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EQUILIERIA FOR A THREE~-PERSON LOCATION PROBLEM*
by

Martin J. Osborne** and Carolyn Pitchik###

1, Intreduction
Hotelling [192?] considered the following simple model of location
by firms. ‘Iwo firms produce the same good, with constant unit costs. Each
sets a price for its output and selects a point on sowe line segment at which
to locate. The potential consuwners of the good are uniformly distributed
on the line segment. In order to buy from a firm, a consumer has to travel
to the point at wnich it is loceted, and pa;s a constant cost per unit
of distance toc do so. Eech consu.er buys one wnit oi the good [rem the
least costly source (where the cost of iravelling is included). The .odel
is appealing because it can be given a number of interesting interpretstions.
For example, as well as the "pure" loc:tion story told above, one can imagine
two firms, each capable of producing a good with a variety of possibie
characteristics, and a continuum of consumers with different preferences.
Hotelling approached the problem of defining an "equilibriua" pattern
of behavior in his model in the folilowing way. He wanited te .Jind a kash
equilibrium in prices for each pair of locations, and then use the payofls
at these equilibria to analyze the direction in which each firm would
have e tendency to move. However, his calculations ccntain an error, and

no {pure) Nash egquilibrium in prices in fact exists for pairs of loc:..tions
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close to the center (see d'Aspremont et al. [1979]). Some attempts have
been made to modify the model end/or change the solution concept so thot
an "equilibrium® always exists (see for example d'Aspremont et al. [;381]).
Another line of research involves a simplified version of Hotelling's sodel
in which the price vcriable is ignored (see for exazple Eaton and Lipsey
[1975]). If Hotelling's other assumptions are asaintained, this model does
possess a (pure) Nash equilibrium, in which both firms locate at the center
of the line segment, in accordance with Hovelling's ideas. Furtheraore,
sone generalizations of the simplified model possess (pure) Nash equilitria,
so that something can be sald about the "robustness" of Hoteliing's con-
clusion. Ideszlly one would want to carry out the analysis for the full
Hotelling model; given that it is not clear how to solve the cirficulties
mentioned above, examination of the simplified model may be insightiul.
Also, in some conteits there is no natural "price" variable. For example,
the line segment may represent the range of possible political views, and
the "firms" may be politicel pariies, which must decide wnich platfora to
adopt.

We are interested in what can be said about equilibrium Dehavior
when the number of firms is increased, and the distribution oi consuzers
is made non-uniform in the simplified model. Lf the number of firms is not
equal to three and the customer distribution is uniform, Eaton and Lipsey [;975]
have exhibited pure Nash equilibria (or have argued that such exist). They
have have also argued that these equilibria are sozewhat nonrobust to changes
in the customer distribution (except in the case of just two firms). Thus,
any strictly conceve customer distribution—however close it is to being uni-

form—leads to the nonexistence of any pure Nash eguilibrium., In fact, in



order for there to be an eguilibrium, the custower distribution musi rossess
at least half ag many local maxima as there ere firas (see p.35 of Eateon

and Lipsey [1975];/). This Hstructurel instability" casts some doubt

upon the significance of the pure equilibria when they do exist. Also,

the fact that there is no pure equilibrium if there ere threc {irms (wnless
the customer distribution is particularly degenerate) sug. ests that there

is the need for m solution concert which exists in a rather larger class

cf cases.

Dasgupta and Maskin [1977) consider tie possibility of allowing the
firas to use nixed strategies in the case where there are three firas and
a uniform customer distribution. They mnodify the model in a sc.ewhat
ed hoe fashion in order to reduce the severity of certain discentinuizies
in the payciis. Then, using a rather couplicated nstiin of continuivy,
they clain that their mouified game does indeed nave a mixe. strateg,
equilibirum (see p.18 of their paper), though they do not exhitit one.

Here we shall exhibit all the mixed sirategy equi-ibria, within
a certain cless, of the unaodified aodel with three firas and a wiiforz
custosier distribution. The fact that these exisi, oI coursc, nafes anj
modification to the gane unnecessaryé?i There is some presuwaption that
mixed strategy equilibria also exist if there are three firms and the
custoaer distribution is nonw.iforz, and also if there are lour or aore
firzs in this case. We have, however, been unable tc establish results te
this eflect.

