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EXACT SMALL SAMPLE THEORY IN THE SIMULTANEOUS EQUATIONS MODEL

by
P. C. B. Phillips

Cowles Foundation
Yale University

Little experience is sufficient to show that the
traditional machinery of statistical processes

is wholly unsuited to the needs of practical re-
search. Not only does it take a cannon to shoot

a sparrow, but it misses the sparrow! The elab-
orate mechanism built on the theory of infinitely
large samples is not accurate enough for simple
laboratory data. Only by systematically tackling
small sample problems on their merits does it seem
possible to apply accurate tests to practical data.
Such at least has been the aim of this book. [From
the Preface to the First Edition of R. A. Fisher
(1925).]

1. INTRODUCTION

Statistical procedures of estimation and inference are most fre-
quently justified in econometric work on the basis of certain desirable
asymptotic properties. One estimation procedure may, for example, be
selected over another because it is known to provide consistent and
asymptotically efficient parameter estimates under certain stochastic
environments. Or, a statistical test may be preferred because it is
known to be asymptotically most powefful for certain local alternative
hypotheses.1 Empirical investigators have, in particular, relied heavily
on asymptotic theory to guide their choice of estimator, provide standard
errors of their estimates and construct critical reglons for their sta-
tistiéal tests. Such a heavy reliance on asymptotic theory can and does

lead to serious problems of bias and low levels of inferential accuracy when



sample sizes are small and asymptotic formulae poorly represent sampling
behavior. This has been acknowledged inmathematical statistics since the seminal
work of R. A, l"isl’:er,2 who recognized very early the limitations of asymptotic
machinery, as the above quotation attests, and who provided the first systematic
study of the exact small sample distributions of important and commonly used statistics.

The first step towards a small sample distribution thkeory in
econometrics was taken during the 1960's with the derivation of exact
density function= for the two stage least squares (25LS) and ordinary
least squares {(OLS) estimators in simple simultaneous equations models
(SEM's). Without .doubt, the mainspring for tﬁis research was the pioneer-
ing work of Basmann (1961), Bergstrom (1962) and Kabe (1963, 1964). 1In
turn, their work reflected earlier influential investigations in
econometriés: by Haavelmo (1947) who constructed exact confidence regions
for structural parameter estimates from corresponding results on QLS
reduced form coefficient estimates; and by the Cowles Commission researchers,
notably Anderson and Rubin (1949) who also constructed confidence regions
for structural coefficients based on a8 small sample theory, and Hurwicz
(1950) who effectively studied and illustrated the small sample bias of
the OLS estimator in & first order autoregression.

The mission of these early researchers is not significantly dif-
ferent from our own today: wultimately to relieve the empirical worker
from the reliance he has otherwise to place on asymptotic theory in esti-
mation and inference. Ideally, we would like to know and be able to
compute the exact sampling distributions relevant to our statistical
procedures under a variety of stochastic environments. Such knowledge
would enable us to make a better assessment of the relative merits of

competing estimators and to appropriately correct {from their asymptotic



values) the size or critical region of statistical tests. We would also
be able to measure the effect on these sampling distributions of certain
departures in the underlying stochastic environment from normally dis-
tributed errors. The early researchers clearly recognized these goals,
although the speclalized nature of their results created an impression3
that there would be no substantial payoff to their research in terms of
applied econometric practice. However, thelr findings have recently given
way to general theo;ies and a powerful technical machinery which will make
it easier to transmit results and methods to the apnlied econometrician

in the precise setting of the model and the data set with which he is
working. Moreover, improvements in computing now make it feasible to
incorporate into existing regression software subroutines which will pro-
vide the essential vehicle for this transmission. Two parallel current
developments in the subject are an integral part of this process. The
first of these.is concerned with the derivation of direct apptoximations
to the sampling distributions of interest in an applied study. These
approximations can then be utilized in the decisions that have to be made
by an investigator concerning, for instance, the choice of an estimator

or the specification of a critical region in a statistical test. The
second relevant development involves advancements in the mathematical

task of extracting the form of exact sampling distribuvtions in econome-
trics. In the context of simultaneous eguations, the literature published
during the 1960's and 1970's concentrated heavily on the sampling distri-
butions of estimators and test statistics in single structural equations
involving only two or at most three endogenous variables. Recent theo-
retical work has now extended this to the general single equation case.

The aim of the present chapter is to acquaint the reader with the



main strands of thought in the literature leading up to these recent ad-
vancements, Our discussion will attempt to foster an awareness of the
methods that have been used or that are currently being developed to solve
problems in distribution theory and we will consider their suitability

and scope in transmitting results to empirical researchers. In the expo-
sition we will endeavor to make the material accessible to readers with

a working knowledge of econometrics at the level of the leading textbooks.
A cursory look through the journal literature in this area may give the
impression that the range of mathematical techniques emploved s quite
diverse, with the method and final form of the solution to one problem
being very different from the next. This diversity is often more apparent
than real and it is hoped that the approach we take to the subject in the
present review will make the methods more coherent and the form of the
solutions easier to relate.

Qur review will not be fully comprehensive in coverage but will
report the principal findings of the various research schools in the area.
Additionally, our focus will be directed explicitly towards the SEM and
~we will emphasize exact distribution theory in this context. Corresnonding
results from asymptotic theory are surveyed by Hausmann (1982) in this
Volume of the Handbook; and the refinements of asymptotic theory that are
provided by Edgeworth expansions together with their application to the
statistical analysis of second order efficiency are reviewed by Rothenberg
(1982) in Volume 2 of the Handbook. 1In addition, and largely in parallel to
the analytical reseérch that we will review, are the experimental investi-
gations involving Monte Carlo methods. These latter investigations have
continued traditions established in the 1950's and 1960's with an attempt

to improve certain features of the design and efficiency of the experiments,



together with the means by which the results of the experiments are char-
acterized. These methods are described by Hendry (1982). An alternative
approach to the utilization of soft quantitative information of the Monte
Carlo variety is based on constructive functional approximants of the rele-
vant sampling distributions themselves, and will be discussed in Section

4 of this chapter.

The plan of the chapter is as follows: Section 2 provides a general
framework for the distribution problem and details formulae that are fre—
quently useful in the derivation of sampling distributions and moments.
This section also provides a brief account of the genesis of the Edgeworth,
Nagar and saddlepoint approximations, all of which have lately attracted
substantial attention in the literature. In addition, we discuss the
Wishart distribution and some related issues which are central to modern
rultivariate analysis and on which much of the current development of exact
small sample theory depends. Section 3 deals with the exact theory of
single equation estimators, commencing with a general discussion of the
standardizing transformations, which provide research economy in the deri-
vation of exact distribution theory in this context and which simplify
the presentation of final results without loss of generality. This section
then provides an analysis of known distributional results for the most
common estimators, starting with certain leading cases and working up
to the most general cases for which results are available. We also cover
what is presently known about the exact small sample behavior of struc-
tural variance estimators, test statistics, systems methods, reduced form
coefficient estimators and estimation under misspecification. Section 4
outlines the essential features of a new approach to small sample theory

that seems promising for future research. The concluding remarks are given



in Section 5 and include some reflections on the limitations of traditional
asymptotic methods in econometric modeling.

Finally, we should remark that our treatment of the material in
this Chapter is necessarily of a summary nature, as dictated by practical
requirements of space. A more complete exposition of the research in this
area and its attendant algebraic detail is given in Phillips (1982e).
Thi; longer work will be referenced for a fuller discussion of the material

whenever it is appropriate in the present Chapter.

2. SIMPLE MECHANICS OF DISTRIBUTION THEORY

2.1. Primitive Exact Relations and Useful Inversion Formulae

To set up a general framework we assume a model which uniquely de-
termines the joint probability distribution of a vector of n endogenous
variables at each point in time (t=1, ..., T), viz. {yl,..., yT}, condi-
tional on certain fixed exogenous variables {xl,...,xT} and possibly on certain
initial values {y_k, ceny yo} . This distribution can be completely
represented by its distribution function (d.f.), df(ylx, y_1s 8) or
its probability density function (p.d.f.)}, pdf(y]x, y_; 8) , both of
which depend on an unknown vector of parameters 6 and where we have set
y' = (yi, ...,y%) y X' = (x1, ..., x%) and y' = (ylk, ...,yé) . In
the models we will be discussing in this chapter the relevant distribu-
tions will not be conditional on initial values and we will suppress the
vector y_ in these representations. However, in other contexts, especially
certain time series models, it may become necessary to revert to the more
general conditional representation. We will also frequently suppress
the conditioning x and parameter 6 in the representation pdf(y[x;B)

where the meaning is clear from the context. Estimation of € or a sub-



vector of 8 or the use of a test statistic based on an estimator of 8
leads in all cases to a function of the available data. Therefore we write
in general 8, = eT(y.x) . This function will determine the numerical
value of the estimate or test statistic.

The small sample distribution problem with which we are faced is
to find the distribution of eT from our knowledge of the distribution
of the endogenous varilables and the form of the function which defines
BT . We can write.down directly a general expression for the distribution
function of GT as
(2.1) df(r) = P8, <r) = [ pdf(y)dy , O(r) = {y : 68.(y,x) <t} .

ye0(r)

This is an nT-dimensional integral over the domain of values ®(r) for
which &, < r .

T

The distribution of ST is also uniquely determined by its char-

acteristic function (c.f.), which we write as

is8 isBT(y,x)

(2.2) cf(s) = E(e 1) = fe pdf (y)dy

where the integration is now over the entire y-space. By inversion, the
p-d.f. of BT is given by

(2.3) pdf(r) = 3] e *Tef(e)ds

and this inversion formula is valid provided cf(s) dis absolutely inte-
grable in the Lebesgue sense (see, for example, Feller (1971), p. 509).
The follewing two inversion formulae give the d.f. of GT directly from

(2.2):



1 l-e“:lsr
(2.4) af(r) - df(0) = E;J 1o cf(s)ds
and
o igr -isr
~ 21 lre cf(-s)-e cf(s),
(2.5) df(r) = 5 + EFIO s ds .

The first of these formulae is valid whenever the integrand on the right

side of (2.4) is integrable (otherwise a symmetric limit is taken in defining
the improper integral--see, for example, Cramér (1946), pp. 93-94). It

is useful in computing first differences in df(r) or the proportion

of the distribution that lies in an interval (a,b) because, by subtrac-
tion, we have

1.2 e-isa _e-isb
(2.6) df(b) - df(a) = f?f_m s cf(s)ds .

The second formula (2.5) gives the d.f. directly and was established by
Gil-Pelaez (1%51).

When the above inversion formulae based on the characteristic func-
tion cannot be completed analytically, the integrals may be evaluated
by numerical integration. For this purpose, the Gil-Pelaez formula (2.5)
or varlants thereof have most frequently been used. A general discussion
of the problem, which provides bounds on the integration and truncation
errors, is given by Davies (1973). Methods which are directly appli-
cable in the case of ratios of quadratic forms are given by Imhof
(1961) and Pan Jie Jian (1968). The methods provided in the latter
two articles have often been used in econometric studies to compute exact
probabilities in cases such as the serial correlation coefficient
(see, for example, Phillips (1977a)) and the Durbin-Watson statistic (see

Durbin and Watson (1971)).



2.2. Approach via Sample Moments of the Data

Most econometric estimators and test statistics we work with are
relatively simple functions of the sample moments of the data (y,x)
Frequently, these functions are rationél functions of the first and
second sample moments of the data. More specifically these moments
are usually well defined linear combinations and matrix quadratic forms
in the observations of the endogenous variables and with the weights being
determined by the exogenous series. Inspection of the relevant formulae
makes this clear: for example, the usual two step estimators in the linear
model and the instrumental variable (IV) family in the SEM. In the case
of limited information and full information maximum likelihood (LIML,
FIML), these estimators are determined as implicit functions of the sample
moments of the data through a system of implicit equations. 1In all of
these cases, we can proceed to write 8, = BT(y,x) in the alternative

T
form eT = Bé(m) where m 1s a vector of the relevant sample moments.
in many econometric vproblems we can write down directly the
p.d.f. of the sample moments, viz. pdf(m) , using established results
from multivariate distribution theory. This permits a convenient reso-
lution of the distribution of BT . In particular, we achieve a useful
reduction in the dimension of the integration involved in Ehe primitive

forms (2.1) and (2.2). Thus, the analytic integration required in the

representation

da

(2.7) pdf(m) = | Apdf(y)]gzg?gy

at

has already been reduced. In (2.7) a is a vector of auxiliary variates

defined over the space A and is such that the transformation y =+ (m,a)
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is 1:1.

The next step in reducing the distribution to the density of BT
is to select a sultable additional set of auxiliary variates b for which
the transformation m =+ (BT, b) is 1:1. Upon changing variates, the

density of 6, 1is given by the integral

om
(2.8) pdf(r) = beBPdf‘“’) ‘B(r,b) ldb

where B is the space of definition of b . The simplicity of the repre-
sentation (2.8) often belies the major analytic difficulties that

are involved in the practical execution of this step.1 These difficulties
center on the selection of a suitable set of auxiliary variates b for
which the integration in (2.8) can be performed analytically. In part,
this process depends on.the convenience of the space, B , over which

the variates b are to be integrated, and whether or not the final inte-
gral has a recognizable form in terms of presently known functions or
infinite series.

All of the presently known exact small sample distributions of
single equation estimators in the SEM can be obtained by following the
above steps. When reduced, the final integral (2.8) is most frequently
expressed in terms of infinite series involving some of the special func-
tions of applied mathematics, which themselves admit series representations,
These special functions are often referred to as higher transcendental
functions. An excellent introduction to them is provided in the books
by Whittaker and Watson (1927), Rainville (1963) and Lebedev (1972); and
a comprehensive treatment is contained in the three volumes by Erdéyli
(1953). At least in the simpler cases, these series representations can

be used for numerical computations of the densities.
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2.3. Asymptotic Expansions and Approximations

An alternative to searching for an exact mathematical solution to
the problem of integration in (2.8) is to take the density pdf(m) of
the sample moments as a starting point in the derivation of a suitable
approximation to the distribution of BT . Two of the most popular methods
in current use are the Edgeworth and Saddlepoint approximations. For a
full account of the genesis of these methods and the constructive algebra
leading to their respective asymptotic expansions the reader may refer to
Phillips (1982e). For our present purpose, the following intuitive ideas
may help to briefly explain the principles that underlie these methods.

let us suppose, for the sake of convenience, that the vector of

sample moments m is already appropriately centered about its mean value

or limit in probability. Let us also assume that Tm 2 N(O,V) as

T + « , where 2 denotes ''tends in distribution.” Then, if BT = f(m)
is a continuously differentiable function to the second order, we can
readily deduce from a Taylor series representation of f(m) in a neigh-
borhood of m = 0 that YT{f(m)-£(0)} 2 N(0,l) where

W= (3f£(0)/om")V3f'(0)/3m . 1In this example, the asymptotic behavior of
the statistic J/T{f(m)~-£(0)} is determined by that of the linear function

YT(3£(0)/3m")m of the basic sample moments. Of course, as T + = ,

m -+ 0 in probability, so that the behavior of f(m) in the immediate
locality of m = 0 becomes increasingly important in influencing the
distribution of this statistic as T becomes large.

The simple idea that underlies the principle of the Edgeworth
approximation is to bridge the gap between the small sample dis~
tribution (with T finite) and the asymptotic distribution by means of

correction terms which capture higher order features of the behavior of



12

f(m) in the locality of m =0 . We thereby hope to improve the ap-
proximation to the sampling distribution of f(m) that is provided by
the crude asymptotic. Put another way, the statistic vT{f(m)-£(0)} is
approximated by a polynomial representation in m of higher order than
the linear representation used in dedﬁcing the asymptotic result. In this
sense, Edgeworth approximations provide refinements of the associated
limit theorems which give us the asymptotic distributions of our commonly
used statistics. The reader may usefully consult Cramér (1946, 1972),
Wallace (1958), Bhattacharya and Rao (1976) and the review by Phillips
(1980b) for further discussion, references and historical background.

