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PAYOFFS IN NON-ATOMIC ECONOMIES: AN AXTOMATIC APPROACH*

by

Pradeep Dubey and Abraham Neyman

1. Introduction

It has been a much-remarked fact that different solution concepts
become equivalent in the setting of "perfectly competitive" economies
(i.e., to use the modern idiom [2], economies in which the agents form
a non-atomic continuum). The conjecture that the core and competitive
(Walras) allocations coincide was broached as far back as 1881 by Edge-
worth [10]. His insight has been vindicated in increasing generality
in a spate of articlesl([19], {91, (21, [13], {121, [7], [8]1, [1]) over
the last two decades. More recently, it was shown by Aumann that--with
a smoothness assumption on the preferences--the "value allocations"2 also
coincide with the above two.

If we restrict ourselves to the case of smooth, transferable

utilities then the equivalence phenomenon turns out to be even more

striking: not only do these solutions coincide but they are also unique,

*part of this work was done in the Spring of 1980 when the authors were
at the Institute for Advanced Study, Hebrew University, Jerusalem. It
was further supported by NSF Grants No. S0C77-27435 and MCS79-06634, as
well as 0.N.R. Grant No. N000l14-77-C-0517 issued under Contract Authority
KR 047-006,

lhis 1ist is only meant to be indicative, and by no means exhaustive.

2Hh:lch are based on the Shapley value ([16], [17]), a pame-theoretic con-
cept quite different from the core.



i.e., consist of a single payoff. Our aim here is to give another view
of this "coincident payoff" by putting it on an axiomatic foundation.

As an upshot of our approach we get a "meta-equivalence' theorem, by way
of a categorization : any solution coincides with this payoff 1f, and
only 1f, it satisfies our axioms.

The transferable-utility assumption is undoubtedly restrictive.
But we are encouraged by its good track record of being the precursor
of the general analysis [e.g. [6] before [31); [16] before [17]).

And we hope to extend our approach to the non-transferable case, though
we have not yet made significant progress on 1it.

Denote by M the class of non-atomic economies with transferable
and differentiable utilities. Any such economy can also be viewed as a
productive economy with a single consumable output. (See the discussion
in Chapter 6 of [6].) We will, in fact, adopt the production interpreta-
tion for most of our discussion. But by thinking of the output as
"utiles" everything we say can be translated into the exchange version
as well.

The problem of determining payoffs (final distributions of the
output) in these economies has been approached from many sides. Let us
briefly recount some of them. First there is the classical notion of a
competitive payoff which depends on prices that clear all markets, i.e.,
equate supply and demand. Equally well-known is the concept of the core.
It is defined by the condition that no coalition of agents in the economy
can, on its own, improve upon what it gets. (See Chapter 6 of [ 6 ] for
a historical survey and detailed discussion of these.} Other solutions
from Game Theory have also been applied to the economic model. The bar-

gaining set [ 4 ], which contains the core, 1s based upon a weaker notion



of stability: each "objection" can be ruled out by a "counterobjection."
(In this terminology there can be, a fortiori, no objection te any payoff
in the core.) Then there is the concept of the nucleolus [15]. It is
derived from a criterion of equity (maximize the welfare of the worst-
off coslition) and yields a point in the core. Finally, we have the
Shapley value [16], which has been the focuc of active, recent research
(and was the starting point of this inquiry as well). It is an operator
that assigns to each player of a game a number that purports to represent
what he would be willing to pay in order to participate; and is uniquely
determined by certain plausible conditions for all finite games [16}, and
a large class of non~atomic games (pNA) which include the economies in M
[ 6]. The value thus obtained can be also interprcted from a complementary
standpoint: it assigns to a player the average of his marginal contribu-
tions to coalitions he may join (in a model of random ordering of the players).
For any economy in M , all these solutions coincide and consist
of a single payoff (Ch. 6 of [6 ], and [11]). We would like to explicate
certain underlying principles which lead to this distinguished pavoff.
To set the stage for this, we take a map from economies to sets of payoffs,
and look for a minimal list of plausible axioms that will uniquely char-
acterize the map. Four axioms are presented which accomplish the job.
The map they lead to is that of the distinguished payoff above.
This may be viewed as a meta-equivalence theorem. For instance
the equivalence of core and competitive payoffs follows from our result
by simply checking that the map which takes each m in M to its core
(competitive) payoffs satisfies our axioms. That the value also coincides
with them is immediate because it, in fact, satisfies even stronger

axioms ([ 6], Ch- 1), 1In general: if any solution is a candidate for



equivalence, it is both necessary and sufficient that is satisfies our
axioms.

The axioms will be spelled out precisely in Section 3, but let us
present them at an intuitive level now. Denote the space of agents by
[T,C,u] . Here T 1is the set of agents, ( the sigma-algebra of coali-
tions, and u a non-atomic population measure on [T,C] . An economy
is a pair of measurable functions (g,y) where g : T > R, specifies

+

the initial endowment of the n resource commodities, and

B T‘XR: -+ R+ the production--alternatively, utility--functions. M
is the set of all pairs (%’H) s, subject to certain conditions on 2
and u (see Section 2). For any m in M we can define an associated

characteristic function (or game) v_: C >R

- , » which assigns to each

coalition the maximum output that it could achieve by a reallocation of

the resources of its own members, i.e.,

v (S) = max{f p(r, g()due) : [ g()dw = [ a(t)dy, g:T > &) .
5 8 5

Payoffs in m €M can be thought of as integrable functions from
T to R_, and in turn can be identified with nonnegative countably addi-
tive measures on (T,() which are absolutely continuous with respect to
p . But let us make only the assumption that they lie in FA , the col-
lection of functions from C to R which are finitely additive

and bounded. Let P(FA) be the set of all subsets of FA . Then any

assignment of payoffs to economies may be represented by & map:

$ : M+ P(FA)

We will impose four axioms on ¢ : "continuity,” "inessential economy,"”

“anonymity," 'separability." Our main result is that there is one, and



only one, map which satisfies these axioms: it maps m into the (unique)
competitive payoff of m .

The continuity axioms says that if the distance between two economies
is small, then so is that between their sets of payoffs. It is, of course,
intimately bound up with the notion of distance. The one we employ declares
the distance between two economies to be zero 1f they yield the same char-

acteristic function. Thus the pavoffs depend on the characteristic function

alone, i.e., they depend on the data (e,a) of the economy only insofar

as it shows up in the net production of the coalitions (if VT Voo

¢(m) = ¢(m') ). Modulo this, however, our continuity requirement is weak.

We choose a "large" norm on the characteristic functions (the bounded var-

iation norm) and a "small" one on P(FA) (the Hausdorff distance in the

bounded variation norm, which is equivalent in FA to the maximum norm)}.
The inessential economy axiom has to do with economies in which agents

have no motivation to collude in order to increase the output. Indeed

suppose that m in M 1s such that each coalition § € C achieves its

maximum vm(s) uniquely by sticking to its initial allocation of resources.
Then one would expect that no exchange, either of the inputs or the out-
put, will occur. And this 1s just what the axiom says.

The anonymity axiom asserts that the labels of the agents do not matter.
If we were to relabel them then this would only have the effect of relabelling
their payoffs accordingly.

