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0. ABSTRACT

It is shown that the exact distribution of
the LIML estimator in a general and leading single
equation case is multivariate Cauchy. The corres-
ponding result for the IV estimator is a form of
multivariate t density where the degrees of
freedom depend on the number of instruments.
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1. INTRODUCTION

Improvements in the algebraic machinery of multivariate analysis
have recently led to many advancements in our understanding of the finite
sanple properties of statistical methods in econometrics, particularly
with regard to the simultaneous equations model. Modern multivariate
methods provide a convenient stepping stone to the solution of exact sampling
distribution problems through manageable algebraic representations of the
joint density functions of the matrices of sample moments upon which most
common econometrié estimators depend. These matrix variates have, in
general, noncentral multivarilate distributions whose algebraic forms and
properties have been intensively studied in mathematical statistics. Some
of the most important contributions in this area have been by Herz (1955),
Constantine (1963), James (1964) and Davis (1980a, 1980b), all of which
have substantially facilitated the development of econometric small sample
theory in recent years. A detailed account of the theoretical developments
that have taken place in econometrigs, largely in conjunction with this
analytic progress in multivariate methods, may be found in Mariano (1982)
and Phillips (1980a, 19823).

The purpose of the present paper is to focus on a simplified class
of problems within the simultaneous equations setting where standard methods
of multivariate analysis allow us to extract the exact distributions of

econometric estimators with relative ease.



2. LEADING CASES AND THE INSTRUMENTAL VARIABLE (IV) ESTIMATOR

We will work with the structural equation

1 yl = YZB + Zly +u

where yl(T x1) and YZ(T><n) are an observation vector and observation

matrix, respectively, of ntl included endogenous variables, Z1 is a

T x K, matrix of included exogenous variables, and u 1is-a random distur-

bance vector. The reduced form of (1) is given by
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where Z, is a T x K, matrix of exogenous variables excluded from (1).
The rows of the reduced form disturbance matrix V are assumed to be in-
dependent, identically distributed, normal random vectors, We assume that
the usual standardizing transformations (see Phillips (1982a)) have been
carried out so that the covariance matrix of rows of V is the identity

1

matrix and T 2'Z = I, where K=K, +K, . We also assume that K, > n

2
so that the necessary order conditions for (1) to be identified are satisfied.
There are two special categories of models such as (1) and (2) in
which the exact density functions of the common single eguation estimators
of B in (1) can be extracted with relative ease. In the first category

are the just identified structural models in which the usual consistent

estimators all reduce to indirect least squares and take the form

(3) Brps = [23Y,) 7 125y, ]



of a matrix ratio of normal varjates. In the two endogenous variable case
(where n =1 ), this reduces to a simple ratio of normal variates whose
probability density function (p.d.f.) was first derived by Fieiller (1932)

and takes the following form here (see Mariano and McDonald (1979))

2
o 2
e""{' 7 (L6 ’} ey Loul Qen)?
137 20 2 2

(4) pdf(r) = 3
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where u2 = TH§2H22 is the scalar concentration parameter. In the general
case of ntl 1ncluded endogenous variables the density (4) is replaced by
a multivariate analogue in which the 1F1 function has a matrix argument
(see Sargan (1976) and Phillips (1980b}).

The category of estimators that take the generic form of a matrix
ratio of normal variates, as in (3), also includes the general IV estiﬁator
in the overidentified case provided the instruments are non-stochastic,
that is, 1if BIV = [W'YZ]-I[W'yl] and the matrix W is non-stochastic,
as distinct from its usual stochastic form in the case of estimators like
25LS in overidentified equations. This latter case has been discussed
by Mariano (1977). A further application of matrix ratios of normal var-
iates, related to (3), occurs in random coefficient models where the reduced
form errors are a matrix quotient of the form A—la where both a and
the columns of A are normally distributed. Existing theoretical work
in this area has proceeded essentially under the hypothesis that det A
is 'non-random (see Kelejian (1974)) and can be generalized by extending
(4) to the multivariate case in much the same way as the exact distribution
theory for the IV estimator in the nt+l endogenocus variable case,

The second category of special models that facilitate the develop-

ment of an exact distribution theory are often described as leading cases



of the fully parameterized siﬁultaneous equations model, In these leading
cases, certain of the critical parameters are set equal to zero and the
distribution theory is developed under this null hypothesis. In the most
typical case, this hypothesis prescribes a specialized reduced form which
ensures that the sample moments of the data on which the estimator depends
have central rather than (as is typically the case) noncentral distribu-
tions. The adjective "leading" is used advisedly since the distributions
that arise from this analysis typically provide the leading term in the
multiple series representation of the true density that applies when the
null hypothesis itself no longér holds. As such the leading term provides
important information about the shape of the distribution by defining a
primitive member of the class to which the true density belongs in a more
general setting.