The concept of using a polynomial approximation of BT in terms
of the elements of m to produce an approximate distribution for o

T

can also be used to approximate the moments of 6 where these exist,

T
or to produce pseudo-moments (of an approximating distribution) where
they do not. The idea underlies the work by Nagar (1959) in which such
approximate moments and pseudo-moments were developed for k-class esti-
mators in the SEM. In popular parlance these moment approximations are
called Nagar approximations to the moments. The constructive process by
which they are derived in the general case is given in Phillips (1982e).
An alternative appreoach to the development of asymptotic series
approximations for probability densities is the saddlepoint (SP) method.
This is a powerful technique for approximating integrals in asymptotic
analysis and has long been used in applied mathematics. A highly readable
account of the technique and a geometric interpretation of it are given
in De Bruijn (1958). The method was first used systematically in mathe-
matical statistics in two pathbreaking papers by Daniels (1954, 1956) and

has recently been the subject of considerable renewed interest.3
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The conventional approach to the SP method has its starting point
in inversion formulae for the probability density like those discussed
in paragraph 2.1. The inversion formula can commonly be rewritten as

a complex integral and yields the p.d.f. of 6, from knowledge of the

T
Laplace transform (or moment generating function). Cauchy's theorem

in complex function theory (see, for example, Miller (1960)) tells us

that we may well be able to deform the path of integration to

a large extent without changing the value of the integral. The general
idea behind the SP method is to employ an allowable deformation of the
given contour, which is along the imaginary axis, in such a way that the
major contribution to the value of the integral comes from the neighbor-
hood of a point at which the contour actually crosses.a saddlepoint of

the modulusAof the integrand (or at least its dominant factor). In crude
terms, this is rather akin to a mountaineer attempting to cross a mountain
range by means of a pass, in order to control the maximum altitude he has
to climb. This particular physical‘analogy is developed at some length

by De Bruijn (1958).

A new and elegant approach to the extraction of SP approximations
has recently been developed by Durbin (1980a). This method applies in
cases where we wish to approximate the p.d.f. of a sufficient statistic
and has the great advantage that we need only know the p.d.f. of the under-
lying data pdf(y;6) and the limiting mean information matrix
limTﬂwE{-T-lazﬂn[pdf(y;B)L@BBB'} in order to construct the approximation.
This is, in any event, the information we need to extract the maximum
iikelihood estimator of © and write down its asymptotic covariance
matrix. Durbin's approach is based on two simple but compelling steps.

The. first 1s the fundamental factorization relation for sufficient statistics,
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which yields a powerful representation of the required p.d.f. for a para-
metric family of densities. The second utilizes the Edgeworth expansion

of the required p.d.f. but at a parametric value (of 6 ) for which this
expansion has its best asymptotic accuracy. This parametric recentering

of the Edgeworth expansion increases the rate of convergence in the asymp-
totic series and thereby can be expected to provide greater accuracy at
least for large enough T. Algebraic details, further discussion and examples

of the method are-given in Phillips (1982e).

2.4, The Wishart Distribution and Related Issues

If X = [xl,..., xT] is an nxT matrix variate (i.e. matrix
of random variates) whose columns are independent N(0,2) then the nxn
symmetric matrix A = XX' = z:=1xtxé has a Wisharf distribution with
p.d.f. given by

1 1 -1 (T-n-1)/2
(2.9) pdf(A) = etr[— 50 A](det A) .
(2 )nT/2r,r1 {%} (det Q)T/2 2

Since A is symmetric nxn, this density has N = %n(n+l) independent
arguments and is supported on the subset (a natural cone} of N dimen-
sional Euclidean space for which A 1is positive definite (which we write
as A >0), It is a simple and useful convention to use the matrix A

as the argument of the density in (2.9) although in transforming the
distribution we must recognize the correct number of independent arguments.

In (2.9) above Tn(z) is the multivariate gamma function defined

by the integral

z - -;-(m-l )

I (z) = [ etr(-5)(det S) as .
n 5>0
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This integral is a (matrix variate) Laplace transform (see, for example,
Herz (1955) and Constantine (1963)) which converges absolute1§ for
Re(z) > %(n-l) and the domain of integration is the set of all positive
definite matrices. It can be evaluated in terms of univariate gamma
functions as |
Lita-1) n 1
Tn(z) =T il T[z - E{i-l)]

i=]1
(see James (1964)). 1In (2.9) we also use the abbreviated operator repre-
sentation etr( ) = exp{tr( )} .

The parameters of the Wishart distribution (2.9) are: (i) the
order of the symmetric matrix A, viz. n ; (4i) the degrees of freedom
T , of the component variates X, in the summation A = XX' = Ef=1xtxé 5
(iii) the covariance matrix, O , of the normally distributed columns
x, in X . A common notation for the Wishart distribution (2.9) is
then wn(T,Q) --gee, for example, Rao (1973, p. 534). This distribution
is said to be central (in the same sense as the central X2 distribution)
since the component variates L have common mean E(xt) =0, In fact,

when n=1, Q=1 and A=a is a scalar,the density (2.9) reduces

hﬂw

-1 -
to (2)-T/2F{%} aTIz-le , the density of a central xz with T

degrees of freedom.

If the component variates X, in the summation are not restricted

to have a common mean of zero but are instead independently distributed

as N(mt, ) , then the joint distribution of the matrix A = XX' = zzlxtxé

is said to be (noncentral) Wishart with moncentrality matrix M = Mf'
where M = [ml, ...,mT] . This is frequently denoted wn(T,Q,ﬁ) although

M is sometimes used in place of M ({as in Rao (1973), for example).
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The latter is a more appropriate parameter in the matrix case as a con-
venient generalization of the noncentrality parameter that is used in the

case of the noncentral x2 distribution--a special case of wn(T,Q,ﬁ)

T 2
t=1"¢t

inwhich n=1, 2=1 and M=

T 1

The p.d.f. of the noncentral Wishart matrix A = XX' = Zt=1xtxt

vwhere the x, are independent N(mt, 2 , M= [ml, ...,mﬁ] = E(X) ,

and M = MM' is given by

1 -1
etr{- =i fﬂ
L, ln'lﬁn‘la]etr[- %{2”%) (det a){TP-D)/2

2
(2.10) pdf(a) = F [ ;
ZnT/ZTn[%J(det qyT/2 012 4

In (2.10) the function oFl( ; ) is a matrix argument hypergeometric
function, closely related to the Bessel function of matrix argument dis-
cussed by Herz (1955). Herz extended the classical hypergeometric func-
tions of scalar argument (see, for example, Erdéyii (1953)) to matrix
argument functions by using multidimensional Laplace transforms and inverse
transforms. Constantine (1963) discovered that hypergeometric functions

F_ of matrix argument have a general series representation in terms

P q
of zonal polynomials as follows:

(al) . (ap)

b 3 3 €5(8
2. e H » <ses D 3 = j
(2.1D) pfql@1s <or2p5 By ¢ 5 420 § (b)) ... () 3!

In (2.11) J indicates a partition of the integer j into not more than

n parts where S 15 an nxn matrix. A partition J of weight r

is a set of r positive integers {jl, ""jr} such that Ii=lji = j

For example {2,1} and {1,1,1} are partitions of 3 and are conventionally

written (21) and (13). The coefficients (a) and (b)

3 in (2.11) are

J
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wultivariate hypergeometric coefficients defined by

n
1
(3)3 = T [a - E(i-l)). for J = {jl’ ...,j“}
i=1 i
and where
(A), = x(x+1) ... (A+3=1) = TO+5)/T(D) .

3

The factor CJ(S) in (2.11) is a zonal polynomial and can be represented
as a symmetric homogeneous polynomial of degree 3 of the latent roots
of S5 . General formulae for these polynomials are presently known only
for the case m = 2 or when the partition of j has only one part

J = (3) (see James (1964)). Tabulations are available for low values of
j and are reported in James (1964). These can be conveniently expressed
in terms of the elementary symmetric functions of the latent roots of §

(Constantine (1963)) or in terms of the quantities
s, = sum of the mth powers of the latent roots of S .

Thus, the first few zonal polynomials take the form:

degree | partition | zomal polynomial

3 J C,(8)

1 1 81

2 12 %(si -8,)
2 %(si+ 252)

3 J.3 %(si— 35132+253)
21 %(Si +8,8, - 253)
3 T5(s) 4655, +85,)
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(see, for example, Johnson and Kotz (1972), p. 171). Algorithms for the
extraction of the coefficients in these polynomials have been written

(see James (1968) and McLaren (1976)) and a complete computer program

for their evaluation has recently been developed and made available by

Nagel (1981). This is an important development and will in due course
enhance what is at present our very limited ability to numerically compute
and readily interpret multiple infinite series such as (2.11). However,
certain special cases of (2.11) are already recognizable in terms of simpler

functions: when n = 1 we have the classical hypergeometric functions

(al} - (ap) sj

. - = j
cesagi by, euybos 8) jZo CRRNSECRIEY

h| b

F y .
p q(al

(see, for example, Lebedev (1965), Ch. 9); and when p = q = 0 we have

JF (8 = .Z 1C,(8)/3 ="etr(S)
=0 J

which generalizes the expomential series and which is proved in James

(1961); and when p=1, q =0 we have

o  (a)
J -
1Fo(ass) = jZO ;—ET—CJ(S) = (det(I-5))"2

which generalizes the binomial series (Constantine (1963)). The series

OFl( ; ) 1in the noncentral Wishart density (2.10) generalizes the clas-
sical Bessel function. (The reader may recall that the noncentral X2
density can be expressed in terms of the modified Bessel function of the

first kind--see, for example, Johnson and Kotz (1970), p. 133.) In par-

ticular, when n=1, =1, M=2 and A=a 1is a scalar we have
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' i
exp{— %{a+k)} T/2.1 & %ﬂa
2T/2

pdf{a) = ~a
r(1/2) 3=0{T/2) 43!

EXP{- %<a+k)} @ 33, T/245-1

(2.12) =
,T/2

3=0 T(T/2+3)j12%]

This is the usual form of the p.d.f. of a noncentral x2 variate.

3. EXACT THEORY IN THE SIMULTANEOUS EQUATIONS MODEL

3.1. The Model and Notation

We write the structural form of a system of G contemporaneous

simultaneous stochastic equations as
(3.1) YB 4+ ZC = U
and its reduced form as
(3.2) Y=ZI +V

where Y' = {yl, ...,yT] isa G6xT matrix of T observations of G

endogenous variables, 2Z' = [zl,..., z is a KxT matrix of T obser-

7]
vations ¢f K non-random exogenous variables and U' = [ul,..., uT]

is a GxT matrix of the structural disturbances of the system. The
coefficient matrices B (GxG) and € (KxG) comprise parameters that
are to be estimated from the data and about which some a priori economic
knowledge is assumed; usually this takes the form of simple (and frequently
zero exclusion type) restrictions upon certain of the coefficients together

with conventional normalization restrictions. As 1s usual in this con-

temporaneous version of the SEM (see Hsiao (1982) and Hausman (1982) in
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this Handbook), it is also assumed that the u (t=1,...,T) are serially
independent random vectors distributed with zero mean vector and (non-
singular) covariance matrix z . The coefficient matrix B is assumed

to be non—singﬁlar and these conditions imply that the rows, v; , of

V 1in (3.2) are independent random vectors with zero mean vector and co-
variance matrix Q= B'“]);B-1 . To permit the development of a distribu-

tion theory for finite sample sizes we will, unless otherwise explicitly

stated, extend these conventional assumptions by requiring v,

(t

1, ..., T) to be i.i.d. N(0,!) . Extensions to non-normal errors
are possible (see Phillips (1980b), Satchell (1981), Knight (1981)) but
involve further complicatioms.

We will frequently be working with a single structural equation
of (3.1) which we write in the following explicit form that already in-

corporates exclusion type restrictions:

(3.3) ¥y, = YZB + Zly + u,
or
= = . 1 =
(3.4) y, =Wé+u, W o=iy,2,], 8 (B', ¥")

where Yy (Tx1l) and Y2 {T xn) contain T observations of n+l

included endogenous variables, Z1 isa T xKl matrix of included exog-
enous variables and u is the vector of random disturbances on this

equation. Thus, (3.3) explicitly represents one column of the full model

(3.1). The reduced form of (3.3) is written

wll I

™

12 ‘v

(3.5 [y) ; Yol = (2. 2,] 1:

+ [v ]
1 2

21 22
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or
! = 5 8 = M = :
(3.5) X=21" + V%, X= [y iV, Z=[z 12,

where 2 isa TxK

2 o matrix of exogenous variables excluded from (3.3).

To simplify notation the selection superscripts in (3.5)' will be omitted

in what follows. The system (3,5) represents n+l columns of the complete
reduced form (containing G > n+l columns) given in (3.2). The total number
of exogenous variables in (3.5) is K = K, + K, and the observation matrix
Z is assumed to have full rank, K . We also assume that K2 >n and

the submatrix I,y (K2 xn) in (3.4) has full rank (= n) so that the
structural equation is identified. Note that (3.3) can be obtained by

postmultiplication of (3.5) by (3, -8')" which yields the relations

(3.6) T BR=y, E=0.

n - Mo 21 ~ g7

We will sometimes use the parameter N = K2 -~ n to measure the degree by

which the structural relation (3.3) is overidentified.

3.2. Generic Statistical Forms of Common Single Equation Estimators

As argued in paragraph 2.2, most econometric estimators and
test statistics can be expressed as simple functions of the samvle
moments of the data. In the case of the commonly used single equation
estimators applied to (3.3) we obtain relatively simple generic statistical
expressions for these estimators in terms of the elements of moment matrices
which have Wishart distributions of various degrees of freedom and with
various noncentrality parameter matrices. This approach enables us to
characterize the distribution problem in a simple but powerful way for

each case., It has the advantage that the characterization clarifies those
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cases for which the estimator distributions will have the same mathematical
forms but for different values of certain key parameters and it provides
a convenient first base for the mathematics of extracting the exact dis-
tributions. Historically the approach was first used by Kabe (1963, 1964)
in the econometrics context and has since been systematically employed by
most authors working in this field. An excellent recent discussion is
given by Mariano (1982).

We will start by examining the IV estimator, 6IV , of the coef-

ficient vector &' = (8', v') in (3.3)-(3.4) based on the instrument

matrix H . 5IV minimizes the quantity

(3.7) (y-wls)'u(u'u)‘lﬁ'(y-wls)

and writing

(3.8) p_=DDD) D, Q =1-F
’ D B D

we obtain by stepwise minimization of (3.7) the following explicit expres-

sions for the IV estimators of the subvectors 8 and vy :

- 1 -1 1 3 -
(3.9) Yoy = (Z{PyZy) "2 Py(yy ~ Yoy
1 -1 -1
oy ' - ' t .
(3.10) Bry = (Y[R, - P2, (212 )T 21P,1Y,) {YZ[PHl P2, (21Pu2) T 2 Ry ly, )

In the usual case where H includes Z1 as a subset of its instruments

and PHZl = Z1 we have the simple formulae:
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' -1 L
(3.1 Yy = (212)) 721 (y; - Y,85)
1 -1 ]
(3.12) Bry = [YZ(PH-le)YZ} [thPﬂ-le)yll -

We define the moment matrix

a;;(Py) 2y (P yi(PH'le)yl yi(PH“le)Yz
(3.13) A(PH) = = = X'(PH-PZ X .

' _ ' _ 1
3 (P Ay (B | ¥y P21 Y2y Fz,"%2

The generic statistical form for the estimator B8 in (3.12) is then

v

= a1
(3.14) BIV = A22(PH)a21(PH) .

This specializes to the cases of OLS and 2SLS where we have, resvectively,
(3.15) B e = (Y20, Y.07NYL Q, .1 = AZS(Da,,. (1)
) OLS 2 Zl 2 2 Z1 1 22 21

, -1,., _ -l
(3.16) Bosrs = [Yz(Pz“le)YZ] [“z(Pz'le)yl} Aya(Pplay, (Py)

In a similar way we find that the k class estimator S(R) of 8 has

the generic form

1 -1 ' =
B(k) = {Yz{k(PZ-le)-+(1—k)Q21]Y2} {Y2[k(PZ-le)-+(l k)Qzl}yl}

-1
(3.17) = [kAzz(Pz) + (1—k)A22(I)] [ka21(PZ) + (1-k)a21(1)]
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The LIML estimator, B of £ minimizes the ratio

LIML °

BAME,
BTIACD) - ACP,) 16,

+ BAA(PZ)BA =1 4+ EéEEA say
L] 4 b ]
BA[A(I)"A(PZ)]BA BASBA

(3.18) 1

where BL = (1, -8') and BLIML satisfies the system

(3.19) {A(I)-—A[A(I)-—A(Pz)]}ﬁA =0

vhere A is the minimum of the variance ratio in (3.18). Thus, BLIML

is given by the generic form
-1
(3.20) Bing = [Ay,(P) + (1-0)4,,(1)] [Xay, (Py) +(1-))a,, (1))

that is, the k class estimator {(3.17) with k = X .

