Note:

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS

AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 608

Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulate discussion and
critical comment. Requests for single copies of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References in publications
to Discussion Papers (other than mere acknowledgment
by a writer that he has access to such unpublished
material) should be cleared with the author to protect
the tentative character of these papers.

A NEW APPROACH TO SMALL SAMPLE THEORY
Peter C. B. Phillips

October 9, 1981



1. INTRODUCTION

Analytical research on the small sample properties of econometric
methods of estimation and testing has taken three main directions. The
first of these has involved the mathematical task of extracting the form
of the probability density function (pdf) or distribution function (df)
of the relevant statistic under stated assumptions concerning the struc-
ture of the model and the stochastic properties of the errors driving
its equations, The second has been concerned with characterizing the
distribution by the analysis and approximation of its moments. This has
included work on the question of the existence of moments and conditions
for asymptotic approximations to them to be valid. Finally, there has
in recent years been a growing literature concerned with the derivation
of direct approximations to the distributions themselves. These approxi-~
mations have frequently been obtained by truncating asymptotic series
expansions after a small number of terms. This literature has also tackled
problems such as the validity of the expansions as asymptotic series and
the actual numerical performance of the approximations in a varilety of
situations. In addition and largely in parallel to this analytical re-
search, are the experimental investigations, which have continued tradi-
tions established in the 1950's and 1960's with an attempt to improve
certain features of the design and efficiency of the experiments, together
with the means by which the results of the experiments are characterized.

In contrast to this research, the foundation for estimation and
inferential procedures in practical econometric work rests almost exclu-

sively on asymptotic theory, particularly in the areas of simultaneous



equations, non linear regressions, time series methods, limited dependent
variable and qualitative response models. This foundation has been
strengthened by the conventional coding of asymptotic statistics in com-
puter regression packages. The presence of asymptotic statistics in the
printouts of these packages and the typical absence of any finite sample
alternative has no doubt entrenched the practice of a sole reliance on
asymptotic theory in most empirical econometric work.

The ultimate objective of the research in small sample theory has
been to relieve the empirical worker from this heavy reliance on asymptotic
theory; but there has, as yet, been no substantial payoff to this research
in terms of applied econometric practice. This situation is most likely
to change in important ways during the 1980's. In part, this is because
the rather specialized results of the early research have recently given
way to general theories and a powerful technical machinery which will make
it easier to transmit results and methods to the applied econometrician
in the precise setting of the model and the data set with which he is
working. And, in part, this is because improvements in computing now make
it feasible to incorporate into existing regression software subroutines
which will provide the essential vehicle for this transmission. An
integral part of this process will be played by direct approximatioms to
the sampling or posterior distributions of interest in an applied study,
Of the various directions to existing research in small sample theory,
it is this approach which, in my view, offers most promise in terms of
results that can be used directly in applied econometric work. Not only
in sampling theoretic, but also in Bayesian problems.

Direct approximations to the distributions of interest in an applied

study can be utilized in the decisions that have to be made concerning



a choice of estimator and the specification of a critical region in a
statistical test; they can also be used to reduce and characterize the
multi-dimensional posterior distributions that arise in Bayesian inference.
To illustrate the first application we can take the case of the Edgeworth
approximation where the theory that has been developed is sufficiently
general for the formulae to be incorporated in general purpose regression
packages at the estimation stage itself. This was envisaged by Sargan
[42]). The formulae can be algebraically built in to a subroutine which

is called after the model is read in and perhaps after some estimation

is completed. The subroutine would return tabulations and graphical plots
of the approximate distributions of the estimators and, in the case of
test statistics, tail area probabilities corresponding to given percentage
points based on the known asymptotic distribution or an approximate critical
region corresponding to a stated test size. This information would be
provided for the actual parameter estimates that have already been obtained
and whatever modifications to them an investipator may consider is worth
examining. Such a procedure is unlikely to lead unequivocally to a clear
choice of estimator or testing procedure in every case, but would allow

an investipator to take cognizance of the apparent distributional char-
acteristics of his statistical procedures in the precise setting of the
model and the data set with which he is working, A pilot study inspired
by this approach and based on the use of the Edgeworth approximation in
the context of a simple dynamic simultaneous equations model is reported
in Phillips [33]. Sections 5-7 of that paper detail the algebra involved
in setting up the approximation, all of which can now be computerized
including the complicated formulae for the cumulants of the sample moments

of the data on which the statistics of interest depend. Moreover, these



formulae can be readily parameterized to allow for certain types of non-
normality, possibly by the use of Gram Charlier type error distributions
where the extent of the non-normality can be measured through the magnitude
of certain critical parameters; and the effects of such non-normality on
the distribution of interest will then show up in the tabulations or
graphical plots that are output from the subroutine. Appendix E in Phillips
[33] illustrates the use of this general procedure with a sequence of
graphical plots showing the effect of a variety of parameter changes on

the form of the finite sample distributions of two alternative estimators.
More recent work on the computerized algebra of this approach in dynamic
models has been done by Sargan and Tse [45].

If such work in small sample theory is to influence the way in
which empirical work in econometrics is actually undertaken, particularly
with respect to attempts to improve inferential accuracy, reduce bias,
and advise on the merits of alternative estimators, then it is of paramount
importance that the approximations that are being used in this way be
already well tried in laboratory type conditions; their reliability in
a variety of parameter environments and different regions of the distri-
butions should be tested and recorded; their strengths and weaknesses
should be known and then signposted when they are eventually incorporated
into regression software as indicated in the last paragraph, perhaps in
much the same way as users are, or should be, alerted to the possible
pitfalls in the use of certain algorithms for optimization in non-linear
estimation.

Work on the evaluation of small sample approximations is already
well under way and some published studies do give valuable insight into

such questions as the relative performance of different asymptotic



approximations and the reliability of the approximatioms in differing
parameter environments, The approximations used in most of these studies
have been based on three main methods: (i) the leading terms of Edgeworth-
type asymptotic expansions of the distribution; (ii) normal approximations
that use Nagar approximations to the first two moments; and (iii) the method
of steepest descents leading to the saddlepoint approximation, whose use
in statistics was first explored by Daniels [10, 11] and which has recently
been the subject of renewed interest [12], [13], [14], [21], [31], [32].
Each of these methods of approximation is capable of representing
the exact distribution of certain statistics to an acceptable degree of
accuracy in certain parameter environments., This is confirmed by numerical
evaluations in Anderson and Sawa {2, 3], Phillips [29, 31], and Holly and
Phillips [21]. Moreover, the approximate distributions that have been
obtained in the literature have already given valuable information concern-
ing the small sample behavior of competing estimators and the adequacy
of asymptotic theory in simple simultaneous equations and dynamic models.
However, given the current state of our knowledge, the use of these methods
in practical econometric work to advise on the choice of estimator and
improve inferential accuracy is bound to encounter difficulties, some
of them major.
First of all, there are certain parameter environments where the
performance of the approximations 1s poor, sometimes a good deal worse
than the asymptotic distribution (particularly in the case of the Edge-
worth approximation). Unfortunately, the parameter enviromments for which
this poor performance obtains are not at all unusual. As we might expect,
given that the approximations are based on asymptotic series, this problem

tends to become more widespread when sample sizes are small. Some



indication of the wayward nature of these approximations in certain param-
eter environments is already documented in [29] and [31]. Further examples
are given later in this paper in the application of Section 8.

Secondly, although general formulae for the Edgeworth and Nagar
approximations are now available ([29], [42]) and widely applicable, the
saddlepoint technique is still only practicable in specialized cases where
the characteristic function is available or simple integral formulae for
the pdf can be used (such as in the case of ratios [11}) or where there
exist a set of sufficient statistics for the parameters to be estimated
[14]. No doubt progress will be made in tackling some of these latter
difficulties but, in the meantime, they remain a barrier to the general
use of the procedure in analyzing small sample distributions and influenc-
ing the way in which empirical work is actually undertaken.

Another difficulty that can arise in the use of the saddlepcint
technique is that, for certain values of the argument of the pdf, singu-
larities can cccur within the strip of the imaginary axis containing the
saddlepoint through which the path of integration is normally deformed.
In such cases, this path of deformation is no longer permissible and
special techniques must be used to smoeth the approximation past the
singularity; the resulting approximants are called uniform asymptotic ex-
pansions. Uniform approximants are typically much more complicated in form
than the saddlepoint approximation (an example is given in [32]). They
are not always easy to extract and further work is required to splice
them with the saddlepoint approximation, where it does exist, to cover
the whole of the distribution.

Finally, it seems difficult to embody additional information on

the distribution in question into these approximations. To take a simple



example, in spite of the fact that the actual pdf is non-negative and the
df monotonic it is sometimes awkward to modify the Edgeworth approximations
so that they share these properties. To take a more complicated example,
we often know or can find simply enough the leading term in the series
representation of the exact pdf (in many cases, without knowing the full
expression for the pdf). This leading term frequently has a simple alge-
braic form and is instrumental in determining the behavior of the exact
distribution in certain domains, particularly the tails. Yet, even when
this information is available, there seems to be no obvious or convenient
way of building it into the Edgeworth, the Nagar or the saddlepoint approxi-
tions. The resulting approximations, therefore, end up neglecting what
is potentially very useful analytic information on the form of the dis-
tribution.