It uay at first seem unnatural to consider mixed strategies in
this context, However, upon closer exzanination, there i1s a number of

reasong why it is interesting to do so. The fact that no pure equiiibriua



exists meang that the situation is "unstable®™ in some sense. The mixed
strategy equilibria define precisely what sortgof "instability" can exist.
To be more concrete, suppose that three political parties have to choose
their platforms at & number of points in time. Our results then say that
if their cholces are made according to some particular probability dist~
ributions, there is no inceniive for any of them to change their azethod
of choice, Speecifically, two patterns may emergez/: Cne party may always
locate in the center, while the other two follow independent probability
distributions which are symmetric about the center, and put most of the
weight around one quarter and three quarters of the distance along the
line., Alternatively, all parties may independently choose from distrilutions
which are uniform between the gointis one quarier and three quarters. Un
the other hand, no situation where two parties are fixed and the other
randomizes is ever an eguilibrium: in a three party political system, at
least two of the parties will change their platforms from one period to the
next.

In many games, each player can gusrantee hiaself a higher payoff
by using a mixed, rather than a pure strategy. In some games, the difference
this maskes is substantial, and it seems quite natural to think of the
players adopting mixed strategies. ror example, in "Matching Pennies"é/
this is so, and it also is in the three person location game, Taus, in
the latter case, each pure strategy guarantees a player nothing--the other
two players may loccte inmediately to nis left and right. A mixed strategy,
on the other hend, con guarantee each player a positive payoff, the (mixed)
strategies which guarantee the most are not equilibrium strategies (as

they are in "Matching Pennies"). However, the fact that a player risks



getting a peayoff of zerc if he plays a pure strategy may induce him to
think about randomization, even if the strategy he finalily adopts is not
the one which guarantees ihe most.

The recent workx on the "purification" of equilibria (see, for
exatmple, Auzsnn et al, [198i]) does gsomething tomake mixed strategies lesc
artificial. The basic result is that players do not need to aanufacture
randoa variables upon which to base their actions, but can rely on existing
random variatles (e.g. stock market pricesé/) which other pleyers may also
obgerve., Of course, the observciions of the pleyers have to possess some
decree of independence, though perhaps not as much as one might have thought,
the term "purificai.on" way ve a little misleading, since the Mpure®
strategies depend on the observations the players zake, and these observations
are stochastie. Nevertheless, the results auguent the appeal of mixed
strategy equilibria by showing that players may not need to consciously
invent randox variables.

Finglly, there is an interpretation of the model in which the
random elezment comes {rom the behavior of consuuers. Suppose each iJirm/
store ccn produce and sell one of a whole continuum of goods, with difierent
characteristics, at any one time, Each consuier has a most preferred
good, and, out of those available at the time he happens to shop, buys the
one which is closesl to his favorite, Shopping times are distribuied
randonly over sone interval. Each firm decides over which intervals ol
time to produce which goods. Then, treating the continuum of characteristics
as the space of location, our results irentify two different sorts of
equilibriun patterns of production for the iiris. In one case, one firm

always produces e good of type 1/2, while most of the time the other
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two firms produce goods of types close to 1/, and 3/4. In the other
case, ell three firms distribute their product cheoices wmiformly over
[1/4, 3/4) during the interval of time. On difierent days the stores
sell goods of different types; given the random behavior of consu.ers,
the choices of the stores can be quite deterainistic.

In the next section we shall describe the model fermally and state

our results. In Section 3 we provide procfs.

2. The Model

Since it is easy ito describe the model with an arbitrary nunber
of firms, we shall do so, though our resilis here relate only to the case
of three [irms. lhe firas sre involved in a strategic game Gn with
player set N = {1,...,n}, strotegy sets S, =8-= {0,1] for each i E i,

and payceff functions K.:X S;=» IR given by
i ien *

[N

(1) +5,)/40) £ L) =g, RG) A
#(R(1) - L(1))/Q(1) ir L) #¢, RG) AF
1/9(1) if L{1) =R{i) = ¢

(B - (s +LUN)AG)  if (i) #4, r{i) =¢

.

Ki(sl,...,sn) =

[N

where

position of closest firm on  i's 1left if one exists
L{i) [resp. R(i)} = g [resp. rignt)

otherwise
and Q(i) is the nuwaber of firms (including i) loczted at 8. The
set of mixed strategies of 1 is the set Ii = X of probability distribution

functions on S, (= [O,l]). The degenerate probability distribution function



with its entire mass at the point t € 8§ can of course be identified
with the pure strategy t € S; we shall simply use t to denote this mixed
strategy. (Such degenerate distribution functions will always be denoted by

lowercase letters, so that no confusion will occur.) Suppose that each player

J & N chooses the mixed strategy Fj € X. Then player i's payofi is

K (FrpeensE) = Jooe K (sy000e,8.)aF, (5)). 0 0F (5).

5

Qur maein result is that the game G3 possesses equilibria. We shall in

fact show the following.

Proposition 1: {}3 has no equilibrium of the type (a, b, F} (i.e.

in which et least twe players use pure strategies).