The above formulae show that the main single equation estimators
depend in a very similar way on the elements of an underlying moment
matrix of the basic form (3.13) with some differences in the projection
matrices relevant to the various cases. The starting point in the deriva-
tion of the p.d.f. of these estimators of B8 is to write down the joint
distribution of the matrix A in (3.13). To obtain the p.d.f. of the
estimator we then transform variates so that we are working directly with
the relevant function A£2a21 + The final step in the derivation is to
integrate over the space of the auxiliary variates, as prescribed in the
general case of (2.8) above, which in this case amounts essentially to
(all, Azz) . This leaves us with the required density function of the
‘estimator.

The mathematical process outlined in the last paragraph is simpli-

fied, without loss of generality, by the implementation of standardizing
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transformations. These transformations were first used and discussed by
Basmann (1963, 1974). They reduce the sample second moment matrix of the
exogenous variables to the identity matrix (orthonormalization) and trans-
form the covariance matrix of the endogenous variables to the identity
matrix (canonical form). Such transformations help to reduce the parameter
space to an essential set and identify the critical parameter functions
which influence the shape of the distributions.1 They are fully discussed

in Phillips (1982e) and are briefly reviewed in the following paragraph.

3.3. The Standardizing Transformations

We first partition the covariance matrix § conformably with

[y, 1Y) as

(3.21) Q= .

Then the following result (proved in Phillips (1982¢)) summarizes

the effect of the standardizing transformations on the model.

THEOREM 3.3.1. There exist transformations of the variables and parameters

of the model given by (3.3) and (3.5) which transform it into one in which

1., _ -
(3.22) T "2'2 = IK and Q In+1 .

Under these transformatioms (3.3) and (3.5) can be written in the Form
* _ wvkpk 7 ok *

(3.23) ] Y58* + Z,y* +u

and

(3.24) [y;’EY;} =Z T+ V
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where T'lf‘f =1 and the rovs of [y; IYE] are uncorrelated with co-

K

variance matrix given by T4 Explicit formulae for the new coelficients

in (3.23) are

-1/2
.. ol 1/2,, -1
(3.25) B = (wyy —wpyfy5u0p1) Q557 (B =Dp50y)
and
(3 L -2
= — - ]
(3.26) Y T (wll w21922w21) Y .

These transformations preserve the number of excluded erogercus
variables in the structural equation and the rank condition for its idertifi-

ability.

It turns out that the commonly used econometric estimators of the
standardized coefficients R* and V* in (3.23) are related to the un-
standardized coefficlent estimators by the same relations which define
the standardized coefficients viz. (3.25) and (3.26). Thus, we have the
following results for the 2SLS estimator (see Phillips (1982e) once again

for proofs).

THEOREM 3.3.2. The 2SLS estimator Boars of the coefficients of the endog-
enous variables in (3.3) are invariant under the transformation by which

the emogenous variableg are orthonormalized. The 25LS estimator Yos1s

i8 not, in general, invariant under this transformation. The new exogencus
variable coeffieients are related to the original coefficients under the
transformation y = J1qY and to the estimators by the ecorresponding equa-

. — . - 1/2
tion Y2518 JllyZSLS where Jll (ZileT) .
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THEOREM 3.3.3. The 2SLS estimators of B* and Y* in the standardized
model (3.23) are related to the corresponding estimators of B and ¥

tn the wunstandardized model (3.3) by the equations

~-1/2

(3.27) Bogrs = (W31 —wpyfgpugy) 8357 (Bygrg = 9p5w50)
— zizl 1/2
11 ~%21%22%21

Results that correspond to these for 2SLS can be derived similarly
for other estimators such as IV and LIML {(see Phillips (1982e) for details).
The canonical transformation induces a change in the coordinates
by which the variables are measured and therefore (deliberately) affects
their covariance structure. Some further properties of the transformed
structural equation (3.23) are worth examining. Let us first write (3.23)

in individual observation form as

k o Jk'pk L T Tk *
(3.29) Yie yztB + 21, Y + uf .

Then, by simple manipulations we find that:

(3.30) cov(yy,, ul) = -g*

(3.31) var(u:) = 1 + B*'p*

and

(3.32) corr(yX , u¥) = -g*/ (1 +p* g01/2

These relations show that the transformed coefficient vector R* in the

standardized model contains the key parameters which determine the cor-
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relation pattern between the included variables and the errors. In par-
ticular, when the elements of B* become large the included endogenous
variables and the error on the equation become more highly correlated.

In these conditions, estimators of the IV type will normally require larger
samples of data to effectively'purge the included variables of their cor-
relation with the errors. We may therefore expect these estimators to
display greater dispersion in small samples and slower convergence to their
asymptotic distributions under these conditions than otherwise. These
intuitively based conjectures have recently been substantiated by the
extensive computations of exact densities by Anderson and Sawa (1979)2

and tﬁe graphical analyses by Phillips (1980a,1982a) inthe general case.

The vector of correlations corresponding to (3.32) in the unstan-

dardized model is given by

“iéz(ﬂg”’n - B)
(3'33) Corr(y » U ) L = -3*/(1'!'8*'6*)
11 w21 22

1/2

so that for a fixed reduced form error covariance matrix & , similar
conditions persist as the elements of 8 grow large. Mbreovér, as we
see from (3.33), the transformed structural coefficient £* is itself
determined by the correlation pattern betﬁeen regressors and error in
the unstandardized model. The latter (like B* ) can therefore be re-

garded as one of the critical sets of parameters that influence the shape

of the distribution of the common estimators of the coefficient 8 .

3.4. The Analysis of Leading Cases

There are two special categories of models in which the

exact density functions of the common SEM estimators can be extracted with
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relative ease., In the first category are the just identified structural
models in which the commonly used consistenr estimators all reduce to in-
direct least squares (ILS) and take the form

= -1 1]
(3.34) Birs = [Z5Y,] Izzyll

of a matrix ratio of normal variates. 1In the two endogenous variable case
(wvhere n =1 ), this reduces to a simple ratio of normal variates whose
p.d.f. was first derived by Fieiller (1932) and in the present case takes

the form?

2
U 2
GKP{- 5 (1+8 )} 2 2
(3.35) pdf(r) = 2 —Lr 1, %; %f (1+8n)
n(l+r7) 1+r2

where uz = Tnéznz2 is the scalar concentration parameter.4 In the general
case of n+l included endogenous variables the density (3.35) is replaced

by a multivariate analogue in which the funcfion has a matrix argu-

if1
ment (see (3.46) below). The category of estimators that take the generic
form of a matrix ratio of normal variates as in (3.34) also include the
general IV estimator in the overidentified case provided the instruments are
non-stochastic: that is, if BIV = [W'Yzl-l[w'yl] and the matrix W is
non-stochastic, as distinct from its usual stochastiec form in the case of
estimatoré like 2S5LS in overidentified equations, This latter case has been
discussed by Mariano (1977). A further application of matrix ratios of normal
variates related to (3.34) occurs in random coefficient SEM's where the
reduced form errors are a matrix quotient of the form A-la where both

a and the columns of A are normally distributed. Existing theoretical

work in this area has proceeded essentially under the hypothesis
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that det A 1is non-random (see Kelejian (1974)) and can be generalized
by extending (3.35) to the multivariate case in much the same way as the
exact distribution theory of (3.34), which we will detail in paragraph
3.5 below,

The second category of special models that facilitate the develop-
mwent of an exact distribution theory are often described as leading cases

> 1In these leading cases, certain of the

of the fully parameterized SEM.
critical parameters are set equal to zero.and the distribution theory is
developed under this null hypothesis. In the most typical case, this
hypothesis prescribes an absence of simultaneity and a specialized reduced
form which ensures that the sample moments of the data on which the esti-
mator depends have central rather than (as is typically the case) non-
central distributions.6 The adjective "leading" is used advisedly since
the distributions that arise from this analysis typically provide the
leading term in the multiple series representation of the true density
that applies when the null hypothesis itself no longer holds. As such
the leading term provides important information about the shape of the
distribution by defining a primitive member of the class to which the
true density belongs in the more general case. In the discussion that
follows we will illustrate the use of this technique in the case of IV
and LIML estimators.7

We set B =0 in the structural equation (3.3) and H22 =0 in
the reduced form so that Yy and ¥, (taken to be a vector of observa-

tions on the included endogenous variable now that n =1 ) are determined

by the system

(3.36) y, = Zly +u, ¥y = 21H12 + v, .

The IV estimator of B 1is
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T
(3.37) By = (722323y,) T(y52,23y;) -

under the assumption that standardizing transformations have already been
performed. Let 23 be T xK3 with K3 > 1 so that the total number
of instruments is K1 + K3 . Simple manipulations now confirm that the

p.d.f. of B is given by (see Phillips (1982e))

Iv

-1 —(K3+1)/2

. K
(3.38) pdf (r) = B[%; 7;} (1+12)

where B(1/2, K3/2) is the Beta function. This density specializes to

the case of 25LS when K, =K, and OLS when K, =T - K, . (In the

3 2 3 1
latter case we may use (3.15) and write @, =1 - 171z 2! = ¢,C! where
Zl 11 171

C1 isa T ﬁ(T-—Kl) matrix whose columns are the orthogonal latent vectors

of Q, corresponding to unit latent roots.) The density (3.38) shows
1

that integral moments of the distribution exist up to order K, - 1 :

3
that is, in the case of 2SLS, K2 - 1 (or the degree of overidentification)
and, in the case of OLS, T - Kl -1.

The result corresponding to (3.38) for the case of the LIML estimator

is (see Phillips (1982e) for the derivation)

2 -1
(3.39) pdf(r) = [7(1+17)] , =® <Y <o
Thus, the exact sampling distribution of the BLIML is Cauchy in this
leading case. In fact (3.39) provides the leading term in the series ex-
pansion of the demsity of LIML derived by Mariano and Sawa (1972) in the
general case where 8 # 0 and I,y ¥ 0 . We may also deduce from (3.39)

that BLIML has no finite moments of integral order, as was shown by



32

Mariano and Sawa (1972) and Sargan (1970). This analytic property of the
exact distribution of BLIML is associated with the fact that the distri-
bution displays thicker tails than that of BIV when Ky > 1 . Thus,

the probability of extreme outliers is in general greater for B than

LIML
for BIV . This and other properties of the distributions of the two esti-

mators will be considered in greater detail in paragraphs 3.5-3.6.

3.5. The Exact Distribution of the IV estimator in the Genmeral Single

Equation Case

In the general case of a structural equation such as (3.3) with
ntl endogenous variables and an arbitrary number of degrees of overiden-

tification we can write the IV egtimator 8 of B in the form

v

1 -1 L]
(3.40) = (Yéz Z2Y.) (YéZBZ

Brv 323%; 3¥;)

where the standardizing transformations are assumed to have been carried

out. This is the case where H = [Z1 223] is a matrix of K1 + K3 instru-

ments used in the estimation of the equation. To find the p.d.f. of B

IV
we start with the density of the matrix
1 t t t )
o= 110 f21) iRt 1Y
t 1 ) ¥
a1 An Y2323 Ypl3l3Y;
In general this will be noncentral Wishart with a p.d.f. of the form:
1 1
etr{- ~MM'] K =(K,-n-2)
€3.41) pdf(A) = 2 F ~é; %MM'A etr|- 2A|(det a2 3
0°1(2 2
3K, (n+l) K
22 3 r _3
ntl| 2

(see (2.10) above) where M = E(T—1/2X'23) = T-llzn'z'z3 .
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We now introduce a matrix S which selects those columns of 22

which appear in 23 s Bo that 23 = ZZS . Then, using the orthogonality

of the exogenous variables, we have

1/2

M= 1 %2y - 2105 11 = 11/ 280 [ 172

- L
21 Mgl = T 78Ny, (8, 1]

in view of the relations (3.6) given earlier. Writing n'_SS'I as

22 22

nézﬁzz where ﬁ22 is an nxn matrix {which is non-singular since the

structural equation (1) is assumed to be identified), we find that

etr[— -12-1“1}1'} = etr{- —(I+BB')H22-“22} .

Moreover, since the non-zero latent roots of MM'A are the latent roots of
Bl
T '
TH22{B,I]AI: ]sz
I
(3.41) becomes

etr{ 2(I+BB )T

1
} 2(K,-n-2)
1 e oF1 23’ 258,11 l: :[ 52 etr[ %AJ(det n? 3 .
K, (n+l) K
22 3 r o3

n+l{ 2

We now transform variables from the matrix variate A to

—l
= -1! = = ] i -
W a] 1 T Azzr . T Azzazl and A22 A22 . The |a(.0b.1a'n of the trans

formation is det A22 and we have
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pdf(w, r, A

22)

(K
3 If = "y T T
'0F1 25 Z{WHZZBB H52+H22(1+Br‘)A22(I +rB')H52}}

1
1 1 5(K3-n-2)
~eXp |- E(w+r'A22r)]etr[- '2"A22] {w det AZZ} det A

22

2. I iy ey} T ¥ 1yt
0’172 ={4 WilypB8'Hoy + 1,5, (T+81")A, (T +18 ’”22}]

1
r (K -n-Z) —(K -n)
*exp|- %w)etr[- -]2L(I+rr )A ] 273 (det A22)2 3 -

\

Define L = K3 - n and introduce the new matrix variate

1/2A2‘.2(I+r'r:')l/2 . The jacobian of this transformation is

[det(I-!-rr')]m(n-'-l)/2 and we have

B=(I+rr")

etr{- (1 + BB’ )nzz_zz}

=(L+n) (n+1)
2"2 I‘n+1[1'+n] [det(I+1r! )](L+n+l)/2

(3.42) pdf(w,r,B) =

L+n ' il
'oFl[z ; Z{“’”zz“ n22 2(I+Br J(I+rr')
.B(I+rr')-1/2(1 +Br‘)ﬁ52}:[exp[- %w]etr[- %BJlez-l(det lé’,)L/:Z .

As in the general scheme of development outlined in paragraph 2.2 we
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need to integrate out the auxiliary variates {(w,B) in (3.42) in order
to find the analytic form of the density of BIV . This problem was the
main obstacle in the development of an exact distribution theory for single
equation estimators in the general case for over a decade following the
work of Richardson (1968) and Sawa (1969) that dealt explicitly with the
two endogenous variable case (n = 1) . In this latter case the OFl

function in (3.42) can be replaced by a power series in the argument

-1/2 -1/2

(3.43) %{wﬁzzss'iéz +TI'22(I +Br") (I 4+1r') B(I+rr') (I +r8').ﬁé2}

which, when n =1, 1is a scalar. Powers of this variable may now be
expanded in binomial series and inspection of (3.42) shows that terms of
this double series may then be integrated simply as gamma functioms.
When n > 1, (3.43) is a matrix and the series development of the of1
function is in terms of zonal polynomials of this matrix. In the absence
of an algebra to develop a binomial type expansion for zonal polynomials
of the sum of two matrices, integration of the auxiliary variables (w,B)
in (3.42) appeared impossible. However, a solution to this difficulty
was found by Phillips (1980a), The idea behind the method developed in
this article is to use an alternative representation of the OFl func-
tion in which the argument matrix (3.43) is thrown up into an exponent.
The two elements of the binomial matrix sum (3.43) can then effectively
be separated and integrated out. {We will not give the full argument
here but refer the reader to the article for details.)9 In short, the

process leads to the following analytic form for the exact finite sample

density of BIv :
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- L4+l
etr{ 2(1-0-86‘)1122 22}? F_TT"J

2™ 2 [det (1 4+ rrry) (L) /2

. [%L

3
T —

(3.44) pdf(r) =

) {L-1)/2+j

-11-‘1[5—"'1‘1;- l‘-2"'ﬂ+j, F(HNT,, (T4 8r') (T +rr")” (1+rs')ﬁ22]:[w=o

In (3.44) L = K3 - n is the number of surplus instruments used in the

estimation of £ . That is, K1 + K instruments are used and at least

3
Kl + n are needed to perform the estimation by the traditional IV pro-
cedure. Thus, when K, = K, and 1 = K, -n, (3. 44) gives the p.d.f.

of the 25LS estimator of B ; and when Kl + K3 =T, s0 that K3 =T = Kl

and L =T - K, ~n, (3.44) gives the p.d.f. of the OLS estimator of
B .

The matrix W (nxn) in (3.44) contains auxiliary variables that
are useful in reducing the integral from which (3.4%4) 1is derived and
adj(3/5W) denotes the adjoint of the matrix differential operator 3/3W .