The above discussion may help to motivate what has been a major
component of my own research strategy in small sample theory over the
last five years and what now forms the major purpose of the present paper.
This is to introduce a new technique of approximating distributions which
is sufficiently general to be widely used and sufficiently accurate to
be relied upon in empirical work. The technique is developed in very
general terms and should be widely applicable in mathematical statistics
and econometrics. It has the advantage, unlike the Edgeworth and saddle-
point approximations, of readily incorporating extraneous information
on the distribution; even qualitative information or soft quantitative
information such as that based on Monte Carlo expegiments. Moreover,
since the technique is not based on an asymptotic series expansion in
terms of the sample size or concentration parameter, accurate approxima-

tions can be obtained even in very small samples. The technique should,



therefore, be most useful in cases where existing techniques based on
asymptotic approximations run into difficulty,

The idea that underlies the new method is very simple. It is moti-
vated by the observation that, in spite of the complex analytic forms
of many of the exact pdf's presently known for econometric statistics,
when we do turn around and obtain numerical tabulations or graphical plots
of the densities we typically end up with well behaved, bounded, continuous
functions that tend to zero at the limits of their domain of definition.
The form of these pdf's strongly suggests that we should be able to get
excellent approximations to them in the class of much simpler functions
and certainly without the use of multiple infinite series. We need to
deal with approximating functions (or approximants) that are capable of
capturing the stylized form of a density: in particular, we will want
the approximant to be able to go straight for long periods in a direction
almost parallel to the horizontal axis and yet still be able to bend,
quite sharply if necessary, to trace out the body of the distribution
wherever it is located. Ome class of functions that seem particularly
promising in this respect, as well as being simple in form, are rational
functions. Even low degree rational functions can go straight for long
periods and then bend quite sharply. In this, of course, they are very
different from low degree polynomials whose graphs typically display a
distinct roly poly character.

The present paper, which is envisaged as the first in a series on
this topic, is concerned with the possibility of obtaining good global
approximations to pdf's of a general class by means of rational functions
and demonstrates a practical method of finding such an approximation in

any given situation. In most cases, we have to accept that it will not



be possible to find the best approximant within a certain class (measuring
best according to an already specified norm) without knowledge of the pdf
itself. Obviously, such knowledge would partly defeat the purpose of
finding an approximation; and, in what must be presently regarded as a
very large number of important cases in econometrics, we are simply not
in the position of possessing such knowledge. An important feature of
the present article is the development of a technique for constructing
good global approximants that makes use only of limited local information
about the true pdf. The technique itself is based on the idea of working
from local Taylor series approximations at certain points towards a global
approximation which will perform well in the whole domain over which the
distribution is defined, while retaining the good performance of the Taylor
series approximations in the immediate locality of the points of expan-
sion. This is, in part, achieved by the use of multiple-point Padé approxi-
mants which are rational functions constructed so as to preserve the local
Taylor series behavior of the true pdf at certain points to as high an
order as possible. The points selected for local expansion will often
be simply the origin (in the central body of the distribution) and the
tails. These local expansions can, in fact, be obtained from information
about the characteristic function of the distribution so that direct
knowledge even of the local behavior of the true pdf is not necessary
for the application of the technique. The final step in the method is
to modify the multiple point Padé approximant, to remove unwanted zeroes
and poles which may occur in the bridging region between the points of
local expansion.

The plan of the paper is as follows. The class of pdf's to be

considered and the rational function approximants we will use are defined
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in Section 2. A general theory of best uniform approximation in the con-
text of density approximation by rational functions is then given in
Section 3, This section gives existence, convergence, characterization
and uniqueness theorems for rational approximants to density functions.
But, since it is not critical to an understanding of many of the practical
aspects of the approximatjon technique, this section may be omitted by
those readers who are interested mainly in the nature, use and performance
of the approximation. In a certain sense, Section 3 shows the best we

can do with rational approximants without limiting the information that

is available about the true pdf. The succeeding Sections 4, 5, 6 and 7
describe the method of comstructing good global rational approximants

to a given pdf by modifying multiple-point Padé approximants. These
sections also give the general formulae needed in applications. In Sec-
tion 8 the new method is applied to a simple simultaneous equations esti-
mator, facilitating a comparison between the new and the existing techniques
of approximation discussed earlier in this introduction. Some conclusions

and generalizations of the study are presented in Section 9.

2, A GENERAL CLASS OF DENSITY FUNCTIONS AND RATIONAL APPROXIMANTS

To fix ideas, we write the estimator or test statistic in which we
are interested as BT . In what follows, we treat BT as a scalar so
that, when dealing with estimators, we are in effect concentrating on the

marginal distribution of individual components of a complete vector of

estimates. The characteristic function (cf) of BT is written as

is@
cf(s) = E[e T) and is assumed to be absolutely integrable. This implies

that BT has a bounded, continuous pdf given on inversion by
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(1) pdf(x) = 3= [ e Fer(s)as .

Moreover, by the Riemann Lebesgue lemma, it follows from (1) that
pdf(x) + 0 as x » = , Thus, the effect of the integrability require-
ment on cf(s) 1is to confine our attention to the class of densities

covered by the following assumption:

ASSUMPTION 1. 8, has a eontirmuous pdf which tende to zero at the limits

T

of its domain of definition (z=) .

Note that the boundedness of the pdf now follows from its continuity
and behavior at *= , Assumption 1 covers a wide variety of densities
arising in statistical and econometric work. It can, in fact, be extended
to allow for certain types of discontinuity and singularity but this com-
plicates the development of the approximants that follow. In this paper,
we will keep to the class of densities defined by Assumption 1. This is
sufficiently general to include all the usual simultaneous equations esti-
mators and test statistics, as well as their extensions tc models with
lagged endogenous variables as regressors and autoregressive, moving
average errors.

Having defined the class of density functions, the general problem
of approximation takes the following form: for a particular density func-
tion pdf(x) , f£find an approximating function which depends on a finite
number of parameters whose values are selected in such a way that the
approximating function is (in some sense) as close to the original density
as possible over its entire domain of definition. Once stated in this
way, it is clear that there are two major components to the problem. The

first is the form the approximating function should take. The second is
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the criterion of closeness of approximation to be used in selecting the
best approximant. By a best approximant we mean the member (or members)
of the given family of approximating functions whose closeness to the
function pdf(x) cannot be improved by any other member of the same
family. Thus, the second problem clearly raises the further question
of whether or not there exists a best approximation to pdf(x) in the
given family of approximants. This question of existence will be one of
the issues addressed in the next section.

In selecting a suitable class of approximants, the requirements
we need to take into account are largely dictated by the typical shape
of a pdf and the interval over which the approximation is to be used.
As discussed in the previous section, rational functions seem particularly
promising in their capacity to capture this typical shape. They are also
capable of providing good global approximations to am arbitrary continuous
function over an infinite interval and, in this respect, are quite distinct
from polynomials. 1In developing our theory it will be useful to make

explicit the class of rational approximants we will be using as follows.

DEFINITION. If s(x) 1ig a real contimuous function satisfying s(x) > 0
and s(x) 0 as x =+ +» , then we define the class of ratiomal approxi-

mating functions by

Pm(x)

Qn(x)
m

eee ¥
a.+ alx + amx

= g(x) — s ™ <X<®, m<n
+ + ...
bo blx + bnx

(2) Rm,n(X;s,Y) = g(x)

where (i) the rumerator and demominator are reduced to their lowest degree

by the cancellation of identical factors;
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(ii) m and n are even integers with m < n
(£i1) ' = (ao, 81, +ees By bO’ bi’ e bn) e T, the parameter
space, which ie defined as the following subspace of ntm+2 dimensional

Euclidean space
T = {y: 22=0bi =1, Qn(x) >0 forall xe (-=,®)} .
{iv) Rmn(x;s,Y)/Rmn(-x;s,Y) +1 as x -+ =,

In what follows and where there is no risk of ambiguity we will
simplify the representation of the rational fraction (2) by using the
notation Rmn(x) = Rmn(x;s,y) .

The coefficient function s(x) in (2) is a vehicle by which addi-
tional information about the true density can be readily embodied in the
approximant. This can be soft quantitative information, for example of
the type that pdf(x) > 0 and pdf(x) + 0 as x> * (already explicit
in s(x) ); or hard quantitative information, for example of the type
(i) that pdf(x) has moments up to a certain order or (ii) that pdf (x)
takes an especially simple form in an important and relevant leading case.
The role of s(x) will be discussed in more detail in Section 6 and will
be illustrated in the application of Section 8.

The condition Z:=0bi = 1 on the parameter space T is a normali-
zation which eliminates the redundancy in the coefficients of the ratiomal
function (2). Other normalizations such as b0 =1 or bn = 1 are
possible and may be more useful in application. We will, in fact, later
use the normalization bo = 1 in the application of Section 8 but the

present definition of T 1is retained for the theoretical development.