For the separability axiom, we must describe an economy made up of
two separate, non-interacting pieces. Take m' and m" in M . Let
us construct the economy m by, as it were, "collating" m' and m" .
Each agent in m possesses the same initial resources that he had in

m' and in a" ; also he has access to both his production functions from



m' and m" . However, suppose that the input commodities of m' and

are completely disjoint: those in m' cannot be used for production
in m" , and vice versa (though the two economies produce, of course,

the same output). Now consider any coalition § that forms in m . Each
agent in S can send his black (white) hatted representative to m' (m") .

If these two types of representatives separately maximize the output in

m' and m'" , then the sum of what they get back is precisely what S

can obtain in m, 1i.e., vm(S) = vm.(S) + vm"(s) for all S € . Thus
m , in essence, consists of operating in m' and in m" independently
of each other. We require that in this case if we put together a payoff
in m' with one in m" , the outcome should be feasible in m. However,
we do not exclude the possibility that other payoffs may also be obtained
in m . In symbols: ¢(n') + ¢(n'") & ¢(m)

Our axiomatic approach is akin to that of [6] and invites immediate
comparison., We begin with a point-to-set map (from M to FA). That

¢(m) 1s a non-empty one-element set of FA is a deduction, not a postulate,

in our case. Also note that we do not require that ¢(m) consist of
efficient payoffs--this, too, is deduced. Clearly separability is weaker
than the linearity required in [6]. (For instance, the core satisfies
separability for finite economies, but not linearity.) Continuity is closely
related to the positivity axioms of [6] (Section 4 of {6} and Remark 3b).
Finally, we emphasize that the axioms are invoked on the set of games

that arise from M alone. This set is much smaller than the general

space pNA of [6]. (Its complement in pNA 1is open and dense.} Thus

the uniqueness of ¢ does become an issue. (Existence on the other hand

is no problem: simply restrict the value on pNA to our domain.) The



very question we set out with--what are payoffs in non-atomic economies?
--makes it desirable that we exclude any reference to games that do not
arise from M . Thus we stay within M throughout and give a self-contained
analysis of it. Each axiom is cast in an economic framework and can be
interpreted therein. It is fortunate that even though the scope of the
axioms is diminished by this restriction of the domain, they nevertheless

are sufficiently far-reaching to determine a unique map.

2. Non-Atomic Economies with Transferable, Differentiable Utilities

Let us recall more precisely the economic model presented in Chapter 6 of [ 6 ].
We begin with a measure space [T,C,u) . T is the set of agents,
C the o-aslgebra of coalitions, and 1 the population measure. [T,C]
is assumed to be isomorphic to the closed unit interval [0,1] with its
Borel sets. u 1is a finite, o-additive, non-negative and non-atomic measure,

and we assume (w.l.p.g.) that p(T) =1 .

Each agent t € T 1is characterized by an initial endowment of resources,

t n

€ Ri , and a production (utility) function Ht : R: + R . Here R+

is the non-negative orthant of the Euclidean space R » and n 1is the

number of (resource) commodities. Denoting the jth component of x € R"

by xj ’ E; 1s the quantity of the jth commodity held by agent t

and Ht(x) the amount of output he can produce using x . Thus the economy

consists of the pair of functions (e,g) , where g:T~ Ri » BT x Ri + R

{note the identifications %(t) = et : g(t,x) = gt(x) ).
To spell out the conditions on (g,g) » We need some additional nota-

tion. For x, y in R: y Bay x=y (x>y, x> y) when xj = yj
(xj‘z yj , xj > yj) for 1<j<n; x>y when x>y, but not
n

x=y . Put |{|x|| = max{lle :1<3 <n}. Also note that R

+ can be



regarded as a measurable space with its Borel sets. We will require that

(%’k) satisfy:

(2.1) g T + R:\_ is integrable,

(2.2) R T x R: + R 1is measurable where T x R: is equipped with

the product ¢-field of T and Ri .

(2.3) %(x) = o(”x“) , as Hx“ + o , integrably in t ; 1i.e.,
for every e > 0 there is an integrable function n : T~ R

such that |_;¢t(x)| < e||x|| whenever ||x]|| > n(t)

*
For almost all te&T:

(2.4) gt >> 0 (where, without confusion, O also stands for the origin
n
of R+ )
(2.5) Rt is continuous and increasing (i.e., x > y implies

)et(x) > gt(y) )

2.6) (@) =0
Bgt
357. exists and is continuous at each

3

(2.7) The partial derivative

point where x

3 >0 .

The collection of all pairs (g,g) which satisfy (2.1)-{2.7) will

be called M, 1i.e., we keep the space |[T,C,u] of agents fixed but vary

their characteristics (a,g) ; 1in particular, the number n of resource

commodities can be any integer 1, 2, 3, ... . As was sald already in

*i.e., for all except perhaps a p-null set of agents.



the introduction, to each m = (%’H) € M, we associate a game, or char-

acteristic function, v i C +R by:
(2.8) vm(S) = max{fskt(Et)du(t) g T > R:, k(S) = Q(S)} .

n

{For an integrable function y:T~ R+ . x(S) abbreviates stﬁu )

That this max is attained 1s essentially the main theorem in [5].

FA is the collection of set functions from C te R that are
finitely additive and bounded, and P(FA) is the set of all
subsets of FA . We are going to characterize amap ¢ : M+ F(FA) via
axioms. It will turn out that, for any m €M, ¢{m) 1is the set of com-
petitive payoffs in m . To remind the reader: a pair (p,%) [where
¥ T~ R" is an integrable function with {(T) = Q(T) and p a price

+

vector in R: ] 1is called a transferable utility competitive equilibrium

(t.u.c.e.) of the economy (Q,;{') if, for almost all t€T,

gt(y) - p'(y-gt) S gt(;st) - p-(;\gt-gt)

for any y in R: ;3 the corresponding competitive payoff is the measure
Vp x defined by

A

t, t t t
vp%(S) = fshe G -p(x -a)lds
for S €C . If we denote by y¢(m) the set of competitive payoffs in
m , then under the assumptions (2.1)-(2.7), ¢{(m) 1is a singleton for

any m €M . (See Proposition 32.3 in {6].)
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3. Statement of the Theorem

In this section we prepare for and state the four axioms, as well as

our main result,.
A get~function v 1s a map from C to R such that v(@) =0 .
It is called monotonic if TC S implies v(S) > v(T) . The difference
between two monotonic set functions is said to be of bounded variation.
Let BV be the real vector space of all set-functions of bounded variation.

For v € BV, define the norm ||v|[ of v by:
vl = influ(m) +w(D)

where the infinum ranges over all monotonic functions u and w such
that v=u - w .

Each characteristic function Ve of a market m in M is monotonic
and thus is in BV. So we can introduce the distance d on M by
d(m, m') = |lv -v_ .|| . Also observe that FA C BV. For A

and B in P(FA) , let h(A,B) be the Hausdorff distance between A

and B, i.e., h(A,B) = infle €R, : ACB® and B C A"}, where A°
is the set {a' €FA : [Ja-a'|| <€ for some o €A} etc; and inf @ = =,

We are ready for

AXIOM I (CONTINUITY). There is a constant K such that h(¢(m),¢(m'N<Kd(m',m).

The next axiom requires no preparatiom.