We note that when n =1, W 1is a scalar, adj(d3/awW) =1 and (3.44)

becomes

2
exp{— 32—(1 + 62)} [#J

172, [L+1] 2, (L+2)/2

L
- &ﬂ 2 )3 2 2
- LgZ| p |L¥2Z %+j;y___(1+er)
350 31 [22] (27 ) aTa[2 7 1422
i
2 =2

: = 1 -
in which ¥ Tﬂ22 TH22 22 is the scalar concentration parameter (re

call (3.35) and footnote 4). The dengity (3. 45) was first derived

(3.45) pdf(r) =
(1+4r
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for 28LS (L = KZ -1) and OLS (L =T - Kl - 1) by Richardson (1968)
and Sawa (1969).
When L = 0 in (3. 44) the series corresponding to the suffix 3

terminates at the first term and we have

T - n+l
e"{' 2(1+88 >“zz“zz}fn [T)

(3. 46) pdi(r) =

ﬂn/2rn %J[det(1-+rr')](n+1)]2
1. T— - -,
.lFl[E:?‘_' %; 3y, (T+Br")(T+1r') 1(I+r8')ﬂ22)

That is, a single term involving a matrix argument hypergeometric function
as obtained by Sargan (1976a) in this special case.

While (3.44) gives us a general representation of the exact joint
density function of instrumental variable estimators in simultaneous equa-
tion models, this type of series representation of the demnsity is not as
easy to interpret as we would like. It can be said that the leading term
in the density reveals the order to which finite sample moments of the
estimator exist (c.f. Basmann (1974)). In the oresent case, we see that

=412 g - (041) /2

*

when L = 0 the leading term involves ([det(I+rr')
which is proportional to the multivariate Cauchy density (see Johnson and

Kotz (1972)); when L > 0 the term involves [det(I-+rr')]—(L+n+l)/2

= (l-i-r'r)—(L-mﬂ)/2 which is similar to a multivariate t-density. These
expressions enable us to verify direétly Basmann's conjecture (Basmann
(1961, 1963)) that integer moments of the 2SLS estimator (L = K2 - n)

exist up to the degree of overidentification. In other respects, the analytic
form of (3.44) is not by itself very revealing. Moreover series representa-

tions such as (3.44) and (3.46) cannot as yet be implemented for numerical

calculations as easily as might be expected. The formulae rely on the
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matrix argument 1Fl function and numerical evaluation depends on avail-
able tabulations and computer algorithms for the zonal pelynomials that
appear in the series representation of such matrix argument functions

(see (2.11)). This is an area in which important developments are currently
taking place (some discussion and references are given in Section 2 fol-
lowing (2.11)). Unfortunately, the availability of tabulations and algorithms
for zonal-type polynomialsIOWillcover only part of the computational
difficulty. As noted by Muirhead (1978), the series that involve these
polynomials often converge very slowly. This problem arises particularly
when the polynomials have large arguments (large latent roots) and it be-
comes Necessary to.work deeply into the higher terms of the series in order
to achieve convergence. This in turn raises additional problems of under-
flow and overflow in the computer evaluations of the coefficients in the
series and the polynomials themselves. To take as a simple example the
case of the exact density of the IV estimator in the two endogenous var-
iable case, the author has found that in a crude summation of the double
infinite series for the density a thousand or more terms seem to be neces-
sary to achieve adequate convergence when the true coefficient

(that is, & 1in (3.45)) 1is greater than 5 and the concentration
parameter, ﬁz , 1s greater than 10. These are not in any way
unrealistic values and the problems increase with the size of the coeffi-
cient and concentration parameter. When the density is expressed as a

single series involving the function of & scalar argument, as in

171
(3.45), these considerations necessitate the computation of the

lFl function for scalar arguments greater than 225. Use of the

conventional asymptotic expansion of the function (which is normally

1f1

recommended when the argument is greater than 10, see Slater (1965)) fails
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here because one of the parameters of the 1F1 function grows as we enter
more deeply into the series and the series itself no longer converges.
Undoubtedly, the additional problems encountered in this example quickly
become much worse as the dimension of the argumeﬁt matrices in the special
functions and the zonal polynomials increases and as we need to make use
of the more general zonal-type polynomials (see footnote 10).

For direct computational work in the case of the IV estimator when
there are more than two endogenous variables in the structural equation,
the problems reported in the previous paragraph were overcome in Phillips
(19802) by extracting an asymptotic expansion of the exact joint density
of the vector coefficient estimator., This inveolves the use of a multi-
dimensional version of Laplace's method of approximating integrals (see,
for example, Bleistein and Handelsman (1976)). Marginal density expan-
sions were obtained by similar techniques in Phillips (1982a). These
results give us direct and readily computable formulae for the joint and
marginal densities of the coefficient estimator. The leading terms of
these expansions of the joint and marginal densities have an error of
O(T_l) where T 1is the sample size and in the univariate (two endogenous
variable) case the resulting approximation can be otherwise obtained by
the saddlepoint technique as in Holly and Phillips (1979). The latter
article demonstrates that the approximation gives high accuracy for some
plausible values of the parameters throughout a wide domain of the dis-
tribution, including the tails,

The main conclusions about the shape and sensitivity of the p.d.f.
of BIV and its components which emerge from the computational work in
these articles confirm the results of earlier numerical investigations

dealing with the two endogenous variable case by Sawa (1969) and Anderson
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and Sawa (1979) and the recent experimental investigations by Richardson
and Rohr (1982), A full discussion of the two endogencus variable case
will be takenup in parapraph3.6. 1In the following we report briefly the
principal results which apply in the multi-endogenous variable cases inves-
tigated by Phillips (1980a, 1982a):

(i) For comparable parameter values the marginal distributions of

B appear to concentrate more slowly as T - = when the number

v
of endogenous variables (n+l) 1in the equation increases.
(ii) The marginal densities are particularly sensitive to the degree
of correlation in the concentration parameter matrix M = Tﬁéiﬁzz
in (3. 44) Setting, for example,

=
"
T

in the n+l = 3 endogenous variable case, the location, disper-
sion and skewness of the marginal distributions all seem to be
sensitive to p . Since M approaches singularity as [p| » 1
wﬁen the equation becomes unidentifiable ( H22 in (3.5) and hence

) must be of full rank = n for identifiability of the equaticn)

22
we would expect the dispersion of the marginal distributions of
the structural estimator B, to increase with [o| . This
phenomencon is, in fact, observed in the graphical plots recorded
by Phillips (1980a,1982a) for different values of p . The central
tendencies of the marginal distributions also seem to be sensitive
to the relative signs of p and the elements of the true coeffi-

cient vector B . We give the following eiample: when the coeffi-

cients Bi and p all have the same sign the common set of exogenous
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variables are compatible as instruments for Y2 in the regression
and the marginal distributions appear to be adequately centered
(for small values of L and moderate u2 ); but when Bi and

p take opposite signs the exogenous variables are less compatible
as instruments for the columns of Y, and the marginal distribu-
tions become less well centered about the true coefficients.

(iii) The effect of increasing the number of endogenous variables, ceteris
paribus in a structural equation is a decrease in the precision of
estimation. This accords with well known results for the classical
regression model.

(iv) The marginal distribution of BIV displays morebias in finite
samples as L , the number of additional instruments used for
the n right hand side endogenous variables, increases in value.
When L becomes small the distribution is more centrally located
about the true value of the parameter but also has greater dis-

persion than when 1 1is large.

3.6. The Case of Two Endogenocus Variables (n = 1)

As seen in (3.45) the general form of the joint density (3. 44)
can be specialized to yileld results which apply in the two endogenous
variable case. These results were first established independentlv bv
Richardson (1968) and Sawa (1969) for 2SLS and OLS (to which (3. 45) applies),
by Mariano and Sawa (1972) for LIML and by Anderson and Sawa (1973) for
k class estimators. Moreover, as demonstrated by Richardson and Wu (1970)
and by Anderson (1976) the exact_p.d.f.'s for 251S and LIML directly apply
after appropriate changes in notation to the OLS and orthogonal regres-

sion estimators of the slope coefficient in the errors in variables model.
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Details of the argument leading to the exact density of the 2SLS
{or bLS) estimator can be outlined in a few simple steps arising from
(3.42) (see Phillips (1982e) for details). The final result is expression
(3.45), obtained above as a specialized case of the more general result
in paragraph 3.5. This expression (3.45) gives the density of BZSLS
when L = K2 -1 and the density of BOLS when L=T-K -1. An

1

alternative method of deriving the density of 8 {or 8 is given

2SLS OLS )

in Appendix A of Phillips (1980b) where the fourier inversion (of the form

(2.3)) that yields the density is performed by contour integration.
Similar methods can be used to derive the exact densities of the

LIML and k-class estimators, 8 In the case of LIML the

LIML and B(k) .
analysis proceeds as for the leading case but now the joint density of

sample moments is noncentral (see Phillips (1982e) for details). This joint
denéity is the product of independent Wishart densities with different degrees
of freedom ( K2 and T-K respectively) and a noncentrality parameter matrix
closely related té that which applies in the case of the IV estimator

analyzed in paragraph 3.5. The parameterization of the joint density of

the sample moments upon which R devends clarifies the key parameters

LIML
that ultimately influence the shape of the LIML density. These are the
(two) degrees of freedom, the noncentrality matrix and the true coefficient
vector. For an equation with two endogenous variables the relevant param-
eters of the LIML density are then: K, , T-K, u2 and B8 . Thé mathe-~
matical form of the density was first derived for this case by Mariano

and Sawa (1972).11 The parameterization of the LIML density is different
from that of the IV density given above. In particular, the relevant
parameters of (3.45) are L , pz and 8 ; or in the case of 2SLS,

K2 , u2 and B . We may note that the IV density depends on the sample
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size T only through the concentration parameter u2 , as distinct from
the LIML density which depends on the sample size through the degrees of
freedom, T-K , of one of the underlying Wishart matrices as well as the
concentration parameter.

Similar considerations apply with respect to the distribution of

the k class estimator, B(k) . We see from (3.17) that for k # 0, 1

the p.d.f. of B(k) depends on the joint density of two underlying Wishart

matrices. The relevant parameters of the p.d.f. of B(k
2

T-K, k, W and £ . The mathematical form of this density for

) .are then:
Kz .
0 <k <1 was found by Anderson and Sawa (1973) as a fourth order infinite
serjes.

Extensive computations are now available for at least some of the
exact densities (and associated distribution functions) discussed in this
section. Most of this work is due to a series of substantial contributions
by T. W. Anderson, T. Sawa and their associates. An excellent account
of their work is contained in Anderson (1982)., We summarize below the
main features that emerge from their numerical tabulations of the relevant
distributions, all of which refer to the two endogenous variable case:

(i) The distribution of B is asymmetric about the true parameter

25LS
value except when B = 0 (the latter special case is alsc evident
directly from expression (3.43) above). The asymmetry and skew-
ness of the distribution increase as both B and K2 increase,

For example, when B =1 , uz = 100 and K2 = 30 the median of

the distribution is -1.6 (asymptotic) standard deviations from the
true parameter value, whereas at Ky = 3 the median is -0.14 standard

deviations from B . As KZ becomes small the distribution becomes

better located about B8 (as the numbers just given illustrate)
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but displays greater dispersion. Thus, at £ =1, u2 = 100 ;
K2 = 30 the interquartile range (measured again in terms of asymp-
totic standard deviations) is 1.031 whereas at 8 =1 , u2 = 100 ,

K2 = 3 the interquartile range is 1.321. The following table illus-

trates how these effects are magnified as B increases:

12
TABLE 1

Median (MDN) and Imterquartile Range (IQR)
of Bygrg~B in terme of asymptotic standard deviations

(% =100)
B
K, 1 2 5
, MON -0.140 -0.177 -0.194
IGR 1.321 1.310 1.304
30 MDX -1.599 -2.021 -2,215
IQR 1.031 0.924 0.860

(ii) The rate at which the distribution of 8,o o (appropriately centered
and standardized) approaches normality depends critically on the
values of B and K2 . If either (or both) of these parameters
are large then the approach to normality is quite slow. At B =1
and K, = 3, for example, the value of u2 must be at least 100

to hold the maximum error on the asymptotic normal approximation

te 0.05; but when K, =10 , uz must be at least 3,000 to ensure

2
the same maximum error on the asymptotic distribution.

(iii) Since the exact distribution of BLIHL involves a triple infinite
series, Anderson and Sawa (1977, 1979) tabulated the distribution

of a closely related estimator known as LIMLK. This estimator

represents what would be the LIML estimator if the covariance matrix
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of the reduced form errors were known. In terms of (3.18),
. L] ¥

BLIHLK minimizes the ratio BAWBA/BAQBA where O 4is the reduced

form error covariance matrix and satisfies the system (w--).mQ)BA =0

1

where 1 is the smallest latent root of § W . The exact dis-

tribution of BLIMLK can be obtained from the noncentral Wishart
distribution of W . Anderson and Sawa (1975) give this distribution
in the form of a double infinite series that is more.amenable to
numerical computation than the exact distribution of LIML. 1In a
sampling experiment Anderson et al (1980) investigated thediffer-~
ence between the LIML and LIMLK distributions and found this dif-

ference to be very small except for large values of K Anderson

9
(1977) also showed that expansions of the two distributions are

_3) . These considerations led

equivalent up to terms of O(u
Anderson and Sawa to take LIMLK and a proxy for LIML in

analyzing the small samplec properties of the latter and in the
comparison with 25LS. They found the central location of

LIMLK to be superior to that of 2SLS. In fact, LIMLK is median
unbiased for all B and K2 . Moreover, its distribution (appro-
priately centered and standardized) approaches normality much faster
than that of 25LS. However, LIMLK displays greater dispersion in
general than 25LS and its distribution function approaches unity
quite slowly. These latter properties result from the fact that
LIMLK, like LIML, has no integral moments regardless of the sample
size and its distribution can therefore be expected to have thicker
tails than those of 2SLS. The following tab}e of selected compu-
tations from Anderson and Sawa (1979) illustrates these effects

in relation to the corresponding results for 2SLS in Table 1.
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TABLE 212’ 13

Median and Interquartile range of B B

LIMLK
in terms of asymptotic standard deviations

(u? =100)
8
K2 1 2 5
3 MDN 0 0 4]
IQR 1.360 1.357 1.356
30 MDN 0 0 0
IQR 1.450 1.394 1.363

These features of the exact small sample distributions of 2SLS and
LIMLK give rise to the following two conclusions reported by Anderson
(1982): (a) the distribution of Bosrg MY be badly located and skewed
unless R and K, are small or u2 is very large; (b) the approach to
the asymptotic normal distribution is slow for 25LS and rapid for LIMLK
and,apﬁarently,LIML. Thus, in many cases the asymptotic normal theory mav
be a fairly adequate approximation to the actual distribution of LIML but
a less than adequate approximation to the distribution of 2SLS.

These conclusions clearly suggest the use of caution in the appli-
cation of asymptotic theory and thereby agree with the results of many
other studies. One additional point is worthy of mention. The above
exact results and reported numerical experience refer to the standardized
model as discussed .in paragraph 3,3, When we referred to the trﬁe'
coefficient B above, we therefore meant the true standardized coefficient
(as given by B% in expression (3.25) of Theorem 3.3.1). But we note

that the correlation between the included endogenous regressor, and

Yat
the structural error, u_ , in the unstandardized model is a simple

t
1/2
function of g* viz. corr(yt. ut) = —B*/(14—8*2) as given by (3. 33)
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in the general case. Thus, as the modulus of the standardized coefficient,
|B*] » increases the correlation between Yo and u, increases. We,
therefore, need ceteris paribus a larger sample of data to effectively
purge y,. of its correlation with u, in estimation by 25LS (or more
generally IV). This correlation is explicitly taken into account when

we estimate by LIMLK (or LIML), since we directly utilize the reduced form
error covariance matrix (or an estimate of it) in this procedure. Thus,

it may not be too surprising that the finite sample distribution of BZSLS
displays a far greater sensitivity to the value (particularly large values)

of B* than does the distribution of LIML, as the computations in Tables

1 and 2 illustrate.

3.7. Structural Variance Estimators

In paragraphs 3.3 to 3.6 our attention has focussed on the distri-
bution of structural coefficient estimators. Structural variance estimators
are also of importance, both as measures of residual variation and as
components in commonly used test statistics (such as coefficient signifi-
cance tests of the "t" ratio and asymptotic XZ variety where the metric
relies on an estimate of the structural equation error variance). Basmann
(1974) has pointed to an additional role that structural variance esti-
mators may play by indicating the demands for accuracy which a model such
as (3.3) and (3.5) may place on the measurement of the data.