The condition Qn(x) > 0 ensures that the rational fractions (2)
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have no poles on the real line and are compatible, therefore, with the
class of density functions to be approximated. Since this is possible
only when n is an even integer, we have introduced this requirement
explicitly under (ii). On the other hand, if the density function we
wish to approximate were non zero only on part rather than all of the
real axis, it is clear that this requirement may be relaxed. Moreover,
if a singularity in the density function is known to occur on the real
axis, we could remove the condition Qn(x) > 0 . The position of the
singularity may also be known, in which case this information can be
incorporated directly into (2); otherwise it too must be approximated.
In the following development under Assumption 1, we are working within
the class of bounded continuous densities so that the problem of dealing
with singularities does not occur., The Definition does not, however,
exclude the possibility of approximants which possess zeroes and which
become negative over part of the domain., This could, of course, be
achieved directly by the further requirement Pm(x) > 0 parallel to the
condition on Qn(x) . But since pdf(x) + 0 as |x] -~ and in view of
the error alternation property of the best approximant (to be discussed
in the next section), such a requirement seems unnaturally restrictive,
excluding as it does functions which become negative only on the extreme
tails but which may nevertheless be excellent approximants to pdf(x)
over a wide domain.

The above Definition allows for rational fractions with numerator
polynomials of any degree up to m and denominator polynomials of any
(even) degree up te n . The normal approximant Rmn(x;s,y) in this
class will involve polynomials Pm(x) and Qn(x) of degrees m and

n , respectively; as distinct from what is called an abnormal or degenerate
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approximant in which the numerator and denominator polynomials are of
lower than prescribed degree. In view of the known behavior of pdf(x)
at infinity, we require in (iv) that, whatever the actual degrees of the
numerator and denominator polynomials in Rmn(x;s,Y) » the approximant
tends to the same limit at #= ., The fact that m 1is an even integer
at most equal to n (from (ii)) ensures that this is possible irrespec-
tive of the chaice of the coefficient function s(x) .

Later in this paper we will be concerned with the particular class
of rational fractions (2) in which the numerator and denominator poly-
nomials are of the same degree. This specialization of the theory is
motivated by essentially practical considerations. First, the coefficient
function s(x) will frequently be constructed so that it captures the
behavior of the exact pdf(x) as x approaches the limits of its domain
of definition. A rational fraction of equal degree is then immediately
compatible with this behavior. Second, when the numerator and denominator
are of equal degree, modifications to the coefficients that are designed
to avoid unwanted zeroes and poles in the final approximant are easier
to make. That this is of particular importance will be seen in Sections
6-7 where we develop a practical procedure for obtaining a good approxi-
mant of the type (2) when only limited information about pdf(x) is avail-
able. This procedure is based on the idea of modifying multiple-point
Padé approximants, which in crude form will frequently possess zeroes
and poles that need to be removed in order to improve the approximation
over the whole real line. ¥Finally, numerical experience with rational
function approximations in applied mathematics (see, for example, [19])
suggests that rational fractions with numerator and denominator of equal

or near equal degree tend, on the whole, to give better approximations than
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those for which the degrees differ markedly. Taking an extreme case of
comparison, polynomial approximations usually become unsatisfactory when
it is necessary to approximate a function over a wide interval. In par-
ticular, the Welerstrass Theorem is invalid on an infinite interval.
Moreover, polynomials lack the capacity to turn corners sharply and then
go straight for long periods, particularly in a direction almost parallel
to the horizontal axis. These properties are useful ones for a density
function approximant to be capable of capturing as we discussed in the
Introduction. An important feature of rational fraction approximations

is that even low degree fractions of the type (2) are flexible enough

to assume this behavior. This is endorsed by the large number of numerical
results with rational approximants reported by Hastings [20] and Hart [19].
It will also be confirmed in our own application of the technique reported
in Section 8.

In order to develop a theory for the goodness of approximation
based on members of the class (2) we introduce a norm to measure the error
in the approximation. We will use the wniform norm (also known as the
Tchebycheff or L_ norm) defined as

(3) t[f(x)ll = sup |f(x)| .

Xe (—w oo

If we now let f(x) = pdf(x)-—Rm n(x;s,y) denote the approximation error,

s
our problem is, for given value of m, n and a given function s(x) ,
to find a value of vy which minimizes the maximum error. At this wvalue
of v, Rm,n(X;S’T) is then called a best uniform (or Tchebycheff)
approximation to pdf(x) .

Other choices of norm are certainly possible and will generally

lead to different best approximations, where they exist. However, for
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accurately approximating pdf(x) over a wide interval the choice of the
uniform norm seems most appropriate. Other norms are clearly more appro-
priate for best approximation of the df or the moments of the distribution,
at least if our point of departure is the density function itself. An
alternative approach which seems preferable is to work with these func-
tions directly and retain the uniform norm to evaluate their rational
approximants. We might also consider a measure based on the relative
error of the approximant, which would lead us to use the error function
[pdf(x)_l{pdf(x)-Rm’n(x;sy)}] in evaluating the approximant. These

are issues that will be explored in later work,

3. BEST UNIFORM APPROXIMATION BY RATIONAL FUNCTIONS

The theory of best uniform approximation of real continuous functions

by rational fractions has a long history. One of the earliest investiga-
tions was undertaken by Tchebycheff [47). Frobenius [18] and Padeé [ 28]
both systematically explored the properties of a specialized class of
rational approximants now known as Padé approximants, which we will con-
sider in Sections 5 and 6 below. In the complex domain, Runge [40] (see
Rudin [39], chapter 13) established the possibility of uniform approxima-
tion of analytic functions by rational fractions with preassigned poles.
A general theory of approximation in the complex domain by rational func-
tions was developed in the treatise by Walsh [50], Extensive modern
treatments of the subject covering all the classical results on the approxi-
mation of real valued functions are given in the volumes by Rice [37] and
Meinardus [25].

The theory in this literature has been primarily, but not exclusively,

concerned with the approximation of functions defined over compact sets.
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This theory does not always admit a trivial extension to unbounded regions.
Some results, notably the Weierstrass Theorem on polynomial approximation,
are false unless the domain of approximation is finite. Other results,
such as the Tchebycheff equioscillation theorem for the error on a rational
approximant {(Theorem 3 below) remain only partially valid and their proofs
undergo essential alterations to accommodate the fact that the domain of
approximation is an infinite interval.

In its general form, the problem of approximating a pdf by a rational
fraction in the class (2) is defined over the infinite interval (-=,=) .
Under Assumption 1, pdf(x) -0 as |x| ~ = , so that if we add the
point at infinity = to the real axis pdf(x) 1is continuous on the ex-
tended real axis [-«,2] . 1In this form the problem comes within the frame-
work of rational approximation in C[-=,»} , the space of all continuous
functions £(x) over (-=,=) for which limx+wf(x) = limx*_mf(x) and
the limit is finite. Some aspects of rational approximation in C[-»,»]
have received attention in the work of Walsh [49], [50], Achdieser [ 1] and
Timan [48]. While working primarily with analytic and meromorphic func-
tions of a complex variable, Walsh in both [49] and [50] proved an existence
theorem for best uniform approximation by rational functions with numerator
and denominator polynomials of equal degree., This theorem holds for an
arbitrary set in the extended complex plane under the condition that it
be dense in itself. As such, it certainly applies to real valued functions
in C[-w,»] | but it does not apply directly to the class (2) involving
a general coefficient function s(x) . Walsh does not give characteriza-
tion and uniqueness theorems for the best approximant. 1In fact, he shows
the converse of the latter, that the best approximant may fail to be unique
for certain functions and domains in the complex plane.

The last two references by Achieser [ 1] and Timan [48] deal explicitly
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with real valued functions. Achieser [ 1], in particular, develops fully
a theory of uniform approximation applicable to a restricted version of
our class (2). Achieser's restriction is on the class of admissable

coefficient functions s(x) . He requires that

(4) lim s(x)xk = lim s(x)xk 0
¥ X

where k = m-n (in our notation). In our context, (4) is too restrictive.
We may, for example, wish to impose rather different behavior on s(x)
at infinity. Thus, if we know that pdf(x) = Q(|x|-u) u>0, or
0(e-u1x|8) a,B > 0, as |x| + = it makes sense to incorporate
similar behavior in the coefficient function s(x) and then set m=n
in the rational fraction (2). These possibilities are excluded by (4).
Moreover, (4) provides an essential simplification of the theory in that
©» becomes an allowable extreme point in the approximation error. Under
this simplification the theory of best uniform approximation in Cl—e,=]
is essentially the same as it is for C[a,b] over a finite interval
[a,b] . 1In particular, all the major results apply as for a finite interval.
When we relax (4) and require only that s(x) > 0 and s(x) - 0 for
|x| + = as in our Definition of (2), this is no longer the case. While
the existence, uniqueness and convergence results apply as for finite
intervals, the usual characterization theorem (Achieser { 1], p. 55,
Meinardus [25], pp. 161-162, Rice [37], p. 80) fails. This theorem tells
us that a necessary and sufficient condition for the best uniform approxi-
mant is that its error curve oscillate a specific number of times, which
depends on the degree of the approximant. Theorem 3 below shows that

for rational approximation of pdf(x) over [-=,=] within the class (2),
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this condition is sufficient but not necessary.