Progosition 2: G3 has 2 unique equilibrium (up to_symmetry) of

the type (c, F, H) uhere the supports of F and H are equal to the

same closed interval. It is (1/2, F, F) where the support of F ig
[5/24, 19/24] * end

" 1 - 27236t - 1)~V 5/24 < t < 1/2
F(t) =
2/3(5 - 6t)~1/3 172 < t <€ 19/24,

The corresponding eguilibrium payoffs are (38/96, 29/96, 29/96).

The density of the F given in this Proposition is illustrated

in viagram 1.

Propogition 3: G3 has a unique eguilibrium of the type (F,, Foy FB)

where the swpports of each F; are equal to the sane closed interval and

each F. 1s differentisble on the interior of its swpport. It is (F, F, ),
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piagram 1: The Density of the F Given in Propogition 2
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vhere the support of F is [;/4, 3/2] and F(t) = 2t - 1/2 for

1/4 <t < 3/4. The corresponding ecuilibrium payoffs are (1/3, 1/3, 1/3).

In the proof of Propcsition 2 we use argutents siamilar to those of
narlin [;959]9/ to estabiish that the continuous part of any equilibrium
strategy in this case must be absolutely continuous, and in fact
differentiable, It would be nice if we could extend these arguments
to cover the case in Proposition 3, but we have been unable to do
so, It would be even nicer to show that no equilibrium exists in
which the support of some player's strategy is not an interval, so that
there are no equilibriz of G3 except thcose we have found. The two-
player zero-sum games which Karlin considers sliow him to malte a unigueness

arpguzent of this sortz{ but once again we have not been atle to extend

it to encompass our ihree-perscn nonzeroc-su: gane.

3. Proofs

Proof of Progosition 1l: Without loss of generality, we nmay assu:ae
that a < b end thet Player 1 is using the (pure) strategy e, Player 2
the (pure) strategy b, and Player 3 the strategy F. (We already imow
that F cannot be & pure strategy (see, e.g., Eaton and Lipsey [1975]).)
Since R(3) = ¢ if 53>b and L(3) =@ if 33< a, it is easy o see
that the support of F must be contained in [a, b]. Qtherwise, Player 3
could increase his payoff by putting more weight closer to b (on the right)
or by putting uore weight closer to a (on the left).

We shall first show that F cannot be a discrete distribution

composed simply of weights ®«, 1 - o et the points a, D respectively.
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This fact will allow us to conclude that the support of F must includc
some point t € (a, b). From there we can infer relationships between
e and b which rule out any solution,

Suppose that F is discrete, with a jump of size ™= at a and
one of size 1 -o at b, Since a and b are juwp points of F,
in order for {a, b, F) to be an equilibrium we need K3(a, b, a) =
Kj(a, b, F) = KB(a, b, b). Thus, equating the first and last teras, we
need (a+b)/i=1/2- (a+b)/fiy or a+b=1. We also need K:L(a’ b, F}

> K (t, b, F) for all té€ (0, 1], so thut K,(a, b, F} 2 lin K (t, b, ¥)

1T
and Kl(a, b, F) > lim Kl(t, b, F}. Thus
tfa
%xfa + b a+b b-@a
2( 5 )+(l-a)( > )g «( 3 )+(1-0Jh

go that (2 +w)a = (2 -®)b 20, and

S 0 -0 2 wa v -0,

so that b 2 3a. Combining these lest two inequalities with the fact thzt
a+b=1, weget 2 - «<4a<l, sothat o >1. But then « =1 and
F is a pure strategy, which is imposcible as noted above, Thus there exists
some point in supp F 0 (a, bj.

We shall next show that if (a, b, F) 1is an equiiibriuz then
a=1/ eand b= 3/, Since there exists some point in supp F N (e, b)
we lmow that ](B(a, b, F) = (b - a)/2, and thus K3(a, b, F) 2 K3(a, b, a)
and Kj(a, b, F) 2 KB(a, b, b) imply that (b - a)/2 > (2 + b)/4 and

(b - a)/2 21/2 - (a + b)/4, or

(1) b>3a and 3b2ea+2,
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We now consider the difference Kl(s, b, F) - Kl(a, b, F) for
some s € (a, b) which is not e jump peint of F. in this case,
Kl(ss b, F) - nl(av b, ¥)

J(E-;—t)dﬁ‘(t) + J(s ; t)dF(t) - (Ez—b)F(&) - f(g—;"&)d?(t)

[2,5) (s,b] (2,b])

2 2

E}F)-(b - 3a) + “—b‘—“'ﬁ)dF(tJ + J(m)dl?(t)
(a,s) (s, )

]

%Eil(b - 3a) + J(—————b 2= Zt)dr'(t) + - F(s))(s = a).
(2,5)