Structural error variance estimators typically rely on the residuals
from an estimated structural equation and their distributions rely, in
turn, on those of the structural coefficient estimators. The following
quadratic forms define three alternative classes of estimator for the

structural variance, 02 , of the errors in (3.3):
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= ! - Rnt
(3.47 Gl(B) BAXQZIXBA BAA(I)BA »

(3.48) G,(8) = BLX‘QZXBA = BL[A(I)-—A(PZ)JBA s

14 '
= - = tyt - = )
(3.49) Q(B) = G, (B) - G,(8) = B X"(P, le)st BAA(P,)B, .
Corresponding to (3.47) we have the most common structural error variance

estimators, viz.

-1 -1
50 = - - -
(3. 50) oy = T 6 (Bpy) =T 7y YZBIV)'Qzl(yl Yy81y)
= Ty, = Y,810 - Zy¥py) ' (3 = Y80 = 21 Y1)
17 2% v T4 Yy YT 2P v T Y1V

and

-1 ¢ (s )y =1l

51
(3.50) LML 1L

- ‘ -—
(yy = Y28 o) Qzl(yl Yo o)

= -1 - - L]
T o0y =Y g = 2y " 0~ YoBoma ~ 4 Yinn)

for estimation by IV and LIML, respectively.

The exact distributions of O1v and % 1ML {(as well as those of
the related estimators based on G,(8) and Q(8) ) can be extracted in
steps that reduce the dimensionality of the problem from the essential
sample moments and coefficient estimators in (3.50)-(3.51) to the required

marginal densities. The analytic derivations relate very closely to those

that apply in the distribution theory for the relevant coefficient esti-

mator. The published work on the distribution of structural variance esti-
mators refers to the two endogenous variable case and, in conjunction with

other important unpublished material, has been well reviewed by Basmann
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(1974, pp. 252-254). The essential contributions in this area are by
Basmann and Richardson (1969, 1973), who found the exact p.d.f.'s of 25LS
variance estimators based on (3.47)-(3.49), and by McDonald (1972), who
found the exact p.d.f.'s of the LIML variance estimators for the same
trinity of quadratic forms. Some of their principal findings can otherwise
be obtained by exémination of the leading case considered earlier in para-
ggraph 3.4,
In particular, the exact density of o in standardized form and

Iv
in the leading case is given by (see Phillips (1982e) for derivations)

(T-K,)/2+5-1

¥ Tc
1 TRy +Rg) ~To, /2 [i] 2w

2.
z ]
150 =0
2’ 2

T~K, +K,+1
j‘
Expression (3. 52) gives the density of o

TB
(3.52) pdf (o) =

1 3
2

3

where K, + K is

1 3

the number of instrumental variables used in the estimation of the equa-

v

tion. When K3 = 1 this corresponds to the just identified case and

also to LIML. The latter follows because in the leading case the density

of BLIML is Cauchy as shown in (3.39) and this is just the special case
of (3.38) when K3 =1,
Analysis of (3.52) shows that moments, E(O?V) , of Ory are finite

provided h <« K3/2 . In the case of 25LS where K3 = K2 , this corres-
ponds to the results reported by Basmann (1974). And by setting K3 =1,

we deduce that o, . has no finite monents of integral order, as shown

LIML
by McDonald (1972). 1In this connection we may also note that since BZSLS
minimizes Q(8) in (3.49) and since Q(8) is proportional to a xi
2

variate when 8 takes on the true value of the coefficient vector, the
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structural variance estimator aZSLS = Q(BZSLS)/(KZ-n) possesses finite
moments of all orders. However, aZSLS (unlike Ory and o IML ) is
in general an inconsistent estimator of the structural error variance.

In fact, Basmann and Richardson (1973) show that the statistic GZSLS

has a limiting xiz-l distribution as the concentration parameter uz + @ ,

The errors involved in this asymptotic distribution of 0 were analyzed

25LS
for the two endogenous variable case by Ebbeler and McDonald (1973) who
found that the errors increased with the size of 82 and with the number

of excluded exogenous variables, KZ .

3.8. Test Statistics

Thefinitesaméle distributions of certain test statistics as well
as structural coefficient and variance estimators have also received atten-
tion in the literature. As with the classical linear regression model,
knowledge of the distribution of test criteria allows us in principle
to construct exact confidence intervals and carrv out significance tests
for which the size is exact (or the critical region appropriate for a
given test size). However, an important practical difference arises in
this context between the classical regression model and the SEM. 1In the
former, the usual t-ratio, F and xz tests are parameterized only by
degrees of freedom which are available upon siﬁple data, parameter and
restriction counts. Ip the latter, however, most finite sample distribu-
tions depend on a number of parameters some of which figure prominently
in the parameterization of the structural and reduced forms. This is
evident from the results reported in earlier paragraphs of this section
that peréain to estimators rather than test criteria. It prevents, in

particular, our using those results directly ro mount significance tests
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on the coefficients in just the same wav as the presence of an unknown
error variance prevents our using a normal theory as the basis of an

exact significance test for a coefficient in a linear regression. Whereas
this problem is simply overcome in the regression model by the use of

the t-ratio, it is not so cimply resolved in the SEM. Unless we can assume
values for the unknown parameters upon which the relevant distribution
depends, an exact theory will in most cases be beyend reach.

Two different approaches have been adopted in the literature to
assist in resolving this difficulty. The first of these is to develop an
Edgeworth expansion of the distribution of the test statistic, then replace
the unknown parameters that arise in the coefficients of this expansion
by (consistent) estimates of them. Thus, if a symmetric confidence interval
for a parameter based on crude asymptotic theory is corrected by the O(T-l)
terms in the Edgeworth expansion and the parameters, say ¢ , that arise
in these terms are replaced by consistent estimates ﬁ for which

_1/2) the order of magnitude of the error in the Edgeworth

yo=y + OP(T
correction will be maintained. This approach forms the basis of the work
by Sargan (1975, 1976a, 1980) and will be considered more closely by
Rothenberg (1982) in Volume 2 of this Handbook.

The second approach to the problem, at least in a sampling theoretic
framework, is to use test criteria whose distributions are more parsimon-
iously parameterized and therefore more useful in providing revisions
to asymptotic significance levels and critical regions. The published
work in this area is less general than the literature which deals with
Edgeworth corrections and the associated distribution theory is more limited
than that which has been developed for structural estimators. Neverthe-

less some interesting and important results have been obtained which we

will now briefly review.
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Avderson-Rubin Exact Confidence Intervale and Tests

A small sample theory of interval estimation and testing in struc-
tural equations such as (3.3) was developed by Anderson and Rubin (19&9).15
Their procedure is applicable when the confidence region or null hypothesis
concerns the full vector of endogenous variable coefficients in the struc-
tural equation. Thus, if we comsider the hypothesis Ho : = BO in
(3.3), we may define y* = ¥1 - Y280 and rewrite the structural equation
under the null hypothesis as y* = Zly 4+ u . On the other hand, when
H. is not true y* will (in view of the reduced form (3.5)) be a linear

0

function of both Zl and 22 . Thus, Ho may be tested by a conventional

F test of the hypothesis that the coefficient vector of 22 is zero

in the regression of y* on Zl and Z2 . The statistic for this test

takes the usual form of

y*‘ (Qz = Qz)y*

T-K 1
3.53 F =
(3.53) K, 7

and has an FK T-K distribution under HO . When H, 1is false, the

29 0

denominator of (3.53) is still proportional to a xi-K variate while

the numerator becomes noncentral xi with the noncentrality dependent
2

on the vector of coefficient inaccuracy under the null, £ - B and

0 ]
a subset of the reduced form parameters. Thus (3. 33) is noncentral

Fy T-X under the alternative hypothesis 8 # Bg - This test can readily
2!

be extended to accommodate hypotheses that involve exogenous variable

coefficients and even (under suitable conditions) coefficients from several

structural equations. The common requirement in each version of the test

is that all structural coefficients pertaining to endogenous variables
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be specified under the null. This requirement ensures that the model can
be rewritten, as above, as a multiple (or multivariate) regression when
the null hypothesis holds. The test based on (3.53) is consistent and
its power function was considered briefly by Revankar and Mallela (1972).
Confidence regions follow from (3.53) in the usual way as the set of all

B satisfying the inequality

_ ¥ — < _,T _
(y1 YZB) Qz(y YZB) T-K'K,,T K

(3. 54)

(a)

at the 100(1-a)% confidence level.
An Exact Structural t-Statistic

Richardson and Rohr (1971) studied a structural t-statistic (intro-
duced by Dhrymes (1969)) that can be used to test hypotheses and con-
struct confidence intervals for individual structural coefficients in
SFM's. They found the exact distribution of this statistic for an equa-
tion with two endogencus variables and showed: (a) that this distribution
is, indeed, Student's t-distribution when the true standardized structural
coefficient (B) is zero; and (b) that this distribution tends to the
t-distribution as u2 + « , However, their numerical computations of this
exact distribution and its first three moments indicate that the exact
distribution will often be poorly approximated by the t-distribution unless
8 1is very sm=ll or uz very large. The exact density of their statistic
is in fact highly skewed even for large u2 and small B . Exact prob-
abilities for intervals symmetric about the origin are lower than those
for the t-distribution (unless £ = 0 ), so that confidence levels will

be overstated and levels of significance will be understated if the t-
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distribution is used as an approximation in constructing confidence intervals
or in two sided tests,

Their analysis can be illustrated by considering the IV estimator
BIV in the two endogenous variable case and for the leading null hypothesis
g=0, Moy = 0 of paragraph 3.4. The Richardson-Rohr structural t-

statistic is given by

/

where 32 = Q(BIV)/(K3-1) . Simple manipulations show that this has a
Student's t-distribution with K3A—l degrees of freedom. In the 25LS
case that 1s considered by Richardson and Rohr (1971), K3-l = Kz-l

= degree of overidentification of the structural equation and it is assumed

that K,-1 >1 .

2 Z
An interesting experimental investigation that bears on this test
has been reported by Maddala (1974). Maddala studied the power functions
of the Dhrymes-Richardson-Rohr (DRR) statistic, the Anderson-Rubin (AR)
statistic and the conventional t-ratio statistic (corresponding to what
would be justified if the equation were a classical linear regression

and estimation were by OLS). For the model and parameter values used by
Maddala, he found that the DRR test had very low power in comparison with
the AR and conventional test. This outcome is partially explained by

Maddala in terms of the different structural variance estimators that are

used in the various test statistics. He argues, in particular, that the

DRR statistic involves a variance estimator based on Q{B) in (3.49).

This estimator relies on linear forms in the data such as zix and does

not involve the sample second moments X'X directly, as do the more con-

ventional estimators Srv and oL 1ML in (3.50)-(3.51). To this extent
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they neglect useful sample information about the error variance and this
is reflected in the observed low power of the DRR test in comparison with

the conventional tests.
Identifiability Test Statistics

The structural equation (3.3) may be written in the alternative

form

(3. 56) ¥y = Y8 + 2 + 2z + u

171 7 42

under what is known {compare Basmann (1960)) as the "identifiability

hypothesis':

(3. 57) HO R Ol 0.

It is usually assumed that KZ > ntl so that attention is focussed on
the overidentifying restrictions in (3.57). Several tests of these
restrictions have been suggested in the literature and are referred to
under the name of identifiability test statistiecs. The most common of
these arise naturally in 2SLS and LIML estimation. Their cemstruction
relies on the quadratic forms (3.47)-(3.49) studied in connection with

structural variance estimators. Explicitly we have:

C)(Bygrs) = CalBygg)  QByg o)

(3.58) ¢ - )
25LS C2(By51.5” G,y(Byer )

(3.59) ¢ - Gl(BLIIIL) - G2(BLIML) - Q(BLIM'[_,) .
LIML Co(8) 1 ? €, (8, )

If the identifiability hypothesis (3.57) is valid, the limiting distri-

butions of T¢ZSLS and T¢L1Mm are both xi —n 25 T + =« under fairly
2
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general conditions. These asymptotic results were derived by Anderson
and Rubin (1950), Hood and Koopmans (1953) and Basmann (1960) and are
reported by Hausmann (1982) in this volume of the Handbook. They lead
to the common critical region (of rejection) in a large sample test of

identifying restrictions:

(3.60)  To > xi _ (&)

2

where o is the chosen significance level and ¢ denotes either ¢ZSLS
or ¢LIML .
As an approximate finite sample test, Anderson and Rubin (1949)
suggested the alternative critical region
T-K
61
(3. )j K—2¢LIML > FK2‘T_K(G) .
This may be justified on the argument that for fixed 8 in (3.59) the

ratio (T-K)¢/K, 1is indeed distributed as {compare (3.33)

TRy, T-K
above}. Basmann (1960) criticized this suggestion on the grounds that
as T + =

P

TorsLs ToLm XK, -n

whereas

%
(T-K)Fy —

- XK, *
g»T-K K,
He also argued that these considerations suggested an adjustment to the

numerator degrees of freedom in the F ratioc and, as a result, the al-

ternative critical regions
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(3. 62) K, =n’25LS
2

v

sz-n,T-K(“)

63 T-K
(3.63) K, -n"LIML

[ R4

as approximate finite sample tests of identifying restrictions. An experi-
mental study was performed by Basmann to determine the adequacy of the

new tests (inter alia) and his results give very favorable support to the
alternative critical region for the 2SLS statistic in (3. 62). An exten-
sive series of experiments recently conducted by Rhodes and Westbrook

(1982) adds support to this evidence, indicating that the adequacy of the
critical regions (3.62)-(3.63) depends on the degree of overidentification

of the equation under the identifiability hypothesis. In particular,
the adequacy of these regions in finite samples deteriorates as Kzl-n
increases.

The exact finite sample distribution of bpgLs iM (3.58) was

found by Basmann (1965) for the case in which n =1 and Ky-n = 1

and by Richardson (1969) for n = 1 and an arbitrary degree of overiden-

tification KZ-l . McDonald (1972) discovered the exact p.d.f. of

¢LIML and showed that it has finite moments of order less than T-K .

Since has finite integer moments of order less than (T-K)/2

Y2518
(from the results of Richardson (1969)) it follows that the tails of the
distribution of ¢25LS will be thicker than theose of ¢LIML . We notice
that this feature of the finite sample distributions of the two statistics
is consonant with the observed inequality between the statistics, viz

¢LIML 5—¢ZSLS , that arises from the construction of the LIML estimator
(see (3.18) and (3.59)).

Some of the results in the preceeding paragraph have been generalized
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to the case of an equation containing n+l endogenous variables in an
important contribution by Rhodes (1981). Rhodes found the exact distri-
bution of ¢LIML and showed that it has finite moments of order less
than (n+1)(T-K)/2 . The exact distribution depends on the noncentrality
parameter matrix which we will denote by M , as in paragraph 3.5 above.

In our notation

aD L S
(3. 64) M= 2] "E(X )(PZ-PZI)E(X) .

After standardizing transformations have been carried out and when the
null hypothesis is correct, this becomes
Bl

T ,
(3.65) M=T szﬁ

I I1.1.
n

2218 ¢ 1

Thus, under the null M has one zero latent root and generally n non-
zero roots. When the null is false, the simpler form of M in (3.65)
no longer holds and (3.64) normally has rank n+l rather than n .
Thus, the true power functions of tests such as (3.60), (3.61) or (3.63)
depend on the values of these non-zero latent roots. Rhodes (198]1) in-
vestigates the actual size and power of these tests for a selected set
of latent roots of M and finds that when the non-zero roots are small
(less than 10) the true size of each test is very poorly represented by
the nominal level of significance. To relate these results to those of
Basmann (1960) reported earlier, Rhodes calculated the non-zero latent
roots of the relevant noncentrality matrix for Basmann's experiment and
found the roots to be large, explaipingixlpart why (3.63) proved to be

quite accurate in those experiments.
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Since the exact distribution of ¢LIML is not amenable to compu-
tation, some steps have been taken to provide improvements on the critical
regions (3.60), (3.61) and (3.63). McDonald (1974) obtained an approxi-
mate F distribution for ¢LIML by selecting parameters for the former
in order that the first two moments of the distributions would be the same.
Rhodes (1981} developed an alternative critical region for the test by
considering the conditional distribution of ¢LIML given the other roots
of the LIML determinantal egquatien, 1In particular, this conditional dis-
tribution has a simple asymptotic form as the largest mn latent roots of
M tend to infinity and can be used for the computation of a new critical

region for a test based on ¢ and for power function evaluations.