Thus, while the work of Walsh and Achieser, that we have just dis-
cussed is very relevant to our problem of best approximation to pdf(x)
within the class of approximants (2), we cannot completely rely on this
work in the development of our owm theory. Moreover, with regard to the
important problem of characterizing the best approximant, our theory in-
volves an important departure from existing results. The following theorems
form the basis of this theory. Their proofs, together with some sub-
sidiary technical material, are given in the Appendix in order to facilitate

the reading of the paper by those interested in its main ideas.

THEOREM 1 (Existence). Jf pdf(x) satisfies Assumption 1 on (-=,=) ,
then there exists a best uniform approximant to pdf(x) <in the class of

rational functions defined by (2).

This theorem ensures that, given pdfi(x) , there exists a set of
parameters Y* and a corresponding rational function R&n(x;s,y*) in
the class (2) for which

() |lpaf(x) =R (x35,v%) || = izlfllpdf(x)-km(x;s,y)|| :

The prime in R;n(x) is used to distinguish this rational fraction from

a limiting function Rmn(x;s,v*) which does not necessarily belong to

the class (2) (it may not even be continuous) because the set T is not
closed. This problem is discussed together with an example in the Appendix.
It does not affect the conclusion of Theorem 1 that there does indeed

exist a rational function belonging to the class {2) which is the closest

possible approximant to pdf(x) in the sense of the uniform norm (3).
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THEOREM 2 (Convergence). If pdf(x) satisfies Assumption 1 on (-=,=) , if

pdf (%) /8(x) has a finite limit or tends to infinity as x » 2=, and if

{(6) E(n:s) = ”pdf(x)-RAn(x;s,Y*)”

where R;n(x;s,y*) 18 the best uniform approximant to pdf(x) 1in the
class of rational fractions defined by (2) with m =n , then

(7) 1lim E(n;s) =0 .

noe

As the degree of the best approximating rational function increases
the error ||pdf(x)-R;n(x;s,Y*)|| must be at least as small. Theorem 2
shows that the best approximant R;n(x;s,Y*) converges to pdf(x) uni-
formly as n + = ., It follows that, for any choice of density function
satisfying Assumption 1, there is an arbitrarily close rational approxi-
mant. This theorem does not, however, give an order of magnitude on the
error of approximation as n + =« , Some results on error magnitudes and
rates of convergence are available in the approximation theory literature
but these apply in the main to special functions. To take two examples:
(i) it is known (Newman [26]) that whereas the error on an nth degree
polynomial approximation to lx] over [~1,1] has order n—l y, the
error on a rational approximant of type Rnn(x; s(x)=1) has order at

1/2

most exp(-n~'") ; (ii) it is also known [17] that the error on a rational

approximant of type Rhn(x; s{(x) =1) to the function exp(-|{x|) over

1/2)

(=~,=) has order at most exp(-on for some constant a > 0 . Both
of these rather specialized results on rational approximants suggest that,
at least for certain classes of functions, the rate of convergence of

polynomial approximants can be dramatically improved by the use of rational



22

functions with numerator and denominator of equal degree. These results
corroborate the numerical experience described in Section 2 which suggests
that rational fractions of this type tend on the whole to provide better
approximations than those for which the numerator and denominator poly-
nomials differ markedly in degree. 1In this paper, we will concentrate

on rational fractions of this type Rhn(x;s,y) in the development of our

practical procedure based on modified Padé approximants in Sections 5-8.

THEOREM 3 (Error Bound). Let the rational function of the class (2)

m—y

(8) Rmn(x;s,y) = s(x) 22— = s(x) 1 it

(x) n-v
% by + byX +...+b__ x

be in its lowest terms with ne common factors in Pm(x) and Qn(x) s
with - £ 0, b _, #0 and 0<p<m, O0<v<n, Weset

d = min(p,v) and N=m+n-d+2 . If at the consecutive points

Xy <Xy < ae. <X in the interval [=-=,»] we have

i
(9) pdf(x)) - R_(x,) = (<172

where all A have the same sign and are all different from zero, then

(10) inf”pdf(x)-Rm(x;s,Y)H _>_m1n{[)\1|, |12|, ceen 213
YET
The same result is true if Rmn(x;s,y) = 0 in (8), in which case we take

N=mt2 .

This theorem can be used to find a lower bound for the deviation
of the best approximation., It sugpests that when the error curve oscil-

lates a sufficient number of times (which will usually be N = n+mt2 ,
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with the "defect" in the rational fraction d = 0 ) and the extreme values
of the oscillation are close in absolute value, the rationmal fraction is
also close to the best approximant in that class. When the error curve
oscillations differ markedly in magnitude, there will be considerable

scope for improvement in the approximant.

THEOREM 4 (Tchebycheff's Equioscillation Theorem). Suppose Rmn(x;s,y)
is a rational fraction of the class (2), having the same form as (8) above.

Let d = min(p,v) a8 in Theorem 3 and let

(1) b = jlpde(x) -R__(x38,M 0 > 0 .

Part A: Necessary Conditions

If Rmn(x;s,y) ig8 the best uniform approximant to pdf(x) then
either
(i) d = v (numerator most degenerate) and the number of alterma-

tions in the error
(12) e(x) = pdf(x) - Rm(x;S,Y)

(i.e., the number of consecutive points of the interval
[~<=,=] at which the error e(x) takes on its maximem value

h with altermate changes of sign) is at least N=n+m-d+2;

or (ii) d = y (denominator most degenerate) and the rumber of alter-
nations of e(x) 4s at least N = nim-d ;
or (iii) zf Rmn(x) = 0 then the number of alternations of e(x)

i8 gt least N = m+2 .
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Part B: Sufficient Conditions

If Rmn(x;s,y) has the form (8) and the mumber of altermations
of the error e(x) s at least N =n+m-d+2 then Rmn(x;s,Y) is the

best uniform approxzimant to pdf(x) in the class (2).

This result characterizes the best approximant and formalizes the
discussion following Theorem 3. Specifically, Part B tells us that if
the error curve takes on its maximum value with alternate changes of sign
at least N =n+m-d+2 times then this is sufficient to ensure that
the rational function (8) is a best approximant. 1In the classical char-
acterization theorem (Achieser [ 1], pp. 55-57, Meinardus [25], pp. 161-162},
this condition is also necessary. It is an interesting feature of the
present problem that this condition is no longer always necessary. This
difference with the classical theory only occurs when the best approximant
has a degenerate denominator as in Part A(ii) (and even then not always).
In the usual non-degenerate situation where the best approximant in the
class (2) has numerator and denominator polynomials of full degree (with
p=v=4d=0) the standard alternation theorem applies with the number
of alternations being at least N = n+mt2 .

To show that the difference between Theorem 4 and the classical

theory is not trivial, we construct the following example. Let

(13) pdf(x) =2

L 1 t(x) , == <x<®™

l+x
where t(x) is zero except over three intervals ([-1-n, -1+4+1) , [-¢,¢]
[1-n, 14n] . We define t(x) to be piecewise linear and continuous over
_m<x<w

, to take on the value zero at the ends of the three intervals

just defined and, to provide spikes in the function in each of these
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intervals, we set t(-1) = +h , ¢t(0) = -h , t{(l) = +h where h is
positive (and less than 1/7 ). We set n = ¢/2 to normalize the area
under (13). The graph of (13) is displayed in Figure 1. Consider the
approximant to (13) within the class (2) with m=0, n=2,

-1
s(x) = {w(1+x2)] and of the form

1 20
(14) ROZ(X;S,Y) = 5 7y @ <X <@
m{l+x") l+b2x

The best approximant to (13) of the form (14) is obtained with a, = 1,
b2 = 0 and we have Raz(x;s,Y*) = 5(x) = [1r(1+x2)]-1 = R(')O(X;S’Y*) ’
the same fraction as for the class in which m=n =0 . The error on
the approximant is e(x) = t(x) and an altermant occurs at the points
-1, 0, 41 with e(-1]) = +h , e(0) =-h , e(l) = +h . Note that the
number of alternations here is 3 which is less than the number

n+m+2-d = 4 which would have been required if the classical theory applied.

FIGURE 1

pdf (x) (——) and best approximant (---:-+)
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To see that R('Jo(x) = [n{1+x7)) is indeed the best approximant
of the form (14) we note that the error can be reduced at x = 0 only by
setting a, < 1. Now since (14) must approximate pdf(x) over the whole
real axis we require b2 > 0 so that reducing the error at x = 0 must

always increase the error at x = #1 .