But then if b > 3a, we have D =-a -2t 20 1f t 1is close to a, so that

for s sufficiently close§/ tc a we have

%E-l-)-(b - 3a) + J(P-:—az-'—z—t)dr(t) + (- F(s))(s = a) > 0,
(ass)

or K(s, b, F) > K;la, b, £). 8o in crder for (a, b, F) to be an equil~
ibriui we need b < 3a. Meking a similar argument near b we obtain
3b < a + 2. vosbining these with (1), we deduce that b = 3a and 3b=a + 2,
or a=21/ eand b= 3/

Finally, we shall show that {a, b, F) = (1/4, 3/4, F) is uot an
equilibrium of G3 for eny F. If s € (a,b) 4is not a jump point of

F, we heve, from the calculation above (setting a = 1/4, b= 3/4),
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Kl(s, b, F) ~ Kl(a, b, F}

j(k-‘;;gﬁ)dF(t) + (1 - F(s))(-%—a)

(a,s)

1}

[(ﬁ:_%ﬁ)dp(t) + (1 - F(s))(s 5 a) (since b = 3a)
(e, s)

_ EAre + - ren (gt Gerting =12, =3/

= (s - 1){1 - 3F(s))/8 > 0 if F(s)< 1/3.

Thus Kl(a, b, F) ZKl(s, b, F) dimplies that F(s) 21/3 for any s & (a,t)
such that s is not a jump point of F. Since F 1s righi~continuous, this
means that F(a) 2 1/3. Analozously we con show that F(b) < 2/3.

Again, let s € {a,b) not e & jump point of F, and cousicer the

following diiference:

Ky (s, b, F) - K (2, b, F)

gg;%fﬁgwu)+u-F&ncga)

(as s)

"y

G‘_Ll S)F(s) - F(a)) + (1 - F(s))(ﬁsél) (using & = 1/4, b= 3/4)

{4s = 1) (@ - 3F(s) + 2F(a))/8 > 0 if F(s) < {1 + 2F(a))/2.

Thus K, (=, b, F) Z K, (s, b, F) implies that r(s) 2 (1 +2F(a))/3 Z

(1 +2/3)/3 =5/9 (since F(a) 21/3) for all s € (a,b) sueh that
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8 1is not a jump point of F. Thus teking li.its and using the richt-
continuity of F we find that r(a) 2 5/9. analogously, F(b) < 4/7,
which is impossible.

Hence there is no strategy F and pure strategicc a, b such that

{a, b, F) is an equilibrium of g, completing the proof.

In the proof of Proposition 2, we shail use the following result,
which drastically limits the points at which F and H wmay have jumps
if {c, F, H) is an equilibrium of u3. whenever F is a distribution

tunction the expressions "F-measure" and "F-a.e." refer to the (unique)

Borel measure deiined by F.

Leanz: Supocse (¢, F, H) is an eguilibrium of G3, with supp F =

swpp H = [a, b]. Then ¢ € [a, b_], and the only points at which F anc¢

H may have jumps sre a, ¢/3, ¢, {c +2)/3, and by F agnd H gcunot

both have juips at c¢. If F has no jump at c, then Ix dF(x) = 3¢ - 2F(c).
[a,b]
ocfs If Player 1 locztes to the right of b -=i.e. sl>-b -—th:n

Y

R(1) = ¢, so that Player 1 can increese his paycfi by amcving lowards 0D
from the right. Similarly if s;< a then L{1) = ¢, so that Pigyer 1
cen increase his payofi by moving towards a frou the leit. Hence Ior
{c, ¥, H} to be an equilibrium we must have ¢ & [a, b].

We shell now consider the points at which F wmay have juips. First
note that if (c, ¥, H) is an equilibrium then K3(c, F, s) < KB(C’ F, H)
for a1l s € |a, b] ané KB(C, F, 8) = K3(c, F, H) H-z.e.. Hence ior any
t € (a,b) there exists a sequence {_si} C (s,t) with s T ¢t such that

Kj(c, F, si) = K3(c, F, H) for all s; (otherwise K3(c, F, s) <K3(c, F, H)



for 8ll s in some neighborhood of t, which must have positive H-.ezsure

since swp H = [a, b]). Thus 1lim K3(c, F, si) = K3(c, F, H). S8inmilarly
ai‘rt

there exists a sequence {sil C(t, b) with s;¥t such that

li‘i KB(C’ F, Si) = KB(C, F, H).

s

2 Now suppose that F has a jump of size ¥ at t (i.e.

F(t) - 1im F{x) = ¥ ). First consider the case where t € (c, b). For

xTt
any s € (¢, t) we have

KB(C’ F, &) = jKB(C, x, s)aF{x) +JK3(c, x, s)dF(x) + j KB(C’ x, 8)dF(x)
[2s ) {s} (s,t)