LIML
It has the advantage (over the conventicnal asymptotic and other tests

we have discussed) of incorporating more sample information, and prelim-
inary experimental results in Rhodes (1981) indicate that it may provide

a more accurate critical region for the identifiability test.

3.9. Systems Estimators and Reduced Form Coefficients

In comparison with the analytic results reviewed in earlier para-
graphs for single equation estimators and test statistics much less is
known about the distribution of full systems estimators, reduced form
coefficient estimators and their associated test statistics, Most pro-
gress has in fact been made in the application of small sample asymptotics
by the use of Edgeworth expansions. Here the theory and constructive
process detailed in Phillips (1982e) are directly applicable and machine
programmable for both structural and reduced form coefficient estimators,
We will consider the analytic results for the two groups of coefficients

separately below.
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Structural Coefficient Estimators

1/2)

Some manageable formulae for the first correction term of o(T"
in the Edgeworth expansion have been obtained by Sargan (1976a, Appendix
¢) for 3SLS and FIML systems estimators. But no work is presently avail-
able to shed light on the adequacy of these approximations. What we know
of their performance in the case of single equation estimatorsl6 suggests
that their adequacy (at least for 3SLS estimation) will deteriorate as
certain equations in the system become heavily overidentified. It also
seems clear that the size of the system will have an important bearing
in this respect, given other relevant factors such as the sample size,
reduced form parameter values and features of the exogenous series. Some
evidence which relates to this issue is available in Phillips (1977c),
who developed formulae for the Edgeworth expansion of two stage Aitken
estimators of the parameters in a linear multivariable system subject

17 These formulae show

to general linear cross equation restrictioms.
that to terms of O(T_l) the finite sample distribution is a rescaled
version of the exact distribution of the Aitken estimator. This scaling
factor depends on the moments of the estimated error covariance matrix
and the sample second moments of the exogenous variables. As the number
of equations in the system increases, the scale generally changes

in such a way that the dispersion of the distribution.increases. This
corresponds with exact results obtained by Katacka (1974) for a somewhat
simpler version of this model and squares with the intuition that as the
precision of our error covariance estimator decreases (through reductions
in the effective degrees of freedom) the sampling dispersion of the re-

sulting two stage coefficient estimator increases. These results for the

multivariate linear model furnish interesting conjectures for systems



61

estimation in the SEM. Finally in this connection, we may mention that
Nagar-type approximating moments may be deduced from the Edgeworth formulae
(see Phillips (1982e). Such approximating moments, or pseudo-moments
(where this term is appropriate) were derived independently for the 35LS
structural coefficient estimator by Mikhail (1969) in doctoral dissertation
work at the London School of Economics.

In addition to the approximate distribution theory discussed above
some progress on a leading case analysis for systems estimation along the
lines of paragraph 3.4 is possible. The principles may be illustrated

by considering FIML applied to a two equation system of the form (3.1)

with

(3.66) B

and overidentifying restrictions imposed on each column of the exogenous
variable coefficient matrix C . We may consider the null hypothesis in
which C =0 and hence I = 0 1in the reduced form (3.2). In this case,
it is shown in Phillips (1982e) that the joint density of the unrestricted
f;ML, bgiML) is bivariate Cauchy. This result

confirms that the FIML estimator of the structural coefficients (b

coefficient estimates (b
12 Par)
has no finite integral moments. Sargan (1970) originally established the latter
result by using the fact that the FIML estimator is independent of the

normalization of the structural equation. In the context of (3.66) this

argument takes the form that if the implied normalization (bll’ blz) = (1, blz)
were changed to (bll, 1) then the FIML estimates under the alternative
normalizations would satisfy the reciprocal relationship b{{ML = l/bigmEL .
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Thus, the FIML estimate of a structural coefficient can be interpreted

as the reciprocal of another FIML estimate under a different normalization.

This fact would normally imply that the distribution of such an estimator

has no integral moments. As in the case of LIML (see paragraph 3.4) this

property of the exact distribution of FIML estimates of the structural

coefficients (blz’ b21) means that the probability of extreme outliers

is generally higher for FIML than for other structural coefficient estimators.
Moments of the 3SLS structural coefficient estimator have been

investigated by Sargan (1978). Some difficulty occurs in the treatment

of the 2SLS estimated error covariance matrix, arising in the

zZSLS ’
conventional 3SLS formula., Sargan, therefore, considers two cases. The

first case treats as nonrandom or, more generally, allows

Z25LS zZSLS

to be random but bounds the ratio of its largest and smallest latent
roots. For this case, Sargan demonstrates that the 35LS estimator of the
coefficients in any equation has finite moments of integral order up to
{and including) the degree of overidentification f&r that equation. Thus,
for this case it is proved that 2SLS and 3SLS estimators have finite moments
to the same integral order. The second case considered by Sargan allows
ZZSLS to be the conventional estimator of the error covariance matrix.
Here it is proved that moments of the 3SLS estimator will be finite pro-
vided the order of the moment is less than (N+1)/2 where N 1is the
degree of overidentification. Thus, the mean and variance of the 35LS
estimator will certainly be finite if the degree of overidentification

is two and four, respectively. These are sufficient conditions and Sargan
conjectures that the earlier result for ZZSLS nonrandom also applies

in this second case where ZZSLS is the conventional error covariance

matrix estimator.



63

Reduced Form Coefficients

In an important article, McCarthy (1972) initiated the analytic
study of the finite sample properties of restricted reduced form (RRF)
coefficient estimators and associated predictions. The RRF incorporates
additional information that is embodied in overidentifying restrictions
on the structural equations of the system. To the extent that RRF esti-
mators utilize this information they were thought for many years to possess
higher asymptotic efficiency and, as a result, smaller variances than

unrestricted reduced form (URF) coefficient estimators.18

McCarthy demon-
strated that if there are overidentifying restrictions on the structural
equations the sclved reduced form coefficients from 2SLS will in general possess
no integral moments. This property influences the probability in small
samples of outliers in the 25LS reduced form coefficients and associated
predictions. It warns us that RRF estimators may give rise to occasional
very poor forecasts and cautions against the use of quadratic loss criteria
in estimator evaluations and in Monte Carle work. Since the publication
of McCarthy's article, gene;alizations of these results have been made
to estimators other than 25LS and various reduced form estimator modifi-
cations have been suggested which attempt to improve on small sample per-
formance. Much of this work is contained in a fundamental paper by Sargan
(1976b) and in the doctoral dissertation research of Maasoumi (1977).
Regrettably, a good deal of their work has not yet been published. How-
ever, with the permission of these authors some of their unpublished
results will briefly be reported here.

An intuitive explanation for the McCarthy result and its generali-

zations arises from the transformation which takes the structural system
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(3.1) into its reduced form (3.2), viz. I = —CB_l . For structural

coefficlent estimators (B,0) we deduce the reduced form estimator

I = ~C(adj B)/(det B) . Now if there exists a value of (B,0) for which
det B = 0 while C(adj B) # 0 and pdf(8,8) > 0, then at least some
elements of the reduced form estimator 1 will have no integral moments,

This follows because the integral that defines the first moment, viz.

fﬁpdf(ﬁ,é)dﬁd& , does not converge under the stated conditions (just

as the integral f ]x-al-sdx diverges for all values of s in the interval
a

1l <s <w=)., This intuitive argument underlies the mathematical proof
of the 25LS result by McCarthy (1972) and forms the basis of the following
general result first given (in a modified form) by Sargan (1976b) and proved

in Phillips (1982e).

THEOREM 3.9.1

If B = v(p)/¢(p) where p g a random n-vector and B 18 a
scalar funetion of p and there exists a Py in the domain of defini-
tion of p such that

(1) y(p) 1i& continuous at Py with w(po) 0,
(ii) ¢(p) has continucus derivatives at Py > denoted by ¢p s
for which ¢;¢P >0 and ¢(p0) =0,
(1i7) p has a continuous p.d.f. with pdf(py) > 0,

then B has no integral moments.

This theorem applies readily to a wide variety of reduced form
estimators of the type 1= -&(adj ﬁ)/det(ﬁ) considered above. Its con-
clusion gives some general analytical support for the presumption that
reduced form coefficients extracted from OLS, 25LS and 3SLS structural

estimators have no moments in overidentified models. The particular two
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equation case studied by McCarthy (1972) also follows directly. Sargan
(1976b) extends McCarthy's analysis to the general case. His results con-
firm that for most overidentified models 25LS and 3SLS reduced form
coefficient estimators possess no integral moments. Exceptions do occur
when the model is of a recursive type in which det B = const. Another
important exception occurs for just identified models. Here the struc-
tural coefficient estimators for 28LS, 35LS and FIML are all egual to
indirect least squares and the corresponding reduced form coefficients
are equal to the OLS estimates, which have moments of all orders under
normality,

We can also consider estimation of the reduced form by FIML. If
8 1is the vecto£ of unconstrained elements in the structural ccoefficient
matrices (B,C) of (3.1) then we may write T = N(6) in (3.2) and &

FIML

is obtained by minimizing

(3. 67) 1n{det{T L(¥Y -2n(6)) ' (¥ - ZN(8)) 1]

From the criterion function (3.67) it is clear that low probabilistic
weight will be attached to events in & space which imply large values
of T since the latter will normally imply large values for the criterion

(3. 67), This will not be the case as the columns of Z become highly

1

collinear or more generally when the complete data matrix T W'W is

close to singularity. Thus, we might expect the FIML reduced form

n = TI(8

FIML FIML) to possess finite moments provided T is large in

relation to the number of variables, n+K , in the system. In fact,

Sargan (1976b) proves that I has finite moments of integral order

FIML
up to T-n-K .

The fact that many reduced form estimators possess no integral



66

moments has led to the suggestion of improved estimators which combine

URF and RRF estimators in such a way that the tail behavior of the com-
bined estimator is improved. A fundamental contribution in this area is
due to Maasoumi (197’8).'19 Maasoumi develops a new reduced form estimator
which combines the corresponding restricted 3SLS and the unrestricted

OLS estimators. The new estimator incorporates the outcome of an asymp-
totic xz test of the model's overidentifying restrictions and thereby
opens up a middle road of methodology that lies between completely unre-
stricted and fully restricted estimation. Specifically, Maasoumi proposes

the following estimator:

6 * = -
(3.68) i Migg g + (1 A)]'IOLS
where
1 if ¢ <C,
(3. 69) A= o
Ca 1/2 Co:
_a o if > C
¢ 1 ¢ %

\

The weight coefficient A depends on the outcome of a test of the over-
identifying restrictions based on the statistic (see, for example, Malin-
vaud (1930, p. 378)):

Y2 (1

-1
(3.70) ¢ = tr{W (HOLS-H )}

35LS oLs ~ M3sis

where W = T-lY'(I-PZ)Y is the usual consistent estimator of the reduced
form error covariance matrix and C_ in (3.69) is the (asymptotic)

critical value of the test corresponding to a chosen significance level

a .
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The combined estimator §* can be additionally motivated by appealing
to the principles of Stein-James estimation,20 mixed regression21 and |
minimum expected 105522 (MELO) methodologies,all of which lead to esti-
mators which can be expressed as combinations of restricted and unrestricted
estimators. To highlight the similarity of (3.68) with Stein-like pro-
cedures (and in particular the positive rule estimator proposed by Sclove
(1968, 1971)) we may write Ii* as

C
(3.71) n#* 2

" Pasis e = [P 5| Pous ~Mases)
where I( ) is an indicator function equal to unity when ¢ is in the
indicated range and equal to zero otherwise. This estimator differs
from the traditional Stein-like variety in that it takes the unrestricted
estimate HOLS as the point of attraction rather than simply the origin.
The finite sample and asymptotic properties of the combined esti-

mator JI* are investigated in Maasoumi (1978).23

It is shown that Ji*
has finite integral moments to the order T-n-K (as for the FIML reduced
form discussed earlier in this paragraph) and that the limiting distri-

bution of VT(I*-1) 4s close to that of YT(n ) for conventional

3SLS
choices of the significance level Cu . Thus, I* has close to asvmptotic

equivalence with H3SLS and has apparently superior small sample properties
in terms of outlier elimination. Practical implementation of the method

is as straightforward as 35LS. What remains problematic is the selection

of the critical level C_ . The statistic ¢ in (3.70) has a limiting

x; distribution where N 1is the total number of overidentifying restric-
tions. Even in moderately sized models, N may be quite large and strict

application of the test based on (3.70) at conventional significance

levels usually leads to a rejection of the restrictions. Thus, frequent
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occurence of I* = HOLS in practical situations might be expected and
this might raise the very genuine objection to the combined estimator
that it will frequently result in the extreme alternative of unrestricted
reduced form estimation by OLS. This criticism should be tempered by the
knowledge that the critical value Ca will often be a very poor {asymp-
totically based) indicator of the correct finite sample critical value
for a test with a chosen size of o . Monte Carlo results by Basmann
(1960), Byron (1974), Maddala (1974), Basmann, Richardson.and Rohr (1974),
Maasoumi (1977), Laitinen (1978), Meisner (1979), Hausman and McFadden
(1981), and Rhodes and Westbrook (1982) all indicate that many counventional
asymptotic tests of restrictions lead to an unduly high rate of rejection
(that is often severe) in small sample situations. This evidence suggests
that conventional asymptotic tests are often not sufficilently
reliable to justify the extreme alternative of completely unrestricted
reduced form estimation. It would therefore seem wise in the light of
this evidence to set the size of the test at a level much lower than usual
so that the implied (asymptotic) critical value Cu is larger and the
probability of a test rejection reduced. The problem of the most appro~
priate selection of COl for a given model, data set and limited knowledge
about the exact distribution of ¢ clearly warrants substantially more
attention than it has received. Mechanical correctors to the asymptotic
critical region (Cu’ ©) can be based on Edgeworth expansions along the
lines of paragraph 2.3 and this is an area of extensive current research
in mathematical statistics. However, little is known at present concerning
the adequacy of such correctiomns,.

In addition to the above work on reduced forms, attention has also

been given in the literature te the partially restricted reduced form
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(PRRF) suggested by Amemiya (1966) and Kakwani and Court (1972). The
PRRF coefficients can be obtained equation by equation from relationships

such as

1
|
|
(3 . 712 ) = B+ = """""""l-"'"
I
1
|

(deduced from (3.6) above) which relate the reduced form coefficients of
one (relevant) equation to those of other equations in terms of the iden-
tifying restrictions. The PRRF estimator of the coefficients in the first

reduced form equation (given by the left side of (3.72)) is then

I

1

] I B
(3.73) = (@) 2y lemmemeee 25LS

|

;0 Y2518

where (Z'Z)_lz'Y is the OLS estimator of the coefficients in the reduced

2
form equations for the variables Y2 appearing in the structural equa-

tion (3.3) and BZSLS s Yagrs are the usual structural 25LS estimators.
The small sample properties of the estimator (3.73) and associated fore-
casts have been studied by Knight (1977), Nagar and Sahay (1978), Swamy

and Mehta (1980), and Sahay (1981). Knight proved that this reduced form
estimator has finite moments of all orders. Nagar and Sahay found expres-
sions for the exact blas and mean squared error of forecasts based on (3.73)
in the two endogenous variable case; and Sahay (1981) has extended part of this
work to the case of an equation with three endogenous variables., Their con-

clusions suggest that the mean squared error of forecasts based on (3.73)

will be smaller than that based on unrestricted reduced form estimation
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by OLS unless Hell is large. ‘These authors work with the standardized
model studied in paragraph 3.3. Their conclusion accords with the intuitive
ideas discussed in the paragraph following (3.32) that when £ has large
elements 25LS estimators may display considerable dispersion in view of

the correlation between the included endogenous variables and the struc-

/2

tural error (which in the standardized model is measured by -8(14-8'8)—1

as in (3.32)).

3.10. Improved Estimation of Structural Coefficients

The idea of developing alternative estimators which may improve
on certain aspects of the small sample behavior of the more conventicnal
estimators has been applied to structural as well as reduced form coef-
ficient estimation. Here, many of the ideas are based on simple correc-
tions to the usual formulae that are suggested by an analysis of the higher
order terms {(frequently terms up to O(T—l) ) in series expansions of
the distributions and (pseudo-) moments of the conventional estimators.24
While these corrections are for the most part mechanical, there is an
accumulating body of evidence which supports the view that their use
will result din actual improvements in estimation as measured by the prob-
ability of concentration ahout true parameter values. In this respect,
Morimune (1981) has provided a useful review of the performance
characteristics of the maln improved estimators.