It is with such leading cases that the present paper is concerned.
We will consider, in particular, the leading subcase of (1) and (2) in which

I, = 0 . Under this hypothesis the reduced form (2) becomes

(2") [yp :Y,0 =2y [m; SMo0 + [vy 1 V,]

The statistical analysis of this leading case can now be simply illustrated

in terms of the following IV estimator of B :

(5) 1y = [¥52523%,17 1732523,

where Z3(I‘XK3} is a submatrix of z, selected as instruments additional

to Zl and where it i1s assumed that K3 > n . We note that the conditional
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This is independent of 23 2 and is also, therefore, the unconditional
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distribution. Further, T‘1Y52325Y2 has a central Wishart distribution

of order n with degrees of freedom K3 and covarlance matrix In .

We may therefore write B in the form

v
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so that BIV is proportional to a multivariate t variate (see, for

example, Dickey (1967)). The p.d.f. of BIV is therefore given by
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where 1L = K3-n is the number of surplus instruments used in the esti-

mation of B .

The density (7) specializes to the case of two stage least squares
for Ky =K, (where the result was given by Basmann (1974)) and to the
case of ordinary least squares for K3 = T--—K1 (where the result was given
by Wegge (1971)). As shown in Phillips (1982b), (7) is in fact the leading
term in the multiple series representation of the exact density of BIV
in the general single equation case where sz is not necessarily the
zero matrix. Moreover, the leading marginal densities can be readily de-
duced from (7) (see Phillips (1982¢)) and standard properties of the

multivariate t confirm that integer moments exist up to the order L

(i.e. the number of surplus instruments).



3. THE DISTRIBUTION OF LIML

1 ]
The LIML estimator BLIML of B wminimizes the ratio BAWBAIBASBA

where B! = (1, -B') , W =X'(p,-P, )X §=X'(I-P,)X and where
A Z Zl ? yA

X = [yl :YZ] and PA = A(A'A)—lA’ . Under the null hypothesis that
sz = 0 in (2) we deduce that W and S have central Wishart distribu-
tions Wm(Kz, I) and Wﬁ(T-K, I) respectively, where m = nt+l . Since

(Pz--Pz )(I-Pz) =0, W and S are independent with joint p.d.f.

1
given by
(K,-m~1)/2 _
eff{' %{W+S)}(det W 2 (det s) (T-K-m-1)/2
2m(T-K+K2)/2r Eg-r T-X
n{ 2{ m{ 2
We now transform W » sV Zysl/2 o giving the joint density
1 (Kz-mwl)IZ (T-K+K2-m—l)/2
etr{— ES(I+?1}(det F) (det S)
(9 pdf (F,5) =
2111 (T-Kl) /2 [KZ) [T—K)
T |=IiT =
m{2{mi 2

Using the following matrix variate gamma integral (Herz (1955))

10), | eer(-s2)(det > ™D/ %5 o 1 (a) (der 2™
$>0

_for Re(Z) >0 and Re(a) > (m-1)/2 we deduce from (9) the wmarginal matrix

density of F



T-K, (Ky-m-1)/2 ~(T-K,)/2
Tm 5 {det F) [det (I+F) ]
{(11) pdf(F) = X
2 T~K
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-1
K, . (K,-n-1)/2 ~(T-X, ) /2
= Bm[7?3 235) (det F) 2 [det(I+F)] 1

which is a multivariate Beta density of the second kind (see, for example,
Tan (1969)).

Expression (11) now leads simply to the p.d.f. of the LIML estimator
BLIML . We note that if lm iz the smallest latent root of F = S_llz‘ws_ll2

then BLIML satisfies the system
~1/2...~1/2 =
(12) s~ Pus™H2 oy 8, = (Faa DB, = 0

where BA = (Bél’BA;)' is the latent vector associated with the smallest
latent root lm and SLIML = —BA2/6A1 .