+3Y(t -e) + IKB(c, x, 8)dF(x).
(t,b]

Now since F has a jusp at t, JKB(C, x, s)dF(x) =2 0 as sft. Hence
{s)

lim KB(c, F, s) = IKB(C, x, t)AF(x) +3¥(t - ¢) + JKB(C, X, t)dF(x).
sTt fa, t) (t,b)

Similarly, for any s € {t,b) we have

K (C, F, S) = JK (C, X, s)dF(x} + x(l - %(S + t)) + IKB(C’ Xy S)dF(X)
3 3
[a’t) (t,s)

+ J\Ks(c, x, s)dF(x) + IKB(C, %, s)dF(x).
{_s} (Ssb]

Hence, as before,

lim K3(°r F, s) = IK3(C’ x, t)dF{x) + ¥(1 - t) + IK3(C’ x, tYdF(x).
sét e, t) (t,b)



Thus

lim KB(c, F, s) - lin Ky(c, F, s) = YGt -4c -1 +1t) =43t -¢c - 2).
sTt s¥t

Thus if ¥ > 0 we need t = (c + 2)/3 ~i.e. the only point t € (¢, b)

at which F moy have & jump is (c + 2)}/3.

By a similar argument we can establish that the only possible pesition
for ¢ jump in (&, ¢) is t = ¢/3. We can clearly make the same arguments
for H, so it remains to show that F and H cannot have a comuon juap at
c. If they do, then there must be sequences {s;} with s, Tc and {ti?]
with tiwlfc such that

lin Ky(c, F, 8;) = Ky{c, F, ¢) = lim Ky(c, F, t;) = Ky(c, F, H).

si‘r c tivl» c

Letting ¥ be the size of the jump in F at c, we find that

lim K3(c, F, s;) = (¥ ~ Flc) +2) - % j x dF(x),
si'?c (&,C)

KB(c, F, c) = 3F(c) - ¥/6 +4c{l - 2F(c) +¥) ~ % J x dF(x) +1~J- x dF{x),
(a,c) (c, b}

and

lim K3(c, F, t;) = F(c) - 3c(F(e) +1) +% j x dF{x).
ti¢c (c) 5]

¥quating the first and last of these we obtain

3 J‘ x dF(x) = $e(¥+ 3) - Flc);
[a,c)U(c,b]
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using this when equating the first and second we obtzin § = 0. Hence
F and H cannot have & comzon jump at ¢, rinally, setting ¥=0 in

the last equation we obtain

x dF{x) = x dF{x) = 3e¢ - 2F(c).
[a,c)U(c,b] [alb]

this completes the proof of the lemma,

Proof of Proposition 2: Let (c, F, H) be an equilibriun with
supp F = supp H = [a,b]. then from the Lemma, toth F and H are continuous
except possibly on J ={a, e/3, ¢, (c + 2)/3, b}. Hence Kj(c, F, s)
is continuous in s on [a, bJ\J, so thet we must have K3(c, F, 8) =
Ky(c, F, H) = 'KB, say, for all s & [a, b]\J. But if s € (a, ¢)\{c/3}
then

K3(c, F, s) = J.é—(c - x)dF(x) + ji—(s + x)dF(x) + f%(s + ¢)dF{x).
{a,s) [sy<] (c,b]

So, integrnting by paris, we need

K, = ¥(c - s)}F(s) + I-L-F(x)dx +%(s + ¢)F(c) - sF(s)
’ [3!5)

- I%F(X)dx +3#(s + ¢){1 - Fle)),
[S,c)

or

F(s) = 'c%;[fg, -%(s +¢) - %EJ. ;“(X)dx +%[s :)‘(x)dx]
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for all s € (a, c)\fc/3}. Hence F 1is absolutely continuous, and in
fact differentiable on (a, c)\{c/B}. A similer arpunent establishes
that it is also differentiable on (c, b)\{(c + 2)/3}.

Hence Ky(c, F, s) is differentiable in s on {2, B]\7J, ana
hence its derivative mumt be zero there. Differentiating KB(C’ F, s)

for s € {a, ¢)\{c/3} and setting the result equal to zero, we obtain

(2) F'(s)(c -~ 3s) =F(s) +1 =0,

which implies that F{s)

[}
()

Q-0 - )33 - )3 ip
s € {&, ¢)\{c/3}, vhere «

F(a). In order that F'(s) 20 we need
32 2 ¢, or ¢/3 €&, so that in fact (2) holds for all sé€f(a, c). We

also need K3(c, F, s) 2 KB(C’ F, a) for all s € (a, c), so that we need

lim K (c, F, s) = (=53] + | K,{c, t, a)dF(t)
v a3+ [

Z%U\(%) + JK3(C’ t, a)dF(t) = KB(C’ F, a),

(a!b]

or e{c - 3a) 2 0. But froa the above, 3a z ¢, so if o« > 0 then
we have 3a = ¢, in which cese F(s) =1 for ell s € [a, ¢), so that
F 1is a pure strategy, which is impossible by Propositicn 1. Hence

® =0, so that
(3) Fls) =1 - (Ga - )38 - )2 for s € (s o).