The same result holds for the approximant

a
(15) Roz(x;s,y) = [— 1 -] 0 o < x < ®

Lg(ld—lejl + blx + b2x2 ,

-1
In order to reduce the error on the approximant Réo(x) = g(x) = [ﬂ(l-+x2)]

at x =0 we need to set <1 . As before b, must be non negative

%0
and this means that the error on (15) must be greater than h at either
-1l or +1 depending on whether bl is negative or positive.
This example proves that the classical theory no longer applies

in our problem. Note that the degeneracy in the approximant in this case
occurs in the denominator. There is no degeneracy in the numerator and
we have m =0, n=2, d=min(u,v) = 0 so that the necessary number
of alternations in the classical theory is N = n+mt2-d = 4 , while the
actual number of alternations in the best approximant is 3.

Finally, we have the following result which establishes the unique-

ness of the best approximant in the rational family (2).

THEOREM 5 (Uniqueness). The best uniform approximant to pdf(x) in the
elass of rational fractions defined by (2) ie unique when reduced to its

lowest terms.
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4. LOCAL EXPANSIONS FOR DENSITIES AND PADE APPROXIMANTS

The theory of the last section shows that for a given pdf in the
class defined by Assumption 1 there exists a best rational fraction approxi-
mant of the type (2) and that, as we increase the degree of the approximant,
this converges to pdf(x) over the entire real axis. 1In any practical
situation, of course, we will need to prescribe the degree of the approxi-
mant to be used and attempt to find the best approximant in the given
class. This normally requires numerical methods and the algorithms dis-
cussed in the literaturel rely on knowledge of the true function values
at a grid of points as well as, in certain cases, the function derivatives.
This seems tco much to expect in an econometric context where, even in
those cases where the exact density function is known in analytic form,
numerical computations are often impossible because of convergence problems
with the multiple series representation of the density or the inadequate
tabulations of the special polynomials that appear in the analytic ex-
pressions.

We are, therefore, left with the problem of how, in a given situa-
tion, to get close to the best approximant in the class (2) without having
to rely on arbitrary evaluations of the exact distribution. The solution
we present to this problem in the present and succeeding Sections of the
paper is based on the idea of using the local behavior of the true density
in the body of the distribution and in the tails to construct a global
approximation of the form (2). 1In principle, the procedure we develop

for moving from local to global density approximations can be based on

1See for example [25], pp. 170-171 and [37], Ch. 6.
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the knowledge of local behavior at an arbitrary set of points. But, in
practice, it will often be sufficient to use information concerning the
local behavior of the density in the tails and around the center of the
distribution. The application we consider in Section 8 will show that
this information is sufficient to secure excellent global approximations
to rather complicated demsity functions even with rational fractions of
low degree.

Local behavior of density functions can take the form of expansions
about the value of the function at a certain point or perhaps estimates
of the function values obtained from Monte Carlo simulations. We will
deal with the case where some analytic information from local expansions
is available while, at the same time, it should be clear how the procedure
we develop can also be used to accommodate Monte Carlo evidence. Thus,
the procedure has the advantage that it can utilize soft as well as hard
guantitative information that may be available about the true density.

Our present analytic knowledge of the exact distribution of a variety
of econometric estimators and test statistics shows that there exists an
asymptotic expansion of the density function in ascending powers of X
as the argument x approaches the limits of its domain of definition

(#=) . 1In general, we can write the expansion about infinity in the form
(16) pdf(x) ~ t(|x{){a,+a,/x+a /x2+u /x3+u /x4 }
0 1 2 3 4 e

as x + *» . The coefficient function t(|x]) + 0 as |x| +« and, in
the case of most of the common simultaneous equations estimators, is of
the form t{|x|) = l:r.|_k where k > 2 . Thus, in the case of the two

stage least squares estimator k = £+2 where & is the degree of over-



29

identification in the equation being estimated. An expansion of the type
(16) was developed by Sargan and Mikhail [44] for the instrumental vari-
able estimator and was used by Sargan [43] in the analysis of Monte Carlo
estimates of moments that do not exist.

At points {di :31=1,...,1} where pdf(x) is continuously

differentiable to an appropriate order we have the Taylor expansions

2 3 4
(17) pdf(x) = BiO + Bil(x_di) + Siz(x—di) + 813(x-di) + Bié(x-di) + ...

1=1,...,D

In a number of cases, we also have the analytic form of the leading term
in the series representation of the density. If we denote this leading
term by w(x) , then it will be useful to consider extensions of the ex-

pansion (17) which take the form
(18) pdf(x) = wix) {8, + B, (x-d,) +B,o(x-d, )2 +B. . (x-d.) +8,, (x-d ) +...}
P OO DRSS VA CMLS & D S T Al LA

Two obvious choices of the points di are: (i) the origin, particularly
for certain test statistics like the "t" ratio; and (ii) the true value
of the relevant parameter, when pdf(x) refers to the marginal distribu-
tion of a certain estimator; or perhaps its limit in probability when
dealing with an inconsistent estimator.

Although expansions such as (16) and (17) usually produce good
approximations only in the immediate neighborhood of the point of expan-
sion, they can be used to construct approximations which perform well
cutside the immediate locality of the approximation, while retaining the

good behavior of the original expansions with the locality. With reference

to (17), the fourth degree polynomial in x may yield a good approximation
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to pdf(x) in a neighborhood of the point d but, in most cases, its

i 3
performance will rapidly deteriorate outside of this neighborhood and it
will be quite inadequate as an approximation on the tails. On the other
hand, the coefficients Bij in the expansion (17) usuvally contain infor-
mation which can produce greatly improved approximations outside the range
in which the expansion (17) itself is immediately useful. That this is

so is demonstrated by the extensive practical experience with Pade approxi-
mants in the applied mathematics literature. These approximants are
rational fractions for which the corresponding Taylor series matches the

Taylor series expansion of a given function to as many powers as is possible.

The following example was used by Baker [ 5]:

1/2
_[r+2)tC L1 52133 1414
(19) f£(x) = [1+x] Lt~ 2+ 250 LA,

The Taylor series for f(x) in (19) has radius of convergence equal to
1/2. Yet as x becomes large f(x) 1is a well behaved function which
tends to Y2 as x -+« . Using only the first three coefficients 1,-%,

- %—in (18), we construct the Pade approximant

1+(7/8)x _ 4,1 _ 52,253
(20) m l+-2"x §x +T2'x aee

This has the same Taylor series expansion about the origim as f(x) to
O(xz) and it tends to 7/5 = 1.4 as x + = , Thus, using only three
coefficients in a local expansion about the origin, the Pade approxima-
tion (19) provides an approximation at infinity to f(x) which differs
at the second decimal place. Even within the radius of convergence of
the Taylor expansion (20) outperforms the Taylor expansion: for instance,

at x=1/4 , f£(x) = 1.095445]1 , the first three terms of the Taylor
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expansion give 1.0859375 while (20) equals 1.0952381 providing at least
another decimal place of accuracy.

This example suggests that Padé approximants can.have the useful
property of accelerating the convergence of a given power series within
its circle of convergence, while at the same time considerably extending
the domain over which truncated series expansions can give useful results.
These features make Padé approximants attractive for constructing first
step rational fraction approximations from the information embodied in
purely local density expansions such as (16), (17), or (18). Section 6
will be devoted to the algebraic details of this construction and will

give the appropriate formulae,

5. USE OF THE CHARACTERISTIC FUNCTION

IN DETERMINING LOCAL DENSITY EXPANSIONS

In order to construct rational approximants from local density
expansions, the coefficients in these expansions need to be available
up to a certain order. When the true density is known and computable
this will not, of course, present any difficulty. But, in the most usual
situation, the true density is not known in analytic form. TIn many of
these cases we may still be able to find analytically the leading term
in the (series expression for the) density, under an appropriate null
hypothesis; and tail expansions up to a limited extent may also be avail-
able. In these latter cases the procedure developed in Sections 6 and
7 can be applied directly. In the remaining cases, an alternative approach
is required. This section of the paper shows that local density expan-
sions such as (16) and (17) can be extracted from knowledge of the

characteristic function and not the density. Theorem 8 shows in particular,
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that local information about the behavior of the characteristic function
in the neighborhood of the origin is by itself sufficient to develop the
tail expansion (16) for the density pdf(x) .

We start with the following two basic results which relate the
tail behavior of density functions to the regularity properties of the
characteristic function. They follow without difficulty from the standard
discussions on this subject in the literature;l but they also demonstrate
that we need to go somewhat further to extract a tail expansion of the

form (16).

THEOREM 6. If the distribution with density pdf(x) and characteristic
function cf(s) has finite (M-l)th absolute moment, then cf(s) <is
M-1 times comtinuously differentiable and the derivatives cf(n)(s) -0

as s+ #» for each n=20,1, ..., M1 .

THEOREM 7. If cf(s) is M-1 times continuously differentiable, if
cf(n)(s) +0 as s> = and if cf(n)(s) is absolutely integrable for

each n=0,1, ..., M1, then

< , =M+l =
pdf (x) = 5%] e 1% £ (5)ds = LEE%;__.I e 15% s ™MD ()48 = 0™

-

as X + =

Theorem 7 shows that pdf(x) + 0 as x =+ #» at least as fast as

|x|—M+l ; but this is, in general, not a very sharp result. For, if

the (M—l)th absolute moment of the distribution exists and pdf(x)

-M-6

satisfies Assumption 1 then we would expect that pdf(x) = O(x ) for

some § > 0 ., For example, In the case of the Cauchy distribution

1See, for example, Feller [16] or Lukacs [24].
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cf(s) = e'lsI and Theorem 7 demonstrates that pdf(x) = 0(1l) whereas,
in fact, pdf(x) = O(x-z) . Thus, Theorems 6 and 7 are not very helpful
in providing local expansions about infinity of the form (16).