AXTOM 11 (INESSENTIAL ECONOMY). Suppose m = (E,g) in M 1s such that,
for each non-null set S €C , vm(S) is achieved uniquely by a : § » Ri
(1.e., a:58+ R: is the unique solution to the maximization problem
(2.8)). Then ¢(m) consists of just the payoff vy given by @

¥(58) = f Ht(gt)du(t) , for s €C,
S
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Let % be the set of all automorphisms of [T,C] which preserve
the measure up , i.e., Qu consists of bi-measurable bijections 6 : T+ T
such that u(o(S)) = u(S) for all SE€(. For m= (a,n) €M and
© € Q , define om = (8g, 6y) by (0p)(t) = a(6(r)) , (8R)(r,x) = y(6(L), x) .

Also, for vE€ BV and 6 € 0 define, @v : C+ R by (8v)(S) = v(8(S)) ;

~u
and for A CBV, define 6A = {6v : v € A} .

AXIOM TII (ANONYMITY). For any m in M, and 6 in Qu , $(8m) = B¢(m) .

Since A CFA implies 6A CFA , and m€ M implies fmeE M,
the axiom makes sense.

For our fourth and final axiom, we need to define the disjoint sum

of two economies. Take m = (g,) , m' = (%', g') where g : T~ Ri

and a' : T >R . Put mn@®n' = (r®@a's ®y") , where

+
(@a@gp') : T~ Rf"k and (g@y') : T x R_f_"'k + R are given by:

(RPa')() = (a(t), &' (t))

(g ®g") (e, (x,¥)) = glt,x) + x'(t,y) .

[For x € R_%‘ and vy € Ri ,» (x,y) 1s the vector in Rf'k whose first

£ components are according to x , and the last k according to vy .]
Note that mn@®m' €M 1f m €M and m' EM . Also note that
A+ B eP(FA) {f A € P(FA) and B € P(FA) , where we define

A+B={a+8 :a € A, BE B)}.

AXIOM IV (SEPARABILITY). For any m and m' in M, ¢(m) + ¢(m") C ¢(m@nm") .

Our main result is given by the
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Theorem. There is one, and only one, map ¢ : M -+ P(FA) that satisfies
axioms I, II, ITI, IV. 1t assigns to each m in M the set consisting of

the competitive payoff of m .

4. A Reformulation

Put E= {vEBV :v = Yo for some m € M} , i.e., E 1is the set*
of characteristic functions of the economies in M . Note that

(a) wEE, B8EQ = WEE

k) wEE, w EE, o and a' positive numbers == aw + a'w' € B .
To check (a), let w = Vo for some m €M . Then 6w = Vom * To check

(b), let w=v_ and w' =v , for some m= (g,g) and u’ = (g, g")

in m . Consider o= (g@g', ag @a’'g') . Then vy = gw + a'w' .

Proposition 1. Given any ¢ : M + P(FA) satisfying axioms I, II, III,

IV there is a ¢* : E - P(FA) such that
(1) ¢(m) = ¢*(Vm) for any mE M,
(ii) there is a K such that

h(s(w), ¢(w*)) <Kljw-w'|l ,

(i11) wWEE, B eQ11 — ¢*(ow) =0¢*(w) ,
(Iv) w €E, w € E => ¢™w) + ¢*(w') Co*(w+w") ,

(v) wEENTFA=— ¢*(w) = w .

Proof. Defime ¢* : E+ P(FA) by: ¢*(w) = ¢(m) for some m €M such
that Vo =V . Clearly such an m exists, and since ¢ satisfies axiom

I, ¢

is well defined independent of the choice of m . Now (1i), (iii),
and (iv) follow easily from the fact that ¢ satisfies axioms I, III and

IV. It remains to check (v). let wEENTFA. Then w is countably

*Adding the set-function v = 0 would make E a cone,
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additive and absolutely continuous w.r.t. ¥ , hence there is an inte-

grable n : T + R such that w(§) = f n(t)dy . Consider m = (a,y)
5

where RF = n(t) {i.e. there is only one resource commodity} and

t
X G R+ + R, is a strictly concave, strictly increasing function chosen
so that (dgt/dx)(n(t)) =p >0 for some p , and gt(n(t)) = n(t)
By Proposition 36.4 of [6] v (S8) is achieved uniquely by n : S - R,
for each S in C; so vm(S) = fsgf(n(t))dp = fsn(t)du = w(S) . But,
by axiom 11, (é(m))(s) = f n{t)dy = w(S) . Thus ¢*(w) = ¢(m) = w ,

S

proving (v). Q.E.D.

5. Proof of the Theorem

The proof is broken into two parts. First, we show that there is a
subset M* of M, containing econonies of a special kind, which is dense
in M (section B). Then we prove that for m& M* , ¢{m) is a non-
empty, one-element set which is uniquely determined by axioms I, II, III, IV
(Sections C, D)« Uniqueness of ¢ on all of M then follows from the

continuity axiom I.

A. Preliminaries

We will compile in this section a miscellany of definitions and

facts.

Let F denote the set of all real-valued functions f on* R:

that are continuous, non-decreasing (i.e., x > y implies £(x) > £(y} )

and satisfy

(1) £(x) = o(]|x]]) as |[|x]] »= .

31
*Thus F depends on the dimension n , and we should be writing F* s

but the space R: used for defining F will always be clear from the

context.
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For any f in the vector space generated by F (i.e., f EF-F),

put® ||£]] = sup{|f() |/ (1+2Ix) : x € R:} . Then || || constitutes a norm.

f‘ = {f € F : a—axf— exists and 1s continuous at each x € R_r:
3

for which xj > 0}

Fl =4f € F : -Ei- exists and is continuous on all of Rn}
axj +

0

F-={f€F : £(0) =0}

s
]

{f€ F: f 1is concavel

-
|
]

{f€ F: f 4is Lipschitz, i.e., there is a K > 0 such

that for x, y in R: |£(x) - £(y) | j_K”x'YH}

!
L]

{fe€eF: £ is strictly increasing,i.e., x>y implies f(x) > f(y)}

F*

L]

IO PN SR 2 A

2) Finite-type economies

An economy (@,3) in M is called finite utility-type if there is
a finite partition of T into measurable sets Tl, teey 7% and functions

i
ul, ceny uP (where ul Ri -+ R ), such that ut = ui if teT ,

1 <1i<p. In this case we write (g, ul,..., wP) in place of (Q’Q) .
Finite endowment-type economies are defined similarly, and we use the no-

tation (al, ...,ap, &) for them.

n
* Ix denotes Z x

g1 37
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3) é-approximations of utilities

Let U be the set of all functions from REXT to R which satisfy
conditions (2.2), (2.3), (2.5)-(2.7). (Note that if y € U, then
gt € FO NEN f-' for all t €T .) For & >0, a S-approximation of
y is defined to be a member k of U such that I]Qt-gfll_i 6 for all
t except possibly a set of u-measure < § , in which Qt(x) = /Ix .

(Here || || is the norm defined in (1).)