We can meke similar arguments for s € (¢, b), to establish that

b < (c +2)/3, end there can be no jump in F at b, We then find that
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(%) F(s) ={(2-3b + c)1/3(2 - 35 + c)-]'/3 for s € {c, bl.

The same arguments of course apply to H also, so that H{(s) = F(s)
if s e[a, c)U(c, b], and hence for all s € [a, b). But from the Lenna,
F eand H cannot both have & jump &t ¢, Since they are equal, this
means that neither has a jumps F=H is continuous on [a, b,
end dif{erentiatle except possibly at c.

We shall now find poscible values for &, b, and ¢, Consider

Player 1's payoff. If s #c¢ it is

{5) K (s, F, F) =2 J[l -3{t + s)] F(t)aF(t) + 2 f fig{t - u)dF(t)dF(u)
[e,s) [&,s)(s,b_]

+ 2 f%{t + s){1 - F(t))ar{t).
tssb] |

Since F is continuously differentistle on (a, b)\{e}, K (s, F, F) is

elso. Hence in order that s = ¢ maximize K, (s, F, F), we need

1im dKl(s, F, F)/is 20 and lim dKl(s, F, F)/ds < 0.
stc sdc

But

(6)  dK (s, F, F)/s = F'(s)[2F(s) - 3s +fx aF(x)] +% - Fe) = 4 - F(s),
[a,b]

using the last pert of the Lemza. Since F is continuous this mesns that

Flc) = 1/2. wnetting s—=>c¢ in (3) and {4) we then need

@) (e - &) (2e)" Y3 < 112



and

(8) -3+ - )Y =1

Using (3) and {4) to calculate [afbs dF(s), the last condition in the
Lenza becomes '

{9) (2(2 - c))'l/3(2 - 3b + c)l/3 =2(1 - ¢) - (a +1b)/2.

Hence a, b, and ¢ must satisiy (7), (8), and (9). sclving these three
equations we oitain & = 5/24, ¢ = 1/2, and b = 19/24. Hence the only

candidate for an equilibriuz of the foerm {(c, F, H) has ¢ =1/2 and

1-272P6s - )2 smcsca

(10) F(s) = H(s) =
o) = Hls) =9 23 (5 - 6g)~/3 1/2 £ 5 £ 19/24.

To complete the proof we need tc show that this (e, F, H) ig in
fact an equilibrium of GB' It is clear that Kz(l/?, s, F) increases to
K2(1/2, a, F) = Kz(l/?, F, F) as s increnses to a; similarly it increczses
to K2(1/2, b, F) = K;,(1/2, F, F) as s decreases to b, Hence F Is
a begt reply of Plsyer 2 to {1/2, F); idemiical argusents apply to Player 3.
It is also clezr that Kl(s, F, F) € Kl(a, F, F) if s <€a eand
Ki(s, ¥, F) €K (b, F, F) if s ZDb. Thus it remains to show that

Ki{s, F, F) <K (1/2, F, F) if s e (a, t]. Substituting (10) into (6)

we can find dKl(s, F, F)/ds. Analyzing its derivative we fina that
dKl/as is negative from s = a wntil soae point, and then is positive
wmtil s = 1/2. 1hus, the only posszibilities for maxizas of Kl(s’ F, F)
on [a, 1/2] are s=a or g=1/2, B.t substituting these values

in (5) we find Kl(a, F, F) = 14/48, while Kl(l/é, F, F) = 19/.8, Hence
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X (s, F, F) $K{1/2, F, F) for all s &[e, 1/2]. 8ince F(s) =1 - F(1 - g),
it is izmediate that Ky(s, F, F) SK,(1/2, F, F) for all s € (1/2, b)

elso. Hence s = 1/2 is & best response of Player 1 to (F, F). It is

easy to check that the payoffs at the equilibrium zre (19/48, 29/48, 2v/48),

completing the proof.