However, a sharper result which does lead directly to the asymp-
totic expansion (16) can be obtained from a more explicit representation
of the behavior of the characteristic function as the following Theorem

shows.,

THEOREM 8. Let the characteristic function cf(s) be absolutely inte-

grable and its behavior as s > 0 be given by the asymptotic series

M-1 = K(i) L(3j)
(21) cf(s) ~ eins{ ) pm(is)m-l-lslu ¥ f i q.kllslvj(ngn(S)k(En|Sl)l
m=0 j=0 k=0 J

where n, u, Vv are real constants end sgn(s) =1, 0, -1

> p Fl Q’

m jk2
for s >0,=0, <0 . Then the corresponding probability density function

pdf (x) has the following asymptotic expansion as |x| +

1 = K(j) L?)

(22) pdf(x) v v (Q.klaﬁlazg)r(z+u+l)1Y1-z
nlx=n|""" =0 k=0 | g=0
1, 1
-simsgn(y) (z+p+l) snsgn(y) (z+p+l)
1.k 2 k 2
3 ie +(-1)"e
z=jv
y=x-T

The representation (21) is sufficiently general to include a very
wide class of distributions and should cover most distributions of practical
interest in mathematical statistics. In general, we will find in most
applications of this Theorem that w>M, v>0, K(j) =0 and L(j) =0
or 1 for all j . The first component in braces on the right side of (21)

is analytic and ensures, when uy > M, that integral moments of the
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distribution will exist to order M-1 if this is an even integer and to
order M-2 if M-1 is odd [24]. 1In cases where M 1is finite and the
distribution does not possess all its moments, the second component of
(21) is important in the local behavior of cf(s) in the locality of
the origin and is instrumental in determining the form of the tails of
the distributjon as the result (22) shows.

To illustrate the use of Theorem 8, we go back to the example of

the Cauchy distribution with cf(s) = e"ISI . In this case

and we deduce from (22) by setting p =1, n=0, v=1, K() =0

and L(j) = 0 for all j that

o (-1)j+11‘(j+2)cos{%‘ﬂ’(j+2)}

2 j£0 G+ !

pdf (x) ~

lx]-j

o -n
-5 ] nhad)
mx n=0

where 2n = j . This expansion can be verified directly from the prob-
-1
ability density pdf(x) = [ﬂ(l-kxz)] itself,

THEOREM S. If chf(s) 18 absolutely integrable, then the local expan-

ston of pdf(x) about the point x = d; 18 given by

N-1 3 X
(23) pdf(x) = ) Byy(x-d? + 0(x-d)
j=0
where
d -isd
1 1
8y5 = 757/ (~1s)7e cf(s)ds , 3=0,1, ..., N-1 .

-0
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Local expansions of the type discussed in this section for the tails
and the body of the distribution can also be extracted under similar con-
ditions for the distribution function. These expansions will be useful
in the development of a corresponding theory of global approximation for
the distribution function rather than the density and will be discussed
in a later paper. Expansions of this type are already given for many of

the common distributions in the statistical literature {([51]).

6. MULTIPLE-POINT PADE APPROXIMANTS

As discussed in Section 4, Padé approximants can be used to improve
the convergence properties of local Taylor expansions and have the useful
additional property that they frequently extend the domain over which these
local expansions provide good approximations. This section will show
how Padé approximants can be derived from local density expansions such,
as (16) and (17). These approximants will provide a preliminary set of
rational fractions._ They can then be used directly as approximations
to pdf(x) or modified so that they belong to the class of rational frac-
tions (2) and have satisfactory global behavior. The question of modifying
the preliminary ratiomal fractions will be taken up in Section 7.

We start by writing the density function in the form
(24) pdf(x) = S(X)pdfs(x) , =® <X <o

where s(x) is a real continuous function satisfying s(x) > 0 over the
entire real axis and s(x) + 0 as x -+ *= ., This representation of

pdf (x) reconciles with the class of rational fractions defined in (2)
and allows us to accommodate information about the coefficient functions

t(lx[) and w(x) which appear in the local density expansions (16) and
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(18). In many cases, s(x) will represent the leading term in the multiple
series representation of the density pdf(x) and, in such cases, s{(x)

will usually be identical to t(]xl) and w(x) . When this leading term
in the density is unknown, a suitable alternative will be to set

s(x) = t(|x|) directly or some modified form of t(|x|) which has the

same asymptotic behavior but which is well behaved elsewhere on the real
axis. 1If necessary, the expansion (18) can then be adjusted to take account
of this modification so that (17) is correct to the same number of terms.

If we write the local expansions of pdfs(x) in the form

-1 =2 -3 -4
{25) pdfs(x)'\aa0+alx +c12x +a3x +a,x Fiie s X > iw

2 3 4
(26) pdfs(x) " Bio+-Bil(x-di)-+Biz(x—di) -+Bi3(x—di) 4'Bih(x_di) +...
(i=1, ..., I) , x->d,

1

our problem is to construct a rational fraction of the form

n
Pn(x) &, + a;x +... +anx

(27) [o/n] = o = — » N = an even integer
Q (x by + byX +... +b x

which has the same local behavior as (25) and (26} and to as high an order
as possible. Such a rational fraction is called a multiple-point Padé
approximant and is discussed by Baker [5, Ch. 8].l Cur choice of the
Padé approximant [n/n] in which both numerator and denominator poly-

nomials have the same degree is motivated by the considerations that were

1This work together with [ 6] and the collection of articles in [41] pro-
vide a systematic coverage of the extensive literature on the theory of
Padé approximants and their applications, particularly in mathematical
physics.
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discussed in detail in Section 2 and in the remarks following Theorem 2
in Section 3.

The equations which define (27) can best be introduced by consider-
ing the approximant based on the Taylor series about a single point.
We take the case of (26) with di = 0 and normalize (27) by setting
by =1. This normalization ensures that Qn(O) =1 >0 so that the
[n/n] approximant will not have a pole at the origin (this now being the

point of expansion of the Taylor series (26). The coefficients of [n/n]

are now determined by the equation

(28) pdf_(x)Q (x) ~ P, (x) = o(x>™*y

Explicitly, we have the relations

Bio = 2
By * Bighy =3
Big *BigPy  * Byoby =8
Byig *Bigby  * Byyby FBy0P3 = a3
29 . . . .. .. e )

Bin  * Byn1P1 * Byn-2P2 * Byp 3Py oot Bypby = @

Bin+l + Binbl + B b2 + B.n_3b3 +...+ Bilbn =0

in-1 i

° - [ - . . - * wh e 9 - LI}

120 * Bion-1P1 *BionaoP2 tBion byt e ¥By by = 0

which comprise 2n+l equations in the 2n+l required coefficients of

[n/n] viz {a » 85 bys eees bn} . Baker ([5 ], Theorem 2.4)

0’ al, .o o
has proved that, although a solution to (29) does not necessarily exist
for all positive integers n there is an infinite subsequence {nj} for

which the Padé approximant [nj/nj] exists for any formal power series
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with 810 # 0 . Further, when the approximant [n/n] exists, it is
unique ([ 5], Theorem 1.1).

We see, by inspection of (29), that in order to compute the coef-
ficients of [n/n] we need the coefficients in the local expansion (26)
to order 2n . Even for leow values of n , this is likely to become
prohibitive quite quickly when dealing with the distribution of an econo-
metric statistic because of the increasing difficulty in extracting higher
order coefficients and the complications of the resulting formulae. More-
over, in view of the smoothness of most density functions, in practice
we might expect decreasing returns from increasing the order of contact
at a particular point past n =3 or 4, In many cases, n = 2 will be
sufficient to provide a highly satisfactory local density approximant.l

Multiple point expansions provide an excellent means of enabling
us to reduce the order of contact at individual points to within manage-
able limits while extending the domain over which the final approximant
will perform well. Thus, a two point Padé approximant [n/n] might be
based on the first n+l equations of (29) which require local expansion
coefficients up to sin and a corresponding set of n equations with
expansion coefficients up to order n-1 for a point other than the origin.
These equations will then yield an approximant with contact of order n
at the origin and n-1 at the second point.