4) The bounded variation norm

A non-decreasing sequence {1 of measurable sets S, = 5

C .'.-:sm

(each §31€ ©) will be called a chain., The variation of the set function

v over the chain f) 1is defined by

ol = 2 |v(s) — v(5.,)]

It can be shown that for any veBV, [[v[| = sup ﬂvll-n_ , where the

supremum is taken over all chains {] . {5ee Proposition 4.1 in [6],)

B. An Approximation Lemma (Existence of M* )

M* is the set of all m in M which satisfy
(i) m= (al,..., ap; ul,..., w’) is made up of p types (p
any positive integer) such that all agents of type i have
the common characteristics (ai, ui) ; each type has p-measure
1/p ; each ol e (L <1 <p).
(11) For 1 <1 <p, there is a yi € R:l_ and a neighborhood Ni

(in Ri ) of yi and constants ¢ .»c_ in R, such that:

1* °° n



i6

v(m = am T etoh
i=]

n
ui(z) - ui(yi) - I cj(z--yi)J for 1 <41 <p, and all =z E.Ni .
i=1

OQur aim in this subsection is

Lemma I. M* 4is dense in M ,

The proof will be built up from several propositions, some of which

may be of interest in themselves,

Proposition 2. Consider an m = (ﬁ,g) €M, and a2 sequence m2 in M,

with mz = (%2’ k? and f l‘% -%H ¥ 0 . Then d(mz' m) i 0.
T

Proof. First we establish the result labelled (%)

f
For every € > 0, there isa & > 0, such that if *

@ IT”E‘Q” <6

®51C...Csm-T, [ &> 2ee, u(sjﬂ\sj)us

n
S1

(%) J then

m
k);llv(sm) - (S ) - s —vis | <,

where** v(s) = us(] g) . V(S) = us(] a .
s 5

t

* ej is the vector in R" whose jth component is 1 and all others O,

and e = el + ... + en .

*k us(x) = maX{jslét<X,t)d“(t) . x + T » R}:’ X‘(S) - x} .
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To begin with fix k . Put A = v(S ) - G(sk+1) - (v(sk)-G(sk)) ,

s =S, § =8

K+l Kk ~S» U v, ug =vy, [ g=b, J5 R = Dbp>»

k+l k Sk+1 X

I é = b ’ f é = SO . Suppose us(b) is attained at Yo i.e.,

u (d) = [ ub((e))du(e) . y » 48 defined similarly for 5.
s g™ A

Let V = S\S0 s A= (a-y) » A= f (%—i) . Also introduce*
v v

)
N

w' (b)) [ a-al
1 jv% R

[
[ ]

") [f a-
1~V fv% £

—
f

g = W' (b) -w (b) -4

=
L

) [w'(b) ~w'(b) ] .

By (40.2) of lemma 40.1 in [6], there exist ¢ € (f X f a) and
] S
0 0

ce(f 2, J @) such that x*

S0 So

v(58) = v{S;) = w(b) - w (b)) = [ u(y)] + w'(c)+*a ,

0 0'°g fv b4 0

V(S) = V(S,) = w(b) - w (b)) = [/ u(¥)) + wi(e)-h ;
0 o'®o IV X 0

and also, by Proposition 38.5 in [6],
*] g('t,z'(t)) - u(t,y(t)) _gw‘(b)-('%(t)-z(t))

(B2 wleg(®)) - (6300 ) < w'(B)-(ye) - (&)

* w'{b) 4is the gradient of w at b, etc.

** FPor any integrable x : T —> R} and WeC, we denote | g(t,i(t))du(t)
by jL?(z) throughout this proof.
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for almost all t € S.
With ¢ and ¢ as above, finally put
I, = [wa(c)-;w'(b)]‘A
1, = () -w' (B)]-3 .
Now

A = [jvu(v] + whle) s - {[jvuc;sp] + wh(e) -4}

[J'VIU(x)] +w'(b)+d + [wg(c) -w'(b)]-a

- @ v @t b)) - (@) -w D)1

| A

UVU({)] +w'(b)-a + 1 - fv[uq:) -W'(ﬁ)-zﬂv‘(ﬁ)-g]
+w'(f>)'[fv(g-é)] - i,

~

Il+12+I3-I3.

(The inegquality follows by integrating EI over V .) Similarly,

using E,

Consider the measure generated by E . It is absolutely continuous

(component-wise) w.r.t. . . So there is an € > 0 such that [ é > 2ee
A

implies u(A) > €, for any AE€C . Then by Lemma 37.8 in _[6) (taking

e for ¢, and a=1+ max{{f R Zf ,%} for a ), there is a p-integrable
T T

function [ such that a, é, Y , io are each < Qe (for

any choice of Sys Syx4+1  in the chain) .
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Now take the measure general;ed by p . It 1is also absolutely continuous

w.r.t. u . Hence for some 61 >0, n(v) < 61 implies f Re < -%—ee .
v
¥ote also that if & < e , then f R > ce ({since f é > 2ee ). Thus
s S

if we choose & < min[e, 6], thenwehave [ y=[ y+ [y~ [y
50 50 v v

1 - 1
= - y > ce - e > e ; similarly y > 5te . This p it
us to apply (40.3) of Lemma 40.1 in [6} to get w'(b) = w(')(f X) , i.e.,
S
Q
[wa(c) - ()| = l"c')(C) _wé(fs x)l . Similarly lwt')(?:) -w'(b)] = lwt‘)(é) -w(‘}(fs i)l .
0 0
Observe that c - fs 1= Gfs y+ (1-e)b, - jS y- (1-8) (bo-fs y) for
0 0 0 0
some 0 <8 <1 3; but b, + = + s thus b, - y==-A,
0 IV% IS x [VX 0 IS
0 0
i.e., ¢ -j 1= -(1-8)2 , and so |le-] XH < ilall < Hf-qell . Similarly
s0 S0 V~

l|e - ISOXH b _“I"_]:Leu

Nowclearlyc,e,fx,fi,b,ﬁ,b,ﬁ all lie

0 0

in A(c*, a) = {xEJR:lz X > g¥e, in a} , whenever 0 < g* < min[%e, E:[ .
Apply proposition 38.7 in [6]. It says that, for an arbitrarily small

0 < g% < min[%t, E] » we can find a §, such that if He= [ x,” s
50
lle-f i” , |lb-56] , 4is each < 6, » then the norms of the coefficients
S
0

wultiplying A and 4 (in Ii s ii ) will each be less than e¢* . To
ensure that the three terms will be less than 62 , 1nvoke (again!} the
absolute continuity of the measure generated by n w.r.t. u . There is

-

a 6, >0 such that if u(V) < §, then ||f ne|l <6, (and we have shown:
3 3 v 2

max{||c~ fs xh » fec- L yl} <l Jv‘lje ). On the other hand, obviously
o 4]
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Ib-b]l </ lla~al] <6 . Thus 1f & 1s smaller than both 6, and 84
L

(in addition to being smaller than 61 and ¢ ), the coefficients multi-

plying A and A in I f, will each be smaller than e* .

i* i

Choose a positive ¢g* < min{%t, €, (GnITQ)—le} . Then choose 62
and &, (which depend on ¢* ) as above. Put M = sup{{lug(®)i] : u(S) > e,
b g A(e*, a)) . -(That M is finite is guaranteed by (38.8) in [6].)