Proof of Proposition 3: Let the cow.on support be [a, b]. We

begin by showing that at most one of the distributions, say FB’ can
have a junp at a. By symmetry, this will imply that at most one of the
distributions can have a jump at b. Consider the payoff of Player 3 when

he uses the pure strateg, t:

(11)  K(Fp, Fpy t) = }Q -5 t)I'"l(s)sz(s) +l(l - §7"—1‘)F2(s)dFl(s)
a
+f
a
+z(s > 1")(1

5 - U } b - Uy . 5
( =-9)aF, (s)dF,(u) + a{(ﬁ-—z )G, (s) aF, (u)

ct—o’

t

+

b
F,{s))dF,(s) + {(5 £5) @ - Fyle)ary(s).

In order for F3 to have a jump at a it is necessary that

Jt.ir; K3(Fl, F., t) (= KB(F » Fo» FB)) = KB(FI’ Fon a). Using (11) we obtiain
lin K (F), Fy, t) = 2F, (a)F,(a) (1 - a) + 3F(=a) v(s dr,(s) + a(l ~ Fyla))
tda (a,b]

+%F2(a) J s dFl(s) + a(l - Fl(a)) +% f (s +2)( - l"l(s))sz(s)
(ayb] (a,b]

+% Jq {s +a)(1 - Fz(s))dFl(s).
(a:b]
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Also

Ky(F), Fy &) = %r'l(a)tha) + 3F, (a) fa—;’—ﬁsz\s) + 3F,(a) jg—-%-—sdl?l(s)
(.rb] (a;b]

++ f (& +s)(1 - l\s))sz(s) +3 I (a +8){1 - F2(s))dFl(s)
(a,b] (a,b]

= % 1(8)Fy(e) + %Fl(a)[a(l - Fy(a)) + J-]s szfs)]
{a,b

+-}F2(a)[a(l - Fl(a)) + f s dFl(sﬂ +4 J.(a + s){1 - Fl(s))sz(s)
(alb] (a;bJ

+ % f(a +s)(1 - F2(s))dF1(s).
(a,b]

Thus we need

= %-'—2-[9'1(&)1'“2(&) {20 - 30=2) + 3Fl(a){a + f s sz(s)} + 3F2(a){a + js dFl(s)}]
(asb] (a,b]

= 0.

To analyze this expression, consider the function g(x, y) = xy(20 ~ 30a) +

3x{a + kl) +37(2 + k2) where kl:> 0, k2:> 0. We need g(x, ¥y) =0, i.e.
= -3x(a + ky)/[(20 - 308)x + 3(a + k)], But dy/ax =

-9a + k) {a + k2)/ [(20 - 30a)x + 3{a + k2)]2 < 0. Thus the unique soiution

to glx, y) =0 in [o, l])([O, 1] is x =y = 0, so that the only way for

F3 to have a jump at a 1is for both Fl(a) and F2(a) tc be equal to zero



~22-

(i.e. at most one of the distributions F), F,, F, has a juop at a).

Without loss of renerality, we shall ascume th.t Fl(a) = Fo(a) =0 and
>

Fé(a} > 0.

We shall now show that Fi(t) = Fz(t) =2t - 1/2 1is the only pos:ible

choice for F, and F,. Since the support of F; is [a, b}, for i=1, 2, 3,

it is necessery that Ki(t, F}, Fk) be constant for all t € (a, b), Thus,
since we are assuming thet F; 1is diffeerentiable on (&, b) (i =1, 2, 3),
we need dK,(F,, t, Fé)/ﬁt =0= dKl(t, F, !é)/ﬁt for all t € {a, b),
with initial conditions Fl(a) = Fz(a) = Q (F3 given). Thus both F,
and Fé must solve the same differential eguation y!' = f(t, y, F

3
the sazme initial condition y(a) = 0. Thus Fl(t) = Fz(t) = F(t) which

) with

impiies that F does not have a jump at b since at most one distribution
has & juip there. But now we need dKB(F ’ F2, t)/dt = dKB(F, F, t)/dt =0

for a1l t € {2, b). Thus, using (11) with F) = F, =F we obtain
b
dK,(F, F, t)/at = F! (t)[zF(t) -3t + s dF(s)] +1/2 - P(t) = 0.
a

Thus, F solves the difierential equauion
b
Loy - 3x+k) +1/2-y=0 where k =£s ay(s),
or
dy(2y - 3= + k) + dx{1/2 - y) = 0.
Solving implicitly with the integrating factor C(y —-%)2 we obtain
Cly - 1/2)3[(y 1) /2 - x + (1 + k)/B] +D=0.

sut y(a) = 0, y(b) =1 implies that y = 1/2 for some x which implies



that D=0 eand

b b
y{x) = 2x = 1/6 - 2k/3 where k = JS dy(s) = I2s ds = b - 32’
a &

so y{x) = 2x - 2b2/3 + 2a2/3 - 1/6. But we need y({a) =0, y(b) =1,
so thet & = 1/4, b = 3/4, and y{x) = 2x -~ 1/2, i.e. F(s) = 2s - 1/2,
supp F = [1/4, 3/4]. But, given F,, F2 we ca now solve for F3.
Since Kl(t, F,, F3) must be constant for all t € (a, b), we neea

dKl(t, F FB)/dt =0 for ail t € (a, b). Using (11) we obiain

2’
b
dK, ¢, F, Fy)/dt = FY{t)(t - 1/2)/2 + 3F(t)/2 - 4t + 3/2 - }[Fs(s)ds.