I1f one of the points of local expansion is infinity, then the equa-
tions take on a slightly different form. In this case, rather than (28)

we require

(30) {pdf_(x)Q (%) - 'Pn(x)]»x"'n = o(x~ 201

lThese issues will be taken up in greater depth in later papers.
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as x ~+ » . We then have the following explicit relations from (25), (27)

and (30)

0'n n
ulbn + uObn—l = &h-1
agby + byt %ebao =2,
a bn + un—l -1 + an—an—Z + ... + uo = a0
an+lbn + anbn—l + un—l =2 + . + ul = ()
agPn ¥ ¥pn 1Pyt obpog toeee T o =0

As with (29), this is a system of 2n+l equations in the same number of

unknown cecefficients,
In the general case of expansions about arbitrary points di as

in (26), the equations which determine the coefficients take the form

5 h| _ 2n+l
(32) (jZOBij(X-di) )Q_ (4, +(x-4,)) - P_(d, + (x-d,)) = 0((x-d) )

1f we write y = x--di and expand Qn(di-+y) and Pn(di'+y) as

n ¥ % )k (1)
Q(d,+y) = Ib(d +y) = ]by =Q ()
n i k=0 ki k=0 i n

o k.t ).k (@)
P (d, +y) = (d,+y)" = ] yoo= Pt (y)
n i kzo"k 1 ok n

we have

3 p® o gDy | @ W)

’ a
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where
B 2 3 n | (i) ]
1 4, df 4 ... dj by
o 1 24, 33%.. [“}d?‘l p{d)
i i 1/7i 1
(1) _ (1) _
(34) K 0 0 1 3a, ... [Ma2). PTTS
i 2171
0 0 0 0 1 p (1)
b — n —
] @] ]
b0 ao a0
(1)
by 2 8y
b= a(i) = y @<=
(1)
| Pn | | %n | %n

and (32) becomes

Zn+l

@) (] yhePm - rP o = 0™

3=0

which has the same form as (28) but in the transformed coefficients.

To work in terms of the original coefficients we can use the trans-

(1) a®  ac in (33) but

(1)

in view of the normalization on the vector b we partition K and

formation matrix K in the case of the vector

b as follows

| @

1 k '

36) k) - ——+*?- ,ku)sld a7, d7, ..., d
0 k§1)

| “22

(37) b’ = [by, byl = [1, b}]
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We then have from (33)

W _ W 1) _ (D)
(38) by K by, b = Koy by
We now define
_ = -
0 0 0 .o 0 BiO
. ) -8, ves 0 .
39y ) o | Tl 0 RENCONE
-850 By By - 0
| “Bin-1 “Bin-2 Bin-3 0o “Pio | Bin |

The first n+l equations of {29) can be written as

40) a+cWp, = gt

or, in the general case of a local expansion about the point di (not

necessarily the origin)

@D a4 WD L )y D)

Transforming back to the original coefficients in the rational -fraction we

get

g1, 4 G(i)Kéélb* =4 g(i)k(i)'b*
or

@) ¥Wa s WrEL D@y gD
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“+n+] > +— | n -
1 B ar ] [ T 4
1 L
o, K(l) | G(l)Kéz) _ g(l)k(l) 2 g(l) m,
¥ t a. | |emeem ¥
] :1
| a
L n —————
2 | o ! (D (D (D, (D" |
"1 |k 6 Ry 8k b, g I
+ L +
T = |7 ¢
| 041 %42 ot T%n4r b2 0 W
% Ol 7 Toner+l
(43) Orx (n+1) ) e e ) )
I -a, -, eve @ g bn 0
m, |- - T e A Fr—— m_
-al —a2 e -an -00
I -a -ay cee SR 0
I
+1 - -
hrd } UO s Gn_z
0 0 es e —0O 0
vl ! 0 L | Jl

where m_= n+r+l . In {43) we need to select I , the o, and m_ in

such a way that Z§=lmi +m_ > 2n+l . In the final block of equations in
(43) we will often select T = 0 so that ﬁm <n+¥l . As with the case

of the local expansions (26) about the points di this will reduce the
number of final expansion coefficients that are required to solve for

the {n/n] Padé coefficients. In some cases (the application in Section
8 turns out to be such a case) we may have more than enough coefficients,
so that Emi + m_> 2n+l and we may neglect some equations of (43) to
obtain a solution. When this happens it would seem preferable to neglect
those equations which refer to higher order points of contact of the Padé

approximant with the local expansions than those which refer to lower order

points of contact.
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7. MODIFYINC THE PADE APPROXIMANT

By solving (43) for the Padé coefficients we obtain a preliminary
rational fraction [n/n] as in (27). This can be used to construct an
approximation to pdf(x) of the form s(x)[n/n] = s(x)Pn(x)/Qn(x) . In
some cases, this will turn out to be a perfectly satisfactory approximant,
In others, it will need to be modified to produce a good approximation
to pdf(x) over a wide interval. This is because there is nothing in
the procedure outlined in Section 6 which prevents the occurrence of zeroes
in the polynomial Qn(x) on the real axis. These zeroes induce poles
in the approximant and will need to be eliminated if the approximation
is to perform well, unless the zeroes appear in remote and irrelevant
regions of the distribution. My experience to date suggests that the latter
is not usually the case. The normal occurrence is for the procedure in
Section 6 to produce a preliminary approximant with either no poles at
all or a pair of poles, at least one of which lies within the main body
of the distribution.

In addition to unwanted poles, the [n/n] Pade approximant may
become zero at a finite number of points on the real axis. Since we will,
in general, have pdf(x) > 0 for all finite x we will normally wish
to eliminate the zeroes of the approximant unless they occur well outside
the region of interest in the distribution.

When poles occur, they are typically found in the bridging region
between the points of local density expansion used in (43) to comstruct
the Pade approximant. This suggests that an obvious way of helping to
remove unwanted poles is to introduce an additional point of local expan-

sion in (43), perhaps at the price of reducing the order of contact at
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another point. However, there is no guarantee that this method will elimi-
nate poles and it has the disadvantage of requiring additional information
about the distribution to be operational. The procedure we suggest below
does not suffer from these disadvantages. It will eliminate the poles
and it is sufficiently flexible to allow for additional information about
the distribution to be incorporated at the time of modification, if that
information is available,

Before we outline the procedure, it may be worth mentioning that
the occurrence of unwanted poles in Padé approximants is a long standing
problem. The presence of poles in the approximant is one of the reasons
why it is difficult to prove general theorems about the convergence of
Padé approximants to a given function as the degree of the approximant
increases. Many of the general results that are available1 concern the
convergence of subsequences as n + = . For an example of non-convergence,
we can cite Chui [ 9] who proves that in the general family of entire
functions there exists a function for which the sequence of [n/n] Padé
approximants is divergent everywhere in the whole complex plane except
at the origin. While such results obstruct the development of a general
theory of arbitrarily good approximation by Padé approximants, they do not
mean that good approximations camnot in practice be obtained by the Padé
procedure in most cases. The modification we give below changes the class
of approximants to ensure good global behaviour and eliminate poles at the
price of reducing the order of contact at individual points of local expan-

sion.

The procedure we suggest for modifying Padé approximants so that

they are well behaved over the whole real axis is based on the following

1See, for example, Part II of Baker [ 5].



46

simple idea, 1If zeroes of the numerator and denominator polynomials
Pn(x) and Qn(x) occur on the real axis, they will occur in pairs since
n 1s even. We then replace the real roots of the associated quadratic
equations by complex conjugate pairs in such a way that we preserve, as
far as possible, the known behavior of the function at the points of local
expansion. Various degrees of sophistication are possible in the practical
application of this method. 1In fact, as we will demonstrate in the appli-
cation of Section 8 even crude adjustments which preserve only contact
of order onme at the points of local expansion seem to work remarkably
well. After we have adjusted the coefficients in the Padé approximant
s0 that Pn(x) >0 and Qn(x) > 0 throughout the real axis we simply
numerically integrate and rescale so that the area under the curve is
unity.

Some of the principles involved in the method outlined in the last
paragraph can be illustrated in the case of an approximant with n = 4 .
Let the |[n/n] Padé approximant extracted by the procedure of Section 6

with points of local expansion at x = 0 and x—l = 0 be given by

i
Za X —
P | a,(x-vy)(x=-v,) (x-v) (x-Y)
(44) [4/83ey =30 o A 1 2
4 b, (x-6.)(x=8,)(x-8)(x-3)
i 4 1 2
z bix
i=1
where Y s Yo denote real zeroes of the numerator and 51 R 62 denote

real zeroes of the demonator. (y,y) and (§,8) are complex conjugate

pairs. We start by rewriting {(44) in the form

34{x2 = (rp+yydx + Ylvz}(x~Y) (x-v)

(45) [4/6)(x) = —— -
ba{x - (614-62)x + 5162}(x-5)(x-6)
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We now propose to modify the coefficients of the quadratics in braces so
that [4/4](x) > 0 for all real x while retaining the same behavior
as (45) in the neighborhood of x = 0 and «l=0. We, therefore,

define the family of functions

aA{szd-dx-+e}(x*Y)(x47)

b‘,_’{f:h:2 +gx +hl(x-8) (x-3)

(46) [4/4](%x;0) =

where ©' = (c,d,e,f,g,h) is a vector of real parameters to be chosen.
To ensure equivalent local behavior in (45) and (46) we restrict our choice
of © so that

(i) c/f

l; and

(i1) e/h = v v,/8,8, .
Now (i) will ensure that [4/4]1(x;0) ~ a4/b4 as x - * and (ii) that
[4/43(x;0) ~ a4Y1Y2|Y12/b46162|6|2 as x~+ 0 .