(ZnM)_ls} . Then for any k ,

Now pick a positive § < min{e, & §

1’ 52! 3’

ol < nH(fvllg-gl\) + sa*nH{]n,eH -

Hence
L Ial < nnd] llg-al + seral] pell

1 1
STt
= ,

proving (%).
To complete the proof note that, by Propesition 37.13 in (61, un
is continuous at 0 Gimf(indeed on all of B:). Also clearly uT(O) =0 .
Hence for any %t > 0 there is a ? > 0 such that ||aH < 28 implies
uT(a) < %f . Since g > 0 we can pick & 0 <y« ngl , and an e, > 0,
to ensure
(8 [pcv=fgpctle
S S
) J Bp2y— J g2 2e .
S S
Put g% = min(el.‘%p) and choose &* to correspond to e* in accordance

with (x). Let & = min[@, §%] . Since f llgg-gn -I* 0, there is an
T

N such that 4f & > N, then [ ||g¥~gll < 6 . We will show that if
T
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L>N, “VR'—V” < ¢, where o abbreviates vpi
£
Let w=v -v , and let ¢-SOC51C... Csm_l_l-'r be a chain.
Then, by Lyapunov's theorem, it is possible to insert finitely many addi-

tional sets SOl' SOZ' saey 811’ 512’ arvy Sml’ sz, .es to get a refined

chain SOC 501C SOZC ... C5. C5§

1 11c:slzc:...Csm*Zis

mlCSmZC...C

Sm+1 so that if we relabel the new sequence UO’ seey Up-i-l we have

(1) uw(U, . \U) <6 for all k , (i1) 12y for some q . Then
k+1 . R .
q

I A

m
[w(s, ,,) -w(S.)]| fw( )y =w(U )|
kZO K+l k kzo Y+l k

k=0 k=g+l

Now

30
%

k=0 k§0IV(Uk+1)"V(Uk)'.(vﬂ(uk+l)'-v£(uk)l

3 jv(u, ) -v(u )| + § |v2(U )-vn(u )]
Koo k+1 k Ko k+1 k

i

g L
v(U .. ) - vw(U ) + v (U ..} - v()
kz{) k+1 k k0 k+1 k

= v(U) + v"(uq) )

But IU giz'e ; and since fTH%-eﬂ“ <6<¥, | %f‘i 28e . There~

v
i lq 1
1 % ] g
fore v(Uq) =< u.r(fU g) SE. VY (Uq) __<_u1.(fIJ a) 2% Hence Lo 235t .
q q
On the other hand, by (x), § < & < 1 e, Conseguently
k=q+1 2

m
}:lw(s )-w(S)]ia.
k=0 kel k Q.E.D.
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Remark. Notice that Proposition 1 says that the characteristic functicn
of a market is continuous in its endowments, thus complementing Proposi-
tion 40,24 of [6] which showed continuity in utilities.

For § >0, let I(x,8) ={y : x <y < x+68e} . We define an

operator Aa : F+ F where, for £ € F, the function Aﬁf : RD

+ " R

is given by

LY

b = 677 f(y)dy = 6 £(x+y)dy .
1(x,§) 1(0,8)

Proposition 3. For any & > 0 :

(1) fEF—bAafefl
Se e ¥
8

(11) £ €F we= A
(111) f e F" == A%t € FL
(iv) fGFC-bAﬁfeFC
(v) £€F ms [|a%-£]| >0 as 6->0.

Proof. I1f x, z arein R, (A’5)(2) - 4o =6 (£(z+y)
- + 1(0,6)

- f(x+y))dy , from which (ii) and (1ii) are easily deduced. Similarly

3 f(x+y) + f(z4y) - 2F [x—;—z—+y]]dy R

w6 (z) + W - 2(A5f)[5i5) = &7
1(0,6)

which implies (iv).
i
Let Ii(x,é) denote the face {y €R_t‘_1 it x <y <x+d8(e-e )} of

the cube I(x,6) . Then, for QO <« A < E,

)
(Aéf) (x+Ae:) - {Af) (x) - (67D £(y)dy - G—nf £(y)dy) /b

(1(xeraet ) 1x,8)

- (8 f£(y)ay)/a - (57 £(yay)/a,
I

1 I
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i

where 1

= I(x-kAei, I\I(x,8) = Ii(x-rde , 8) + {tsel : 0 <t <1} and

i

1
I, = I(x,60\I(x+ael, §) = 1°(x,8) + {tse : 0 <t <1} . The function
f 1s continuous on Ri . In particular it is continuous on the compact
subset I(x, 28) of Ri and thus uniformly continuous on I(x, 28) .

So for every o > 0 there is 4, such that: z in Ii(xi-ﬁei, 8) or

in I3(x,6) , O0<t<1 and & <B = [f(z+the})ef(2)] < a . This

0
shows that (a%6) (x + sed) - (A%e) () /8 converges, as A > 0 goes
to 0, to & © f f(y)dy - G-nf f(y)dy where by dy here
1} (x+ 8, 6) 1*(x,6) '

we mean dy]. dyz...... dyi-l' dyi+l""" dyn . Continuity of f implies

that both | £(y)dy and | f(y)dy are continuous in
Ii(x,G) Ii(x+6ei,6)
¥ . Therefore the one-sided derivative 1lim ((Asf)(x-kbei)-(Aéf)(x))/ﬁ
A>0
A0

exists and is continuous at each x € Ri . Similarly if x> 0, the

derivative lim ((Asf)(x-+Aei)-—(AGf)(x))/A exists and is continuous.
A0

This proves (i).
Take o« > 0 . Since f(x) = o(||xl]) as ||x|| » =, there is a
K > n such that |£(x)| < a{Ix)/4 whenever Ix > K . Clearly

f(x) 5_(A6f)(x).5 f(x+6e) , hence

18 (0 - £(x) | < [f(x+6e) -£(x) | .

Therefore, on the one hand, for x in Ri with Ix > K,

|(A5f)(x) —E) /(L +Ix) < JE@) /(A +Ix) + 2([f(x+8e) |/ (1+I(x+8e)))
‘< a4 + 2(a/4) = (3/4)a . On the other hand, f 1is continuocus on the
compact subset {x EER: :Ix < K#n} , and thus there is 0 < §, <1 such

that for 6 < 8, and x in R, with Ix <K,

0
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1A8E) () - £ | < |E(x+6e) ~£(x) ] < a/2 .

8
Altogether ||A f-fll = gup I(Aéf)(x)-f(x)|/(1i-zx) <a , which proves (v).
n
x€R

+ Q.E.D.
For any K > 0, define Pg : R: -+ [O,K]n by (pr)i = min{xi, K} .
For £ €F define L'f : Rl +R by L'f = fop, (i.e. D) = £lp (x)
for all x ). Observe that LKf € F (the non-decreasingness of K¢

follows from: x > y == PRX 2 PV ). Thus LK is an operator from

F to F.

Proposition 4. For any K > 0,

(1) f€F - 1% e F-
(11) f € FC == 1Kt € FC

(1i1) f€F m |IXf-£]] 0 as Ko .

Proof. (i) To check that L f € F© observe
that LKf = f on [0,K]n , and f 1is continuously differentiable on
[O,K]n . Let A be a maximum of all the partial derivatives of f on
[O,K]n . Then ](LKf) (x) -LKf(ic)’i Allx-y|l when x and y are in
[0,k]* . For any x, y in R: . ]lpr-PKY” < |lx-y]l , thus the
inequality follows for any x , y in Ri .