So F3 aust solve the differential eguation

E—g(x -1/2) +3y = 8x +3 -2k =0 where k = zy(s)ds, a =174, b = 3/4,
or

dy{x - 1/2) + a&x(3y - 8x + 3 -~ 2Zk) = 0.
Solving implicitly with integrating factor G(x - 1/2)%, ve obtain

c(x - 1/2)3[y -2x +2/3 - 2k/3] +D=0.

Since 1/4 < x < 3/4, we must have x = 1/2 at soze point, which implies
thet D.= 0. Hence
y{x) = 2x = 2/3 + 2k/3 where k = i;z(zs - 2/3 + 2k/3)ds = 1/6 + k/3,
which implies that k = 174, end so y{x) = 2x - 172 for 1/4L < x < 3/4.
thus F3(t) =2t - 1/2 on (1/4, 3/4). Since 0 < F3(t) <1 in fact

Fy(t) = 25 - 1/2 on [1/4, 3/4).



So far we have shown that if (Fl, 22 F3) is an equilibrium point
of G3 as described in the Proposition then Fi(t) = F(t) = 2t - 1/2,
g =1/4, end b=3/,, for i=1, 2, 3. We now show that (F, F, F)
is indeed an equilibrium point of G3. We alreasdy know that Ki(t, F, F}) =
K;(F, F, F) for all t € [a, b}, It remains to snow thet K,(F, F, F) 2
K, (t, F, F) for all t€ {0, a)u(b, 1]. 8Since F satisfies the condition
F(t) =1 - F{1 - t) it is sufficient to show that Ki(F, F, F) > Ki(t, F, F)
for al) t €[0, a). But, as before, it is clear that Ki(t, F, F) is
increasing on [0, a). Thus K (F, ¥, F) = K;(a, F, F) 2 K;(t, F, F)
for all t €[0, a), where the middle inequaliiy coues froa the fact thst
F is continuous at & so that K,(F, F, F) = lim Ki(t, F, F) = K, (a, F, F).

tda
This completes the proof.
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Footnotes

Note that ™ > 2M" about two thirds of the way down p.35 1s
a typographic error for "n < 2M",

Presumably the idea behind the modifications which Dasgupta and
Magkin make is that they produce games close (in some sense) to

the original one, so that the equilibria (if any) of the new games
indicate something about the way the players might behave in the
original one, even if the latter do not actuaslly possess equilibris,
Ag far &s pure girategy equilibria are concerned, this seems unlikely
to be a useful procedure, since there is no presumption that close

to any given game there is one which possesses a pure strategy
equilibrium., As for mixed strategy equilibria, even though continuity
assumptions appear in some results on existence of such equilibria,
wide classes of game with discontinuities in their payoffs de in

fact possess such equilibria (see, for exsmple, Chapters 5 and 6

of Karlin [1959], and Pitchik [1982]).

We are ignoring the poszibility that players can choose strategies
in which their action at some point depends on the actions of the

other players at previous points. 1he equilibria we describe are

equilibria of this repeated game, but there may be others.

I.e. the zerosum game in which there are two players (i =1, 2),
each with two pure strategies (s = 1, 2), and the payoff to 1 when
he uses the strategy j and the other player umes the strategy

k i 1 if j =k and 0 if j # k.

It is perhaps careless to say that "stock market prices are random".
But it may be true that their behavior is approximated very well by
that of & random variable. an individual whose payoff depends
crucially on the level of stock prices might be concerned to penetrate
the apparent randomness, and develop & theory which really explains
the obgerved behavior. However, if we consider players in a game

for which the payoffs have litile to do with stock prices, we can
presumably conclude that none will have any reason to doubt that they
behave stochastically. {One can of course generalize this argument:
no phenomenon ig really random. HEven the outcome of a coin toss
could be predicted, given sufficient inforuation on the way it is
carried out, and on the environment in which it occurs.)

See Problem 17 on p.l42 and its solution on p.294.
See rroblem 16 on p.l42 and its solution on pp.293-4 of Karlin [}95@

Such exists since F can have at most a countable number of jumps.
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