d for i=1, ..., 81}

for u € V' . This is shown in Lemma 1 of [1] for the sell-all model and
can be shown for the bid-offer model in the same way. By applying Propo-
sition 3.1 to the set T for all d > ¢ > 0 , we obtain the next propo-

sition. Furthermore, the holding hypersurfaces Y, {s) are concave in

h|
the Shapley-Shubik models and hence, according te the remark following

Lemma 2.1, the condition of Lemma 1.1 defines the set N(u) .

Proposition 4.5. There is an open dense set UO c U" such that for all

u = (ul, ...,un) € Ub :

1) In the bid-offer model, N(u) 1is either a submanifold of §

of dimension n(%-1) or is empty, and EN(u) is either a union of sub-
manifolds of S of dimension (%-1) or is empty.

2) In the sell-all model; N(u) is a finite set and EN(u) 1is

empty.
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(Note: The fact that N(u) and EN(u) are either empty or of the dimen-
gion stated follows from the definition of transversality and the proof

of Proposition 3.1.)

5. Game~Theoretic Efficiency

Assume now that strategy sets Sj , Outcome spaces Yj , and
maps ¢j 1 8§~ Yj satisfying Assumption 1 are given, and assume that the
Sj are smooth manifolds and that the ¢j are smooth maps. To examine
game-theoretic efficiency, we will define a decomposition S = SGUI U SGUO
similar to the decomposition 5 = SUI U SUO defined in Section 1 when

YO is a space of reallocations.

Let d¢j be the Jacobian of the map ¢j . We may write
d = LN ] d
¢j [d¢j1 ¢jn]

where d¢ji is the matrix of partial derivatives of the jth player's

outcomes with respect to the ith player's strategies. Assumption 1

of Section 2 will now be changed to:

Assumption 1': TFor all j and all s €S, d¢jj(§) has rank equal to

dim ¥, -1
(dai i )

This is the infinitesimal version of Assumption 1.
Let Vsuj be the gradient of partial derivatives of u, with

respect to the strategic variables. By the chain rule:

Vsuj = (Vuj)'d¢j

According to a simple lemma of Smale, if s € EG(E) , then the vectors

Vsu (s) are linearly dependent. Let vj(E) denote a non-zero vector

3
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in Vj(E) ; it 1s determined up to scalar multiples. Smale's lemma and

Lemma 2.1 yield the following. (Concavity of utilities is not needed here,

only that the gradients be nowhere-vanishing.)

Lemma 5.1: Let 5G,, be the set of s § with the property: the vectors

(vj(gﬁ)'d¢j are linearly dependent. Then for all utilities u = (ul, ...,un)
N(u} n EG(u) < SGUO .
If we let SGUI be the complement of SGUO in 8, then
S = SGUI N SGUO . For all choices of utilities (with nowhere-vanishing
gradients), the efficient Nash equilibria, if there are any, all lie in
SGU0 . An analogue of Proposition 3.1 is also true in the context of
game-theoretic efficiency, where SUO is replaced by SGUO . Generically,

the set of efficient Nash equilibria will have codimension t in N(u)

if SGyg has codimension t in S . Let m=4dim S . Since m>n,

the condition that the n vectors v

3 3
defined by [EJ equations--those obtained by setting the determinants

(s)+d¢, be linearly dependent is.

of all n xn minors of the matrix with rows vj(E)-d¢j (3 =1, ...,7)

equal to zero. These equations may not define independent conditions

on s, but one may expect that for a generic class of ¢ , SGUo has
positive codimension in S . This is true for the Shapley-Shubik models,
as we shall see below, and this explains the inefficiency result of [1],
according to which, generically in utilities, the Nash equilibria are

inefficient in the sell-all model.

Consider the bid-offer model with n players and % commodities

(the £th commodity is money). With notation as before, let:
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[
>
[

Q@
AE:
Lol
[+ )
£ £
bl o

@
-]
N 08
@
Py

-
K

Q2
o
=~
Q)
et
Ll

so that the £ x2(%-1) matrix d¢jk is given by

_ 1 -1.1 -1
d¢jk = [Cjk .o Cjk Bjk con Bjk ]
It is easy to compute that
Bi-b% q%-Q
1 — J
ij“ 0, . » 0, ii? » 0, 1
B7p Q
N e ——
ith place
i i
1 ~b; q;
Ci = 10, ..., 0, s eees 0, | for 3 #k
jk ii i
B'p Q
‘_-.-..._'...u.._-t
ith place
i _i i 1
1 b! -B i Q q
B - 0, .-,0, i s ® ’0,p i
J) B Q
R
ith place

i
q

By = |0 +-s 0, —-},...,o, -pi—iiL for i # k.
Q
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As we saw in Section 4,

o[l _ ¢ o 21 _ -1
v-(s) = (p ) l 1 s " ] ( ) 2_1 2_1 3 —1
. B - b} B - b

defines a vector in Vj(E) . For i#+k, set

bl - plg! piol o 8-l olqt —bl R B
w. = __i__,_._j_’__" j j L) pl_—;_j___is-"’pz-l ;L j
j Bl _bj: -1 _b;.—l gl _% -1 1

A_shog% calculation shows that in the n 2n( -1) matrix
vy (s)

«dé(s) 1is equal to

%
— -
0 . 0 v, vy Wy
v, 0...0 W, v,
Wy Wy 0 . 0 e w3
L w w w 0 ... 0
n n n ]
[P —
2(2-1)

In order for s to lie in SGUO , the above matrix must have linearly

dependent rows. It is easily checked that this is'possible only if
wj = (0, 0, ..., 0) for some j , in other words, only if b§ = piqé
for 1 =1, ..., 21 , for at least one player j .
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Proposition 5.2. In the Shapley-Shubik bid-offer and sell-all models,

SGUo consists of those strategles such that the outcome for at least

one player is his initial endowment, that is, for at least one 3 ,

i ii
bj = p q‘_j for i=1, ..., -1.

The codimension of SGUO is (&-1) .

This result and Proposition 4.2 show clearly the difference be-
tween economic and game-theoretic efficiency of Nash equilibria. Just
as in Proposition 4.5, ENG(G) is either empty or a union of manifolds
of codimension (%-1) in N(u) , hence of dimension (n-1){(g-1) , for
a generic class of u , in the bid-offer model.

As a final remark, we note that the game-theoretic efficiency of
Nash equilibria for market mechanisms where Yj(ED has codimension greater
than one in Y, can also be analyzed by the methods of this paper. To

3

do so, it would be necessary to examine the vector spaces {v € TF (E)(Yj)
3

¢

vew =0 for all w € T¢ —.{Y,(s))} which would then have dimension

j(s) h)

greater than one.
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