(1i) Take any x and y in R: , and 2z = ix + (1-)\)y where
0 <X <1. Since the function £ : R+ + R, given by E£(x) = min{x,K}
ig concave, we see that pK(z) 3_ApK(x) + (l—l)px(y) . But then
XD () = £(p (2)) 2 EOP ) + (Mg (D) 2 AP (X)) + (1= £(pe(y))
- A(LKf)(x) + (l-A)(LKf)(y) . (The first " > * follows from the fact
that, being in F , f 1s non-decreasing; the second " > " holds because

£ 4is concave on [O,K]n .)
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(1i1) Take any ¢ > 0 . For K large emough, (|f(x)]|/(1+ZIx)) < ¢/2
if Ix > K (because f is in F ). Hence for such K,
HLKf -f|] = sup{](LKf)(x) -f(x)|/(Q+5x) : x ER:‘_} -sup{l(LKf)(x)
- f() /(1 +Ix) : xeR_’:. Ix > K} <¢e .

Q.E.D.

Proposition 5. F* 1is dense in O nfC

Proof. Llet f & Fo NFC and e¢>0. By Propositions 3 and 4, we see
that if &6 > 0 is sufficiently small and K > 0 is sufficiently large,

1. LK(Aéf) is in F and satisfies

the function f
(W |et-f < e
(11) 0 < fl(0) < ¢
Let n € FRnfnse . Then the function f2 =+ (en/|In]l) is
in FCAFY AF and satisfies
(11i) ||f2-f|| < 2¢
(1v) 0 < £2(0) = £1(0) < ¢ .
Next, for y > 0, put f3 = AYf2 . Then f3 €,FC N FL NFN Fl and,
for sufficiently small Yy > 0, we also have
(v) l|f3 - f2|| <€

(vi) £2(0) < £3(0) < 2¢ .

let g = £ - £3(0) . Then g€ F* and |[g-£l < |lg-£3]| + |l£3-£2]]
+ Hfz-fH <2 + e+ 2c=5¢ . Since € was arbitrary, this completes
the proof.

Q.E.D.
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Proposition 6. Llet f € F* , Z € R: and & >0, Suppose h : R: + R

is an affine function such that
(1) h(z) = £(2)
(11} h(x) > f(x) for all x € R: .
Then there is a g € F* such that
(111) g-h 1is a constant in some neighborhood of 2z

(1v) |lg-h]| < & .

Proof. We will construct g in three steps. First put
gl = min{f, h-(8/4)} . Then gl EFNTFN . 10 see this observe
that h-e € FCNF N F’ ( hec €F follows from £ € F , and (1), (i)
above), and that the mimimum of two conrave (increasing, Lipschitz)
functions is also a concave (increasing, Lipschitz) function. Observe
that £(x) - (8/4) < g*(x) < £(x) , and thus

v) -8/4 < g'(0) <0

(vi) sup{lgl(x)-f(x)i t X ERi} < 8/4 .
As both f and h are continuous,

(vii) h - gl = §/4 4in some neighborhood N, of =z .

1
Next put gz = A631 . By Proposition 3, 32 € n F nF N F
If we choose 6 small enough we alsc have
(vitt) |g2(0)| < /2 (using (v))
w0 lg®-gtil < &/
(x) h- gz is a constant in some neighborhood N2 of z (using (vii)).
Finally put g = 32 - 32(0) . Clearly g€ F* . Moreover, from
(vi), (viii) and (ix), and the obvious equality |]g-g2H = |32(0)| .

we get
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2 N - . .
le-£ll < llg-g?ll + e - gl + llg" €l < 872+ 814 + 874 = & .
Clearly h-g is a constant in the neighberhood N2 of z .

Q.E.D,

Now we turn to the proof of Lemma I. It will be convenient to regard

the first half of it as an independent

Proposition 7., For any € >0 and m &M, there is an economy
1

")
m = (al, ...,ap; ...,fp) of p types such that (i) d(m,%) < g

(i1) all agents of type 1 have the common characteristics (ai, fi) :

(iii) each type has py-measure 1/p ; (iv) each fi € r* .

Proof
STEP 1. There is a finite utility-type market m1 = (a, ul, ...,ur)
such that (i) d(ml, m) < €/3, (ii) each of the r wutility~types has
y-measure 1l/r .

By Proposition 35.6 of [ 6], for any 6 > 0 there is a finite-type
(Gl, ...,Gs) € I, which is a S-approximation on x - Pick an integer

r sufficiently large to ensure that s(1/r) < § . Divide T, arbitrarily

i
1 51 j
into disjoint sets Ti’ ceesy Ti such that u(Ti) = 1/r for each j ,
8y s 51
and u(Ti\ V] Ti) <1/r . Let Ty = T\ U kJTi . Then u(TO) = k/r for
4=1 1=1 j=l1

some integer k <s. Define the finite~type u* - (ul, e, u’) €U by:

oty 1t teTi for 1 <3j <8y

YIx otherwise (i.e., if t € To- ).

u*(t) =

Then u* is a 26-approximation to R s and satisfies (iif). Since &

was arbitrary, the conclusion now follows from Proposition 40.24 in [6 ].
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2 P

STEP 2. There is an economy m = (al, casy @

such that (i) d(ml, mz) < g/3 ; (41) all agents of type 1 have the

: ﬁl, .oy 0P) of p types

common characteristics (ai, ﬁi) 3 (411} each type has u-measure 1/p .
This follows from STEP 1 and Proposition 2.

STEP 3. Replace ezch ﬁi by its concavification ui . Let

m3 = (al, ...,ap; ul,..., uP) . Since each ﬁi € Fo NFAF we get

uie Fo NFnFnNFe (by Lemma 39.5 in [ 6]), and thus m € M . By

Proposition 36.3 in [ 6], d(mz, m3) =0 .

STEP 4. Take any 6 > 0 . By Proposition 5, we can find fi € F* such
that [£'-ulfl <6 for 1<i1<p. Let m= (al,...,aP; £, ..., £P)

Then by Proposition 40.24, we get d(g, m3) < e 1f & 1is chosen suitably

small. Hence d(m,g) < €.

Q.E.D.

Proof of Lemma 1. Consider the m of Proposition 7. By Proposition

36.4 of [ 6] there exist zl, cers z®  in Ri such that

fote fat,

i=1 i=1

1 i i
vm(T) pizlf (z7)

Also, by Proposition 36.4 in [ 6], we know that there are non-negative

CONStants Cy, -.05 € and affine functions hi : R: - R+ which satisfy:

W nihy = £Hh

(11) ah“‘/axj =c, for 1<j<n

(1i1) nd(x) 3_fi(x) for any x 1in Ri .

Take any §>0. By Proposition 6, there exist f: €eFr* <1i<m)



29

i

and neighborhoods N~ of zi such that

(v) leb-et) <3

i i

(v) f,-h" 45 a constant in Ni , and thus fi(z) - fi(zi)

n
= 7 cj(z-—zi)j for all z 4in N .
]

For any ¢ » 0 , if we choose 8 sufficiently small in defining f:

then we get, by Proposition 40.24 in [6], that d(g, m*) < ¢ , where

1
m* = (5, ...,ap; fi,..., fg) . By Proposition 7, d(m,g) < e , hence

d(m, m*) < 2e ., To complete the proof observe that

£l - £216@h < erx-2h

for all x € R: and 1 <1 <p, by the very construction of fi .

Therefore, by Proposition 26.4 of [6],

Vm*

(1) = E £zt
1=1
Q.E.D.