Cne of the first suggestions appears in Nagar (1959) who provided
(pseudo-) moment expansions for the first two moments of the k class
estimator and deduced values of k which removed the bias to O(T_l) and
minimized the determinant of the mean squared error moment matrix to O(T-z)

Zellner (1978) and Zellner and Park (1979) also developed an optimal member
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of the k class family in terms of the minimum expected loss (MELO) cri-
terion whereby the posterior expectation of a weighted quadratic loss
function is minimized with respect to the structural coefficients. Both
Nagar and Zellner-Park reported applications of their improved estimators
in the context of small macroeconometric models, Zellner and Park found
in their application that the (asymptotic) standard errors of the MELO
estimates were consistently smaller and often much smaller than their 25LS
counterparts.

Alternative estimators constructed by taking linear combinations
of 2SLS with OLS and 2SLS with LIML were proposed by Sawa (1973a, 1973b)
and Morimune (1978)25 respectively. The weights in these combined esti-
mators were selected so as to remove the bias (or pseudo-bias when this
is appropriate) in the estimator up to terms of 0(02) , Wwhere 02 is
a scalar multiple of the covariance matrix of the errors in the model.
That is, the improvements were based on the use of small-o asymptotic ex-
pansions (see footnote 2 of Section 2). Sawa (1973b) numerically computed
the first two exact moments of the combined 2SLS-OLS estimator but no clear
conclusion concerning its superiority over 2SLS emerged from these compu-
tations. Morimune (1978) examined the (asymptotic) mean squared error26
of the 2SLS-LIML combination and demonstrated its superiority over LIML
according to this criterion. In the context of systems estimation related
work has been done by Maasoumi (1980) on a ridge-like modification to the
3SLS estimator.

Fuller (1977) introduced modifications to the LIML and fixed k-
class estimators which ensure that the new estimators possess finite
moments. The modifications add weight to the denominators in the matrix

ratios that define the unmodified estimators. Their generic form, in
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the notation of paragraph 3.2 above, is as follows:
(3.74) By = [Ayp(1) ~ £1Ag, (1) = Apy () N ay, (1) - tlay; (1) -y (P)))

where
(3.75) gt =ax+b, a, b =const's.
and ) is the smallest latent root of the equation

(3.76) det[A(I) - A{A(D) —A(PZ)}] =0

as in (3.19 above. The estimator BM in (3.74) specializes: to LIML
for a=1, b=0; to the fixed k class for a =0, b = const. ;
to 2515 for a=0, b=1; and toOLS for a=0, b=20.

Fuller's proposal is to set a =1 and b = -a/(T-K) for some
fixed real number o > 0 . TFor these values of a and b in (3.75),
(compare (3.20) above). Fuller

B is a direct modification of B

M LIML
shnws that when estimators of the class (3;74) are restricted to have
the same bias to O(T-l) the modified LIML estimator dominates the
class according to mean squared error through to terms of O(T-Z) .

This result can be regarded in the light of the second order efficiency
of the maximum likelihood estimator, as has been mentioned by Rothenberg
(1980). Asymptotic expansions of the densities of estimators in the
class (3. 74) have been explicitly derived and compared by Kunitomo (1981)
who gives the same conclusion concerning the second order efficiency of
LIML. Additional small sample cohparisons of estimators in the class

(3.74) have been made by Morimume (1981) who suggests a variant of

Fuller's modified LIML that displays superior concentration when the
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degree of equation overidentification is large. The numerical computa-
tions in this paper report the empirical distribution functions of the
various estimators from Monte Carlo experiments with extensive replica-
tions. They indicate that the modifications to LIML thin out the tails

of the distribution as we would expect. They also confirm results re-
corded earlier (in paragraph 3.6) concerning the good locational properties
of the LIML estimator and evaluate the performance of some new asymptotic

approximations based on a large depree of equation overidentification.

3.11. Supplementary Results on Moments

In paragraphs 3.4-3.9 questions of existence of moments were dealt
with in our discussion of the respective exact distributions. In most
of these cases, direct formulae for the moments that exist can be extracted
using term by term integration of the series expressions for the p.d.f.'s.
Direct results concerning the existence of moments and formulae for them
have also appeared in the literature. The following result which was
first established in its complete form by Kinal (1980) encapsulates our

knowledge concerning the existence of moments for k-class estimators.

THEOREM 3.10.1 (Eristence of Moments for k-class estimatore, 0 <k <1 )
Integral momente of the estimator S(k) given by (3.17) for non-

stochastic k 1in the structural equation (3.3) exist up to order M uhere

T - Kl -n fer 0 <k <1

Ky, -~ n for k=1,
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Earlier work was done by Mariano (1973) who covered the 2SLS
(k = 1) case for even order moments and by Hatanaka (1973) who gave
sufficient conditions for existence. Sawa (1972) dealt with the two
endogenous variable case, established the above result and further demon-

strated that 8 has no integral moments when k > 1 . Sawa also gave

(k)
exact formulae for the first two moments when 0 < k < 1 and developed

asymptotic expansions for them in terms of the reciprocal of the concen-

tration parameter; viz., llu2 . Similar formulae were deérived by

Takeuchi (1970) for OLS, 2SLS and 1V estimators in the two endogenous

variable case.27 Ullah and Nagar (1974) gave analytic formulae for the

mean of the 25LS estimator and their results were used by Sahay (1979)

in finding an expression for the mean of the 2SLS structural equation

residuals, Extending'this work to the general single equation case (with

n and K, arbitrary), Hillier and Srivastava (1981) and Kinal (1982) have derived exact
formulae for the bias and mean squared error of the OLJ and 2SLS estimator

of a single endogenous variable coefficient. This generalizes the work

of Sawa (1972). Unfortwnately, the presence of zonal-type polynomials

in the final formulae prevents their use for numerical computations in

the general single equation case,at least with present day tabulations

and algorithmic machinery (see the discussion of this point in paragraph

3.5 above).

Before leaving this topic it may be worth mentioning that moments
are useful to the extent that they shed light on the distribution itself.
In particular, they provide summary information about the
locatiQn, dispersion and shape of a distribution. However, as many of
the cases that are analyzed in paragraphs 3.5-3.6 attest, an important

feature of many exact distributions in econometrics is their asymmetry.
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Obviously moment analyses of higher order than the second are necessary
to inform on such aspects of the shape of a distribution. In some cases,
of course, such higher order moments may not exist. When they do, the
formulae will often be as complicated as the series exrressions for the
p.d.f."'s themselves. Considerations of research strategy therefore in-
dicate that it may well be wise to direct most of our attention to the
distributions, their numerical evalvation and their approximation rather
than that of the moments.28

Finally, we remark that direct results concerning the moments of
estimated coefficients of the exogenous variables in a structural equation
can be deduced from the relevant formulae given in paragraph 3.3 above

and the results for the coefficients of the included endogenous variables.

Thus, in the case of the 1V estimator we have:

= 1z 1

G771 vy 11 - T

'
ZlY 8

271V

(assuming standardizing transformations are performed). Then

21X = Zijyl : ¥,] is statistically independent of BIV (under error
normality of course) and moments of YIV in (3.77) are defined to the
same order as those of BIV (see paragraph 3.5). Formulae for these
moments can also be deduced from those that apply for BIV and ZiX .

Similar considerations emnable us to treat the gemeral k class estimator

of the excgenous variable coefficients.
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3,12, Misspecification

Earlier results in this section have all been obtained on the pre-
sumption that the model has been correctly specified. When this is not
so, the sampling distributions undergo modifications contingent upon the
nature and extent of misspecification and earlier conclusions about esti-
mator and test statistic performance in small samples no longer mecessarily
apply. Fisher (1961, 1966, 1967) carried out an asymptotic analysis of
estimator ﬁerformance in the presence of specification error consisting
of incorrectly excluded variables in structural equations such as (3.3).
An exact small sample theory can also be developed for this problem using
the approach of paragraphs 3.5-3.6. We illustrate by considering OLS
and 2S8LS estimation of the (incorrectly specified) structural equation
(3.3) when the true equation includes additional exogenous variables and

is of the form:

We write the reduced form as

M1 T
(3.79)  [yy 1Yl =X=102y 12, 0 Z5lim,y  Mypptlvy Yyl
"s1 M52
1
=1z iz, 02 rfl: +v
5

where the coefficients satisfy
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(3. 80) "1 n128 =Yy s T4 HAZB " Yy » Tep - HSZB =0 .

We define Z, = [Z4 : 25] and then

2
(3.81) M= E[T‘”zx'zzl - 'r'”zn'z'z2 - T”Z{n," D ny)
The noncentrality parameter matrix is
(3.82) gM' = T(H5H4-+HBH5] =TD , say .
We may note that this reduces to
g’ g'
(8301 [Maalgp #M5,Msp) 18 111 = , |"22"2!8 1 1]

when vy, = 0 and the equation (3.3) is correctly specified.
As in paragraph 3.5, OLS and 25LS estimators of g in (3.78)

depend on the matrix

(3.84) A =T Ix'rFr'x
with FF' = ZZZE in the case of 2SLS and FF' =1 -~ T-lzlzi for OLS.
where F is a Txf matrix of rank f and F'F = TIf . Formulae for

the exact densities of BOLS and BZSLS in the general case are then
obtained by arguments which closely follow those of paragraph 3.5, as
shown by Maasoumi and Phillips (1982b). For the two endogenous variable

case we obtain (see Phillips (1982e) for derivations)
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- {det('rnlz)}k[%-l-]
(3.85) pdf(r) = “’('m/zim;/z f :
3[3, 7](1+1: ) 2) ok

h h
TV sk] c%a, +20d,, +d,,)
® ) 11 +27d15 44y,
. h FolEt ek, fonvo I
: , K 117tk 2 P2
[54'21(] hi(l+1x")
h

This expression gives the exact density under misspecification of BOLS
when f = T-»K1 and of BZSLS when f = K2 . The density reduces to

(3. 45) when the structural equation is correctly specified (Y& = 0) as

can be shown by rearrangement of the series.

Formula (3. 85) was derived by Rhodes and Westbrook (1981)29 and formed
the basis of the computational work reported in their paper. These numer-
ical computations provide valuable evidence concerning the practical
consequences of misspecification. Two principal results emerge from their
study: misspecification can substantially increase the concentration of
the distribution of both OLS and 2SLS; and in some cases it may also reduce
the bias (as well as the dispersion) of both estimators. These results
led Rhodes and Westbrook to conclude that, when a structural equation is
misspecified by incorrectly excluded variables, OLS may indeed be a superior
technique of estimation to 2SLS.

The same general conclusion was reached by Hale, Mariano and Ramage
(1980) who examined exact and approximate asymptotic expressions for the
bias and mean squared error (MSE) of k class estimators (for k
nonstochastic in the interval 0 <k <1 ). Their results, which also
refer to the two endogenous variable case, show that OLS is relatively

insensitive to specification error and that when errors of specification
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are a more sericus problem than simultaneity OLS is preferable to 25LS.
Moreover, the entire k class is dominated in terms of MSE under mis-
specification by either OLS or 25LS5.

Similar analysis of the effect of misspecification upon the LIM
estimator in the two endogenous variable case have been performed by
Mariano and Ramage (1978). Some extensions of this work, involving
asymptotic expansions and moment approximations to the general single
equation case are contained in Mariano and Ramage (1979). Exact formulae
for the p.d.f.'s of OLS and 2SLS estimators in the general single equa-~
tion case under misspecification are given by Maasoumi and Phillips

(1982b), 0> 31, 32, 33

4, A NEW APPROACH TO SMALL SAMPLE THEORY

4.1. Intuitive Ideas

This section cutlines the elements of a new approach to small sample
theory that is developed in Phillips (1982c). The idea that underlies
the method in this article is very simple. It is motivated by the obser-
vation that, in spite of the complex analytic forms of many of the exact
p.d.f.'s presently known for econometric statistics (such as those in
Section 3), when we do turn around and obtain numerical tabulations or
graphical plots of the densities we typically end up with well behaved,
continuous functions that tend to zero at the limits of their domain of
definition. The form of these p.d.f.'s strongly suggests that we should
be able to get excellent approximations to them in the class of much
simpler functions and certainly without the use of multiple infinite series.

We need to deal with approximating functions (or approximants as they are
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often called) that are capable of capturing the stylized form of a density:
in particular, we want the approximant to be able to go straight for long
periods in a direction almost parallel to the horizoantal axis and yet
still be able to bend, quite sharply if necessary, to trace out the body
of the distribution wherever it is located. Ome class of functions that
seem particularly promising in this respect, as well as being simple

in form, are rational.functions. Even low degree rational functions can
go straight for long périods and then bend quite sharply. 1In this, of
course, they are very different from low degree polynomials whose graphs
typlcally display a distinct roly poly character.

The possibility of finding rational functions which nrovide good
global approximations to a general class of p.d.f.'s is considered in
Phillips (1982c). The technique developed there is based on the idea
of working from local Taylor series approximations at certain points of
the distribution towards a global approximation which performs well in
the whole domain over which the distribution is defined and yet retains
the good performance of the Taylor series approximations in the immediate
locality of the points of expansion. This is, in part, achieved by the
use of multiple-point Padé approximants, These Padé approximants1 are
rational functions constructed so as to preserve the local Taylor series
behavior of the true p.d.f. (or d.f.) to as high an order as possible.

The points selected for local expansion will often be simply the origin

(in the central body of the distribution) and the tails. These local
expansions can, in fact, be obtained from information about the characteristic
function of the distribution so that direct knowledge of the local behavior
of the true p.d.f. is‘not necessary for the successful application of

the technique. Local information may also be based on estimates obtained
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from the empirical d.f. arising in Monte Carlo simulations. Supplementary
information about the distribution such as (i) its analytic form in lead-
ing cases (compare paragraph 3.4), (ii) knowledge of its moments where
these exist, (iii) leading terms in its Edgeworth expansion (see paragraph
2.3) or even (iv) the crude asymptotic distribution may all be utilized

in the construction of the approximant. The final step in the method is
to modify the Padé approximant so that it does display appropriate global
behavior. This may involve the removal of unwanted zeroes and poles which
occur in the bridging region between the points of local expansion and

possible modifications to ensure non negativity in the approximant.

4.2, Raticnal Approximation

Phillips (1982c) considers a general class of continuous marginal

densities and defines the following family of potential rational function

approximants:
m
Pm(r) 34 + ar +...+arx
(4.1) R n(r) = s(r)a-?;7'= s(T) =
? n bo + blr + ...+ bnr

where m and n are even integers with m < n and s(r) is a real
continuous function satisfying s(r) >0 and s(r) » 0 as r + = ,

The coefficient function s(r) in (4.1) is a vehicle by which addi-
tional information about the true density can be readily embodied in the
approximant. This can be soft quantitative information, for example of
the type that pdf{r) > 0 and pdf(r) + 0 as r » #= (already explicit
in s{r) ); or hard quantitative information, for example of the type
(i) that pdf(r) has moments up to a certaip order or {i1i) that pdf(r)

takes an especially simple form in an important and relevant leading case
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or (iii)that pdf(r) has a known Edgeworth series expansion up to a cer-
tain order (suitably modified to ensure that it is everywhere positive
and still tends to zero at infinity).

Practical considerations frequently suggest a specialization of
{(4.1) to the family of rational fractions in which numerator and denomi-
nator polynomials have the same degrees (i.e. m =n ).2 In addition,

a normalization condition is imposed on the coefficients of the polvnomials
in (4.1} to eliminate the redundancyv that results from the multiplication
of Pn(r) and Qn(r) by an arbitrary constant. In density function
approximation this c¢an be simply achieved by setting b0 =1 , which also
ensures that the rational approximant is well behaved as ¥ passes through
the origin. In distribution function approximation it is convenient to

set a = bn =1 and then, after an appropriate choice of s(r) as a
primitive distribution, the resulting approximant Rnn(r) embodies
desirable tail behavior as r =+ i= .