In order to extract the exact distribution of BLIML we Introduce
the orthogonal transformation H by which F .is diagonalized so that
H'FH = A = diag(kl, ...,An) . This.transformation is unique if we specify
" that A > Ay > el > Am' and that the elements in the first row of H
are positive. (The latter eliminates the possibility of multiplying columns
of H by -1.) From (11) we can deduce the joint distribution of (A,H) .
It is most convenient in the general multivariate.case to work with the
probability element pdf(F}dF . Under the £ransformation F > (A,HY we

then have



pdf (A, H)dA(dH) = pdf (F)dF

m
adn = pAE(F) T (A ~2)( T dh) (aH)
i<i i=1

: -1
K m (K,-m-1)/2
2 T-K 2
(14) = |B [——3 ——~J (T A)
n( 2 2 4=1 i
m -(T-KI)JZ m
[0+ n (Ai-kj)( T di,)(dH)
i=1 i<j i=1

Line (13) follows from Constantine (1963, equation (43), p. 1280) and line
(14) follows directly from (11). (dH) 1is the invariant measure on the
orthogonal group (the group of orthogonal matrices) that is normalized so

that the measure over the whole group (restricted so that h,. >0 ) is

1]
unity. The distribution of H is called the conditional Haar invariant
distribution (see Anderson (1958, p. 322)) and we see from (14) that H
is distributed independently of the latent roots that form the diagonal
elements of A . To find the distribution of BLIML

~centrate on the final column of H which we write as the (n+l)-vector b

we now need to con-

or in partitioned form as h' = (hl’ hi).. The invariant distribution of
H implies an invariant measure over the Stiefel manifold defined by

i + héh2 =1 , The latter is the unit sphere in (n+l)-dimensional

h'h=h
Euclidean space and the invariant measure on this manifold is given by
the exterior differential form

n

(15) (dh) = A b'dh
3=1 7

where bl’ b2, ooy bn are orthonormal column vectors orthogonal to h



(see equation (5.1) of James (1954)). Using the parameterization of the
manifeld in which hl = (1-—hih2}1/2 and restricting the region so that

hl > 0, the invariant measure (15) can be written in the alternative

form

kdh2

v 1172
Q1 -hzhz)

(16) (dh) =

(see Farrell (1976), equations (7.7.3-4)) where the constant k is selected
50 that the measure over the restricted (hl > 0} region of the unit sphere
is unity. Since the measure over the entire unit sphere in Rn+1 is
2“(n+1)/2/r[3%l) , that is the surface area of the sphere (see Jaﬁes (1954)
equation (5.9)), the normalizing constant in the invariant measure (16)

over the restricted region is (ignoring questions of sign in (16) since
we-ére workiﬁg with positive probability measures):

an K = n*<“+1)/2r[1‘§-1-] )

We now rencrmalize the latent vector h to yield the LIML estimator. This

involves the transformation h, - —r/(1+1:'r)1/2 1/2

= (l+r'r)—1/2 . Taking differentials we deduce that

= - ]
with h1 (1 h2h2)

dh2 = ~(1+r'r)—1/2{1+rr']-1dr

and the modulus of the jacobian of the transformation is (l+r'r)-(n+2)/2 .

Thus, the invariant measure (16) defined over the appropriately restricted

n+l

region (for which h1 >0 ) of the unit sphere in R transforms as

follows:
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1T(n+-l)/2(1+r,r)(n+1)/2 ‘

(18) (dn) =

The p.d.f. of B then takes the form

LIML
(19) pdf(r) = .
1T(n+1)/2(1+r'r)(n+1)/2

that is, a multivariate Cauchy distribution.

In the two éndogenous variable case (n = 1), (19) reduces to the
univariate Cauchy, which provides the leading term in the multiple series
representation of the exact demsity given by Mariano and McDonald (1979)
in the general case. We deduce directly from (18) that BLIML has no

finite moments of integral order, as was originally shown by Mariano and

Sawa (1972) and Sargan (1970).

4, CONCLUDING REMARKS

The exact distributions obtained above apply when I,, = 0 and
correspond, therefore, to a particular structure of the model in which
the true coefficient vector B 1s not identifiable. Neither of the exact
densities (7) or (19) actually involve B ., Both are in fact centered
around the origin. When 8 is itself zero, there is an absence of simul-
taneity in the model and in this case OLS (with K3 = T-Kl in (7)) is
consistent. In both this case (8 = 0) and for other values of 8§ the
exact densities of LIML and 2SLS (tﬁe latter with K3 = K2 “in (7)) are
invariant to changes in the sample size T . Thus, as T + « these dis-
tributions continue to demonstrate the uncertainty about 8 due to the

lack of identification. It is of interest that in the more general case



11

where 322 ¥ 0 the exact distributions of 25LS and LIML retain certain
important properties (such as their tail area behavior) which apply in

the primitive forms of these densities given in (7) and (19) above.
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