C. The characteristic functions arising from M¥

Lemma TI. The characteristic function of any economy in M* is of the
form fo(ul, ...,up) where p 1s a positive integer, (pl, ...,up)
is a vector of mutually singular non-atomic probability measures on {T,C}

with E My = PH and f 1s a function from [0,1]p (the range of
i=1

the vector measure (ul, ...,up) } to R that is
(1) Lipschitz on [0,1]p
(ii) 1linear on a conical neighborhood of the diagonal
[0, Gy, ...,up)(T)l (i.e., there is an e > 0 and

D, -
Gps eees ap in R, such that if x € {y € [0,1]) : lyi yjl

Z€ Ey: for every 1 <1, j <pl, then f(x) = Euixi 2)
f=1 - i=]
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Proof. Llet m = (%,g) be in M* ., Then (recall the definition of M#
from section B) there is a partition {Tl, ...,Tp} of T into p meas-

urable sets with u(Ti) =1/p, and (for 1 <1i <p) 0 < ai € R: and

ui €t (ui : R: + R) such that %t = ai and gt = ui i1f t € Ti .

Define G : RExRP R by (for x in R} and & in R} ):

G(x,a) = max{ % xiui(zi) s 28, ..., 2P are in R: and E xizi < a} .

i=1 i=1
Then G is non-decreasing, concave, homogeneous of degree 1, and

v_(5) = G(w(S), g(s)) , all SEC,

where v = (vl, ...,vp) is the non-atomic vector measure glven by

vj(S) = u(s N Tj

Define F : Rz + R by:

) .

F(x) = G(x, % xiai)
i=1

Now vm(S) = F(v(S)) for all S€C, 1i.e., v, = Fov . Also, since

the map x.3(x, E xiai) is monotonic and linear, F 1inherits from G
i=1

the nondecreasingness, concavity and homogeneity of degree 1.

Observe that in order to prove our Lemma it is sufficient to show
that F is Lipschitz on [O, 1/p]p and linear on a conical neighborhood
of [0, (1/p, ++.,1/p)] (simply set My = PVy and f(x) = F(x/p) }.
First let us establish the Lipschitz property of F . As F--is concave

and homogeneous of degree 1, it will suffice to show that F is Lipschitz

on the strip € = {y E-RE : 1/2 < E Yy <1} . This, in turn, will follow
i=}
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if we prove that: G(x,a) 1is Lipschitz in a everywhere; and Lipschitz

in x whenever x € C and a €D -{yG.Ri:yin(T)t Eai} .
i=]1

To show that G is Lipschitz in a , first consider a, b in

RY with a<b, and any x in Rf_. Then for any zl, ...,4':p in

+
R, with E xizi <b, wecan find z', ..., z? in R, such that:
i=1
xi-z;i <a; zt < 21 ; and E xi(zi-?i) < b-a (which implies also
i=1 i=]

Exini-EiH < {|b-allp). Therefore if G(x,b) 1is attained at
i=]1
1

z°, ..., z¥ we have 0 < G(x,b) - G(x,a) < Exiui(zi) - Exiui(;i)
i=] i=l

= E xi(ui(zi) -ui(Ei)) < K||b-allp where X is a Lipschitz constant for
i=1

each of ul, ceny uP . Now take arbitrary a and b in Ri . Let

aVb be the vector whose j':h component is max{a,, b,} , and observe

s
|G(x,b) - 6(x,a)| < |G(x, avb) -G(x,a)| + [G(x,b) -G(x, aVb)|

<k(|[(avb) -all+|[(avb) -blDp< 2K |[b - af|p .

Next we must show that G dis Lipschitz in x , for x €C and

a€D. Put é-{_veRz:l/Zi Eyiip}. Note that, by Lemma 37.8
i=1

of [6], there iz a b € Rz such that:

A
x€C, a€Dw== G(x,a) is attained at

i

zl, ceny 2P (zi in Ri) with each 27 <b .

Let Kl be an upper bound for ui(z) where 1 <1 <p and z <b .

Let a €D and first take x € CCE, x€C, X <x. Then G(x,a)

is attained at ;l, sy zP with each ?i <b, and E xi;i <a.
i=]
—_— — - 41, 1
Obviously we have X,z < g , therefore G(x,a) > xu (%) .
jm3 *+ ~ 1=1
As G 4s non-decreasing it follows that 0 < G(x,a) - G(x,a) < E xiui(zi)

p . L4 1-1
- Z§ ui(zi) <K E - %;|. WNow consider arbitrary x and x in
151 i 1i= i i
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C, and note that xVx € C . Thus the fact that ]G(x,a) - G(x,a) |
< K1||x—;||P can be established as before.

Finally, it remains to show that F {s linear in a conical neigh-
borhood of the diagonal [0, (1/p, ..., 1/p)] . Given the homogeneity of
F this will follow if we can show that F is linear, for some ¢ > 0 ,

on the set {x € [0, 1/p]p : |xi—1/p| <eg, all 1} .

Since m is in M* there exist (recall again the definition of

M* from section B), for 1 < i <p: y1 € R:'_ , a neighborhood Ni of
i n
y in R+ » and constants Cys +ves Cp in R+ such that
Fyte 1
y = a
i=] i=]

v (T) = (1/p) E utiyh)
i=1

a2y - ui(yi) = Ic i

=

j(z y)j , for all 1<i<p, and z €N

Since 0 < (1/p)al+... +(1/p)ap e (1/p)N1+... +(1/p)Np , there is an
e > 0 such that if ]|(xl, ceny xp) ~{1/p,y +vs 1/P) H < ¢ , there exist

zle Nl, veuy 2’ € NP for which x zl-i-...+xpzp = xlal+...+xpap .

1
To translate this to our situation: 1f |[v(8)-(1/p, ..., 1/P)}| < ¢
we can find vectors zé € Nl, caey zg € NP such that

E vi(S)zé = E vi(S)ai . As each u® 1s concave
i=1 i=1

ui(x) - ui(zé) < c-(x-—zé)

for all x € R: and 1 <1 < p . But then, by Proposition 36.4 in (6],
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F(v(S)) = vm(S) = E vi(s)ui(z;) whenever |[v(S) - (1/p, ..., 1/p)]|| < ¢ .
1=}

Each ui(x) = bi +cx, for x €& Ni s Where bi is some constant;

thus F(v(S)) = E b,v,(8) + ¢c- E v (S)zi = E b,v,(S) + c- E v (S)ai
e 11 g S gt 11 1

for such S € C . This reveals that F is linear on a neighborhood of

(1/p, ..., 1/p) , hence by homogeneity, on a conical neighborhood of
[0, 1/p, ..., 1/P)] .

0.E.D.