A theory of goodness of approximation to continuous p.d.f.'s based
on rational approximants of the type (4.1) is developed in Phillips (1982c,
1982d). This theory uses the uniform norm
4.2) I|pdf(r)-—Rnn(r)|] = sup Ipdf(r)-—Rnn(r)I

e (—o, )
to measure the error in the approximation. Under this error norm it is
shown that best uniform approximants within the family (4.1) exist and
are unique for a general class of continuous p.d.f.'s. Setting m=n
; b

and defining ' =.{a0, crey @ . ...,bn} in (4.1), this means that

1

there exists a vector Y* and a corresponding rational fraction R (1)

n

for which
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(4.3) ||pdf (x) - R' (r) | = ir;f pdf(r) - R_(0)l
given some continuous density pdf(r) ; and, moreover, the rational frac-
tion R;n(r) with the property (4.3) is unique. As n =+ = R;n(r)
converges uniformly to pdf(r) . Hence, arbitrarily good approximation
is possible within this family of rational functioms.

Practical implementation of rational approximation requires the
degree of Rnn(r)' to be prescribed, the coefficient function s(r) to
be selected and the parameters of the polynomials to be specified. The
problem is one of constructive functional approximation to a given dis-
tribution within the family of approximants (4.1). Operational guidelines
for this constructive process are laid out in Phillips (1982c) and the
final solution in any particular case will rely intimately on the infor-
mation that is available about the true distribution. Typically, we will
want the approximant to embody as much analytic and reliable experimental
information about the distribution as possible. This will directly affect
the choice of s(r)} and the prescribed degree of Rnn(r) . Leading case
analyses such as those in paragraph 3.4 will often lead to a suitable
choice of s(r) . Knowledge of the local behavior of the distribution
in the body and in the tails can be used to determine the polynomial coef-
ficients in Rnn(r) which will then magnify or attenuate as appropriate
the leading case distribution. Local information about the distribution
may take the form of Taylor expansions at certain points or estimates of
the function values obtained from Monte Carlo simulations. In cases where
numerical or Monte Carlo integration is possible, a selected set of points
within the main body and in the tails of the distribution can be used

for these evaluations, which can then assist in determining the parameters
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of Rnn(r) . This has the advantage of keeping the number of numerical
integrations within economic limits and at the same time marrying the in-
formation from these integrations with other useful knowledge about the
distribution. Constructive functionmal approximants of this type will have
Bayesian applications in the problem of reducing multidimensional posterior
distributlons to manageable and readily interpreted marginal posteriors,
They also provide a convenilent avenue for combining Monte Carlo experimen-
tal evidence and analytic knowledge in a simple useable form, I
The procedure ocutlined above was succesgsfully applied in the con-
text of approximating the exact density (3.45) of the 25LS estimator by
the rational family an(r) in (4.8) with n=m=4 and s(r) set equal
to the leading density given in (3.38). The results obtained were very
encouraging even for extremely small values of the concentration parameter
uz > when other approximations such as those based on Edgeworth and saddle-
point methods produced very poor results. In particular, the modified
two-point Padé approximant (using information at only the origin and in-
finity) yielded twe decimal place accuracy to the exact distribution over
the whole real axis and an unmodified seven-point Padé approximant gave
three decimal place accuracy with a maximum error of 0.0008., Further
development of these approximants seems likely on the basis of these results

te produce a method that is flexible and general enough to be widely used

and sufficiently accurate to be relied upon in empirical work.

4.3. Curve Fitting or Constructive Functional Approximation?

The above discussion and reported application present a favorable
picture of the strengths and potential of this new approach. An important

contributory factor in this optimistic view is the flexible mathematical
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apparatus that underlies constructive functional approximation in the class
defined by (4.1). As much analytic knowledge as is available about a dis-
tribution can be embodied in Rmn(r) through the dual vehicles of the
coefficient function s(r) and the rational coefficients
{ao, veera, by, ...,bn} . Thus, Edgeworth expansions and saddlepoint
approximations are just subcases of (4.1). TFor if these expansions are
known to yield good approximants in certain problems they themselves may
be used to construct s(r) . Simple modifications to the Edgeworth expan-
sion will ensure that s(r) is everywhere positive, continuous and still
tends to zero as |r| -+ « . Additional information about the distribution
can then be incorporated in the rational coefficients and in adjustments
to s(r) that ensure the same tail behavior as the true distribution,
where this is known by separate analytic investigation. Other choices of
s(r) that stem directly from analytic knowledge of the true distribution
are also possible, as the example cited demonstrates. Moreover, experimental
data about the distribution can be utilized in the choice of the rational
coefficients by least squares or generalized least squares fitting to the
empirical distribution in place of (or in addition to) exact solutions.
Thus, constructive approximants belonging to the family (4.1) can success-
fully embrace a wide range of different types of analytic and experimental
information in a functional form that is useful for both descriptive and
inferential purposes.

In a more limited mode of thinking, rational approximation
per se is an exercise in interpolation or curve fitting. Of course,
rational approximants do provide an excellent medium for such exercises,
as the extensive examples in Hastings (1955) amply demonstrate, and they
are already a standard technique in computer function algorithms because

of their accuracy and economy (see Hart (1968)). But such an interpreta-
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tion in the present context would be myopic, ignoring as it does the ex-
tent to which the family (4.1) can build on the strengths of alternative,
less flexible approximation methods and simultaneously blend analytic and
experimental information from many diverse sources, It is this construc-
tive mode of analysis that underlies the new approach and distinguishes
it from more mechanical methods of asymptotic analvsis and exercises

in curve fitting.

5. CONCLUDING REMARKS

This review began with some remarks taken from the first edition
of R. A, Fisher's (1925) influential manual for practising statisticians.
Fisher's keen awareness of the limitations of asymptotic theory, his empha-
sis on statistical tools which are appropriate in the analysis of small
samples of data and his own research on the exact sampling distributions
of variance ratios and correlation coefficients contributed in significant
ways to the growth of what is now an extensive literature in mathematical
statistics on small sample distribution theory. The challenge of develop-
ing such a theory in models that are of interest to econometricians has
produced the corpus of knowledge that forms the subject matter of this re-
view, . Questions of the relevance of this research‘and its operational
payoff in terms of empirical practice are as much a topic of debate in eco-
nonetrics as thev were (and still are to a lesser depree) in mathematical
statistics,

In contrast to small sample theory, the power of asymptotic theory
lies unmistakedly in the generality with which its conclusions hold, extend-
ing over a wide domain of models and assumptions that now allow for very

general forms of dependent random processes, non-linear functional forms
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and model misspecifications. However, the generality of this theory and
the apparent robustness of many of its conclusions should not necessarily
be presumed to be strengths. For the process by which asymptotic machinery
works inevitably washes out sensitivities that are present and important

in finite samples. Thus, generality and robustness in asymptotic theorv
are achieved at the price of insensitivity with respect to such ingredients

as the distributional characteristics of a model's random elements and the

values of many of its parameters. These ingredients do influence finite
sample behaviour,often in vital ways (as the numerical work reported in
paragraphs 3.5 - 3.6 substantiates), But their effects fade out in very
large samples and are totally lost in an asymptotic theory.

There is a second major weakness in the operation of traditional
asvmptotic machinery. 1In econometrics, models are most frequently inter-
preted as approximate data generating mechanisms that are useful to the ex-
tent that they assist in the explanation of observed data, in making predic-
tions and in other relevant empirical goals. In such exercises, the fact
that an investigator can marshall only a finite sample of data is itself
a critical factor. For, in the absence of experimentation, the design of
a model for empirical use is always tailored by the data that is available
and the extent to which the latter may limit the goals of the investigation.
As the size and coverage of the sample increase, there is a natural tendency
to model an always more complex phenomena in increasing degrees of sophis-—
tication. This process of sophistication arises from the knowledge that
a model may be an adequate descriptive and inferential tool over a certain
span of data but may be far less adequate as the data evolves further and
as the horizons of the investigation widen. When a model grows in com~

plexity with increases in the availability of data, traditional asymptotic
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methods of statistical analysis inevitably become self defeating. To ex-~
tend Fisher's own metaphor, by the time the cannon has rumbled into place,
and been loaded and sighted to fire, the sparrow will have flown away.l
The central issue is,and will remain,how relevant asymptotic reéults
are in the context of a given model, data set and plausible hypotheses con-

cerning the stochastic environment. Refinements of asymptotic theory such

as those in paragraphs 2.3 can shed light on this issue burt are f£ar
from conclusive. The ultimate criterion of evaluation will inevitably be
the relevant sampling distributions themselves. The recent advancements

we have reviewed in the mathematical task of representing the analytic form
of these distributions already play an important role in the evaluation

of asymptotic thecry as the results of Section 3 demonstrate. Moreover,
these exact mathematical results and the construction of reliable functional

approximants to them, such as those given in Section 4, suggest an alternative

basis for estimator choice and a means by which the accuracy of inferen-
tial procedures may be improved. It is the challenge of future researchers
to extend these results to more sophisticated models and to transmit the
machinery in an operational form to the practitioner by the development of

appropriate computer software,
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FOOTNOTES

SECTION 1

The nature of local alternative hypotheses is discussed by Engle (1982)

in this Handbook.

See, for example, Fisher (1921, 1922, 1924, 1928a, 1928b, 1935) and

the treatment of exact sampling distributions by Cramér (1946).

The discussions of the review article by Basmann (1974) in Intriligator
and Kendrick (1974) illustrate this impression in a striking way. The
achievements in the field are applauded but the reader is left with

a skeptical view of the usefulness of the results.

SECTION 2

See, for example, Appendix B of Sargan (1976a) and Phillips (1980a).

These issues will be taken up further in paragraph 3.5.

This process involves a stochastic approximation to the statistic BT

by means of polynomials in the elements of m which are grouped into

-1/2

terms of like powers of T The approximating statistic then yields

the "moment" approximations for GT . Similar "moment' approximations
are obtained by developing alternative stochastic approximations in
terms of another parameter. Kadane (1971) derived such alternmative
approximations by using an expansion of BT {(in the case of the k
class estimator) in terms of increasing powers of ¢ , where 02 is
a scalar multiple of the covariance matrix of the errors in the model
and the asymptotics apply as o + 0 . Anderson (1977) has recently

discussed the relationship between these alternative parameter sequences

in the context of the SEM.
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See, for example, Phillips (1978), Holly and Phillips (1979), Daniels

(1980), Durbin (1980a, 1980b) and Barndorff-Nielson and Cox (1979).

SECTION 3

As argued recently by Mariano (1982), these reductions also provide
important guidelines for the design of Monte Carlo experiments (at
least in the context of SEM's) by indicating the canonical parameter
space wvhich is instrumental in influencing the shape of the relevant
small sample distributions and from which a representative sample

of points can be taken to help reduce the usual specificity of simu-

lation findings.
See also the useful discussion and graphical plots in Anderson (1982).
This density is given, for example, in Mariano and McDonald (1979},

This parameter is so0 called because as 'uz + = the commonly used

single equation estimators all tend in probability to the true param-

eter. Thus, the distributions of these estimators all "concentrate"
2

as yu - o , even if the sample size T remains fixed. See Basmann

(1963) and Mariano (1975) for further discussion of this point.

See Basmann (1963) and Kabe (1963, 1964).

Some other specialized SEM models in which the distributions of commonly
used estimators depend only on central Wishart matrices are discussed

by Wegge (1971).

An example of this type of analysis for structural variance estimators

is given in paragraph 3.7.
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In what follows it will often not be essential that both 8 = 0 and
My = 0 for the development of the "leading case" theory. What is
essential is that H22 = 0, so that the structural coefficients
are, in fact,unidentifiable. Note that the reduced form equations

take the form

Yy S 24"y vy

when sz = 0 . The first of these equations corresponds to (3.36)

in the text when g = 0 .

An alternative approach to the extraction of the exact density of

3 from (3.42) is given in Appendix B of Phillips (198Ga) and directly

IV
involves the algebra of expanding the zonal polynomial of a sum of two

matrices into a sum of more basic polynomials in the constituent
matrices. This algebra was developed by Davis (1980a and b) and has
recently been extended by Chikuse (1981) to matrix multinomial expan-

sions of zonal polynomials of the sum of several matrices.

This is a generic term that I am using to denote Zonal polynomials and
more general polvnomials of this class but which may involve several

argument matrices, as in the work of Davis (1980a, 1980b) and Chikuse (1981).

See Mariano and McDonald (1979) for a small correction.

The numbers in these tables have been selected from the extensive tabu-
lations in Anderson and Sawa (1977, 1979) which are recommended to
the reader for careful study. My thanks go to Professors Anderson

and Sawa {or their permission to quote from their tables.

We note that since BLIMLK depends only on the noncentral Wishart

matrix W with degrees of freedom K2 , the distribution of BLIMLK
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depends on the sample size T only through the concentration parameter
2

-, wunlike the distribution of BLIML .

14. In the case of estimation by IV (with instrument matrix H ) it will
sometimes be more appropriate to consider the following quadratic form
instead of (3.49)

14 I -
(3.49)1% Q(B) = BIX'(P, le)xsa BIA(PB, .

15. As pointed out by Anderson and Rubin (1949, p. 61) their method was

independently suggested by Bartlett (1948).

16. See Anderson and Sawa (1979), Holly and Phillips (1979), Richardson
and Rohr (1981)., An attempt to tackle this problem by asymptotic
expansions in which the degree of overidentification grows large is

given by Morimune (1981).

17. Recent work in the same framework has been published by Maekawa (1980)

for t ratio type test statistics,

18. Dhrymes (1973) showed that this ranking in terms of asymptotic efficiency
does not hold for RRF estimators such as 2SLS which are neot fully

efficient.

19.More recent work by Maasoumi (1981) dealing with generic reduced forms
that allow for reduced form estimation in the light of intrinsically
uncertain structural information is also pertinent to this discussion.
Nagar pseudo-moment expansions for 35LS reduced form coefficients

have also been developed in Maasoumi (1977).

20.See, for example, James and Stein (1961), Zellner and Vandaele (1975)

and Judge and Bock (1982) in this Handbook,
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25.

26,

27.

28,
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See Goldberger (1973).
See Zellner (1978) and Zellner and Park (1979).

The finite sample properties of Srein-like improved estimators in the

context of the linear regression model have been studied by Ullah

(1974, 1980).

. A similar analysis of higher order terms (in Edgeworth expansions)

of the distributions of conventional test statistics can be performed.
Much work has already been done on this topic in mathematical statis-
tics leading to some general results on the higher order efficiency
of tests based on maximum likelihood estimators. See, for example,

Pfanzagl and Wefelmeyer (1978, 1979).
See also Morimune and Kunitomo (1980).

That is, the mean squared error of the asymptotic expansion of the

distribution up to a certain order.

As reported by Maasoumi and Phillips (1982a) there appear to be errors
in his expression arising out of his formulae (2-7) and (2-8) which

appear to confuse even and odd order moments.

The issues raised in this paragraph have an-obvious bearing on Monte
Carlo experimentation, where it is customary to work with summary
measures defined in terms of low order moments. Caution in the use
of such methods has been advised by several authors, for example,
Basmann (1961) and Maasoumi-Phillips (1982a). Problems of accurately
estimating high order moments by Monte Carlo replications (and the
demands this may place on the experimental design) are apposite here

but seem to have been rarely discussed in the literature in this field.
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30.

3,

32,

33,
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Their stated result in Theorem 2.1 contains a small error in that

|Tn/4|k in their formula (2.11) should be replaced by ITn/2|k .

In addition, Knight (1981) has shown how, in the two endogenous variable
case, expressions for the exact moments of k c¢lass estimators under
misspecification can be extracted from the corresponding expressions

that apply in correctly specified situations,

Related work on the effect of multicollinearity on the shape of the
distributions of OLS and 2SLS estimators has been done by Mariano,

McDonald and Tishler (1979).

Hale (1979) has also studied the effects of misspecification on the

two stage Aitken estimator (2SAE) and OLS estimator in a two equation
seemingly unrelated regression model. Hale's main conclusion is that
the distribution of 2S5AL appears to be more affected by misspecifica-

tion than that of OLS.

Analysis of the effects of distributional shape are also possible.
Knight (1981) has, in particular, found expressions for the first two
exact moments of the k class estimator in the two endogenous variable
case when the reduced form errors follow a non-normal distribution of
the Edgeworth type. Phillips (19B0b) indicated generalizations of
existing results for asymptotic expansions of coefficient estimators
and test statistics under non-normal errors of this type. Explicit
formulae for such asymptotic expansions have in fact been derived by
Satchell (1961) for the distribution of the serial correlation

coefficient.
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SECTION 4

Padé approximants have a long tradition in mathematics and have recently
been successfully applied to a large number of problems in applied
mathematics and mathematical physics. References to this literature

may be found in Phillips (1982¢).

This is discussed at some length in Phillips (1982¢, 1982d).

SECTION 5

Some further reflections on the problems inherent in asymptotic theory

are given in Phillips (1982b)
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