D. Uniqueness of ¢ on M*

This will follow from Lemma II and

Lemma III. Let His eoes up , be mutually singular non-atomic probability

measures with g My = pu and let f : [0,1]p -+ R be a function such
i=}1

that f o (ul, ...,up) is a characteristic function of an economy m

in M. Then if f is linear on a conical neighborhood of the diagonal

and Lipschitz on [0,11FP , ¢(m) = { % a,u,} .
i=1 1"i

1
2
a.e. and thus f, € L,(v) and Hfinz e <f

Proof. Let v =y + ,,. + B and let f = dui/dv . Then 0 <f, <1
g £ - ffi(s)fi(s)dv(s) =1,
and also ||f, - fjH2 =2 for i¢4§. For f and g din the Hilbert
space Lz(v) let <f,g> denote the inner product [f(t)g(t)dv(t) .

let & be a p-preserving transformation such that for all 1 <1 <j <p

((1//53(f1-fj) oek):_o is an orthonormal sequence in Lz(v) .
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Let u € ¢(m) and let w = Zaiui . By [14] there is a uni-
versal constant K such that for every positive integer 2 , there are
real numbers a, » with |ai| =1, 1<1<4& with
||‘gai(ei) (u-w) [} > 2kv%||u-w]| . By the triangle inequality it follows

that there are nonnegative real numbers a, € {0,1} , 1 <4 <2 with

6.0 a6 ol > 0Tl

Let U = (ul,..., pp) and for a > 0 let

va' {s€C: ]ui(S)-uj(S)!iav(S) for all 1 <14, § <p}.

Then § € De implies (fou)(S) = Iaiui(s) . Observe that S € Du iff
| <xg» fi-fj>| <av(S) for all 1 <41 < j < p and that 6%s €D iff
|<xs, (fi-fj) oBk>] < av(S) . By the Parserval's inequality,

2
) o6 < 2lixgll3 = 29(s)

I <xgs (£,

0<k 3
and therefore

p(p-1) 8
6.3)  {k: es €D_,) B She .

Observe that there is B <1 s.t.

k
(6.4) if e"sevdz and S'C S with v(8') > 8v(S) thenBS'E'DE .

Fix N> 0 and let ¢ = N6 . We will show that for sufficiently large N,

3
6.5 | I aeh (Fou-Jappll < ¥ = o) = o¢VD)
i<t
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for every set of numbers a  with ]ail < 1. To prove (6.5) let £ be
2

a fixed chain. We have to prove that | } ai(ei) (fou - Iai“i) ”n <N
i<g

Without loss of generality we may assume that for every 0 <m < N there
1s S in Q@ with v(S) = 8™(1) = pg™ .
For D <m<N, let fi, be the subchain of 0 of all § in Q
with Bm+lu(1) < v(s) < 8"v(I) and let Qy be the subchain of 0 of
all S In § with v(8) j_BNv(I) . Denote by g the function g : RP » R
given by g(xl,..., xp) = Eaixi . As f-g 1s a Lipschitz function, there

is A > 0 such that for all 1 < ¢ ,

llag6h (ET-gM il < pas®
N

m+l)

and Hai(ei) (foTi - go}) HQ ipA(sm-—s for m< N, 1<3g,

m

Thus

|I2a1<ei> (Fep-gew [y = 1 |l AR (fu-gD |l
m<N i<} “m

< 1 LI gem-gam |, + peas®
m<N i<g -

For each fixed m < N let S be the maximal element in nm 3 in particu-

lar v(S) = p8" . By (6.3)

k 4(P-1) ,-m
#k : '8 ¢DE/2} 5—-;2—-—8

and for each k with o¥s € DEIZ , (6.4) implies that nmC De (i.e., Vseﬂm .

SeD ) and thus ”(Bk) (foli - Zagu,) ”ﬂm = 0 . Hence
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L (%) (£T-Tom)ll, < HEHEPpa(s™ - 5™y = ARE-L)y(ypy |
< m € 2

Altogether,
1) ai(Bi) (fe¥ - Zau )l < patg + 2 (Z'I)A(l—sm .
1< £

As NﬁﬁN +0 as N+ = , we conclude that for sufficiently large N ,

i - 2

7 a,6h (FeF-tau)ll, <N
5,0 i1 ig =
which proves (6.5).
Let ay & {0,1) be given so as to satisfy (6.2), and consider the two
market games
.k
v, = ] af{e) (f3)
) k<;k

and

k
v, - ngak(a ) (Zuiui) .

The market game vy is the characteristic function of an inessential market
and thus ¢w, = {w .} . By the symmetry axiom (ek) u € ¢((Bk) (f°1)) and

L
together with the separability axiom Eak(ek) u € pu, . Therefore the

two inequalities Hvl-wzn =o(/%) , and || } ak(ek) u-wgu > kv2||u-w]]
k<g

contradicts the continuity axiom unless u = w which completes the proof

of Lemma III.

Q.E.D.
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E. Proof of the Theorem

By Lemma 1, M* ig dense in M . By Lemmas II and III, ¢(m) is
uniquely determined for m € M* and is a one-element set. By axiom I
(continuity of ¢ ), ¢(m) 4is also uniquely determined for anv m in
M, and is a one-element set. Thus ¢ , if it exists, is unique, and
mapps M into singletons in P(FA)

Put ¢(m) = the set consisting of the Shapley value of v (see
Chapter 1 of [ 6] for the definition). Then this is alsc the set consist-
ing of the unique competitive payoff in m (Theorem J and Proposition
32.5in [ 6]). Since the set {vr.u : m €M} CpNA (Thecrem J in [6]),
and the Shapley value satisfies all our axlioms on pNA (Theorem B in [ 6 ]},

we are done.

Q.E.D.

6. Remarks
(1) 1In our definijtion of M the population measure u was held fixed.
If we let it vary over all possible non-atomic measures to obtain the
larger class of economies N (M C N) , then the same thecrem holds on
the domain N . (This follows trivially from our theorem.) Let G denote
the set of all characteristic functions that arise from N, and A the
set of all automorphisms (i.e., bimeasurable bijections) on {T,C} .
Our theorem in particular implies that there is* a unique map ¢ : G - FA
which satisfies (for any v,w in G ; 8 in A; 4,8 in R, ):

(1) ¢(av+Bw) = ap(v) + B4 (W)

(11) ¢(ov) = 83{v)

(111)  (¢v)(T) = v(T)

*Dropping any one of (iii), (iv) would not affect this result.
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(1v) v€ QN FA == $(v) = v

(v) ¢ 1s continuous

{vi) v-w wmonotonic =me ${v) - ¢(w) monotonic
(Observe that av + Bw&€ G, and @G = G, ec that the (i), (1i) make
sense.) Thoupgh this is a weaker result, we should point out that

we are unable to prove it in a significantly simpler way.

(2) What if we drop the differentiability assumption (iv) on the utilities
and look at the larger domain M' of economies (M C H‘)? Is there a

map from M' dinto FA satisfying axioms (1)}~-(vi)? This had been an open ques-
tion,until recently, when J. F. Mertens showed the existence of a continuous®

value on a large space of games which includes M' . Consider the two

maps on M'

m + {the Mertens~value of vm}

m *+ coTe Vv
m

It is well-known that, for m € M' , core Vo is no longer necessarily
a singleton-set (though it still coincides with the competitive payoffs).
Furthermore it can be checked that the core map also satisfies our axioms.
We conclude that our theorem (the uniqueness part) breaks down on M'

It is still an open problem whether there is a unique, continuous value

'
on the space generated by characteristic functions arising from M .,

(3)(a) The continuity axiom has been used to obtain (where m, mENM,
and {m } ie a sequence in M ): (1) ¢(m) ¢0, (i) if d(m, m) >0,

]¢(mk)| =1, and lim ¢(mk) exists mEM === ¢(m) = lin ¢(ink) ’

*Actually a value of norm 1.
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