In most cases we find that the zeroes (Yl, YZ) and (61, 62) occur
with the same sign patterns. This is because the zeroes and singularities
lie in the intervals between the points (here 0 and #*= } of local expan-
sion. If we take the case where both Y1Y, > 0 and 6162 > 0, our task
is then to raise f and h from their original values in (45) so that
the discriminant gz — 4fh < 0 . This will require proportional changes
in ¢ and e so that (i) and (ii) remain valid. Often these automatic
changes in ¢ and e will be sufficient to ensure that there are no zeroes
in (46). 1I1f they are not, some small adjustment in the value of d will
normally suffice. There is an added advantage to adjusting the value of
d in that simple hand calculations will show what adjustments in this
parameter will improve the order of contact of (46) at the points of local

'

expansion while preserving the desired global behavior of [4/4](x;0) > O
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for all x . Various other scenarics of parameter changes are possible
but those we have illustrated should indicate some of the relevant con-
siderations and the ease with which they may be performed.

The family of rational fractions (46) based on Padé approximants
have introduced extra flexibility in the approximating procedure. The
idea is essentially to partially reparameterize a first stage Padé approxi-
mant so that we can achieve good global behavior by sacrificing some degree
of contact at the points of local expansion. But with the new family of
approximating rational fractions (46) we have the opportunity to adjust
the parameters to take account of any additional information about the
distribution that has not already been used in the equations (43) that
define the original coefficients; perhaps less precise information based
on, for example, Monte Carlo work with the same distributicn. Note that
we also have the opportunity to modify the Padé approximant by manipulating
the new parameters in such a way that the error curve oscillations more
closely correspond with the equioscillations that are characteristic of
the best approximant within the given class of rational fractions--see
Theorem 4 of Section 3,

An obvious alternative procedure for modifying the Padé approximant
(45), but which I have not yet tried in application, is to use splines to
bridge the intervals in which singularities and zeroes occur. This method
may be particularly useful in cases where zeroes and singularities occur
together in close proximity. It has the disadvantage that we would no
longer be working within the simple family of rational approximants of

the form given by (2).
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8. AN APPLICATION TO A SIMULTANEOUS EQUATIONS ESTIMATOR

We consider the single structural equatiom

(47) ¥, = By, + Z;Y; +u

where v and y, are vectors of T observations on two endogenous

variables, Zl isa T xKl matrix of observations on Kl exogenous

variables and u is a vector of random disturbances. The reduced form

equations for Yy and y, are

L
. _ . 11 12 .
TT21 n

where 22 is a TxK, matrix of observations of K2 exogenous variables

excluded from {47). We assume that the usual standardizing transformations

1

have been carried out so that (i) T 2'Z = I, where [z=2,:2,1,

K = Kl + K2 and (ii) the rows of [vl Zv2] are independent and identic-
ally distributed normal vectors with zero mean and covariance matrix equal

to the identity matrix. We also assume that (47) is identified so that

K, > 1.

The two stage least squares estimator 2SLS of B8 1in (47) is given

by the ratio £ = yiRyllyéRyz where R = Zzzi . The exact density func-

tion of B is known to be the doubly infinite series [38]

2
—H—(l+62) K2+1 ) 3
(49) pdf(x) = le * 7 2 3,2 (a+em?
P 1 % 9 (Kyt1)/2 .20 [K, 12 1+ 22
B§’7T(1+x) 3 AL x
h|

K,-1 K 2.2

. 2 _2, y8”

2 3v 2 3 ]
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which depends on the three parameters 8 , K2 and pz = T“éz“zz .

The extensive tabulations in Anderson and Sawa | 3] show that (49)
may be adequately approximated by the asymptotic normal only when u2
is very large (the size of u2 required for the asymptotic distribution
to provide an adequate approximation is itself contingent on the size of
8 and K2 . Even for moderate values of £ and K2 , the computations
in [ 3] show that extremely large values of u2 {well over 1,000) are
required to secure a satisfactory approximation.

As discussed in the Introduction, other approximations to (49)
which perform satisfactorily for a range of parameter values are the Edge-
worth ([ 2], [ 3]) and saddlepoint [21] approximations. But, when u2
is small both these approximations become inadequate.

In Figures 2, 3, and 4 we illustrate the inadequacy of these three
different methods of approximation in the case where B = 0.6 , uz = 4.0
and K = 4, 10 . This is rather an extreme case where u2 is very low
(around the lower limit of u2 values found by Anderson et al. [ 4] in
their numerical computations of key parameters for actual econometric
models). It has been chosen to test the adequacy of the new method of
approximation discussed in the earlier sections of this paper specifically
in a case where the existing methods break down.

Figures 5-9 detail the approximants obtained at each stage of the

procedure outlined in the previous sections of the paper.1 In the first

stage of the procedure we need to select the coefficient function s(x)

K,+1 -1

as in (24) asbove. A crude choice would be s(x) = [1+ |x] 2 ] since

-(R,+1)
this has the same asymptotic behavior of fxl 2 , Wwhich is in this

Lie deal specifically with the case p =4 », k=4, B=0.6. Later
papers will detail more fully some numerical experience with modified
Padé approximants.
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case the coefficient function in the tail expansion (16), and since this
function is also well behaved elsewhere on the real line. An alternative

and better choice is the leading term in the density expansion (49), viz

-1
(K,+1) /2

(50) s(x) = B[%, -1;2—}(1+x2)
This is, in fact, the pdf of @ under the null hypothesis that B = 0
and Typ = 0 .1 As mentioned previously in the introduction, leading
terms such as (50) in multiple series representations of density functions
can usually be derived without much difficulty and will often be available
even in cases where an analytic form for the exact density has not been
obtained. In the present case, a few elementary manipulations show that
B takes the form of a standard normal variate divided by the square root
of a chi square with KZ degrees of freedom, with the numerator and de-
nominator independent. The statistic # is, therefore, proportional
to a t-variate with K2 degrees of freedom, leading to a pdf of the form
given by (50).

Writing pdf(x) = s(x)pdfs(x) as in (24) we then extract the local
expansions (25) and (26) for pdfs(x) . The expansions we use for the

tails (xhl = 0) and the origin (x = 0) . The coefficients that appear

in (30) and (31) are given by

(o)
: [2 2)
A, = =1 W({K,3j)
S AN
3

le. Basmann [ 8].
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© ) 2}
a = I T [Hé—] [(23-1)87 - 1IW(K, 1)
j=1 5] (5-1)!

i
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|

R+
) ],2

3
w 2
= R | 1€25-1)(25-2),2 . .
e | e
j= 5-(3-1).

‘3

'3

+1

———

L 2 .

@ 2)3 _ '
a, = .):1 KT 1)1[%] E(Zj-l)(i%-Z)(Zj-é)ﬁk_jczj_1)82+13%1_)_]w(x,j)
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[K+1
R T
L 2 ), ,23g2d
By = I (WK, 9)
j=1 E] (-1 23
~0d
o
> 205 as[eBgey _ 685
84 = £ u +1 - . W(Ks.])
3=1 H (-1 2} 27
15
K+l
© 2 ), (2]} 54 1,25-4
+ 7 “_2- (g4 j(j+l)+—2-BJ IW(K,3)
i=2 |5} (3-2)!

where we have dropped the subscript on K2 for convenience and where

12 2
Ww(K, ) =E"_2'U (1+85) F E.]; s +1<_- .]"_2_8_2.
»J 171729772 72
12
L 2.2
2" . .1 ., K _uB
=e 1F1[J+E'3+2" 2}

by Kummer's transformation [46].

Figure 5 details the local density approximations to pdf(x) based
on (25) and (26) with the coefficient function s(x) as in (50). The
approximations are good in the locality of the points of expansion, the
origin and the tails, but start to deteriorate rapidly as we move out
of the immediate vicinity. The right hand tail expansion seems particu-
larly good.

Figure 6 shows the [4/4) Pade approximant to the demsity (49).

This has the form (in the notation of (44))

(a) \aé(x-Yl)(x-Yz)(x-T)(x;;)
4,408) = sGIA/AT00 = 80y oy TG TE, Y ) (o)

(51) R

where
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a, = 4.533619 b4 = 1.221628
Yy = -1.158240 61 = =3,567599
Y, T -0.537379 62 = -0,485485

Y, ¥ = -2.133352 + 0.7320531 &, §

0.310396 + 0.613123i

(a)

As a first step approximant Ra,a(x) is rather good, with problem occurring
only in the left tail at the singularity =x = 8, (i.e. =x-B = §,-8
= -1,085845 for R = 0.6 ) and at the two zeroes x = Yos Yy (note
that the second pole occurs outside the region of immediate interest in
the distribution).

The next stage in the procedure is to modify the Padé approximant
(51) along the lines suggested in Section 7. The numerical modifications
described below represent, in fact, my very first trial efforts in the
development of the procedure outlined in Section 7. They should there-
form be regarded in the light of a preliminary experiment with a new method.
It was indeed the success of this first numerical experiment which stimu-
lated me to explore more fully the potential of the method.

In the denominator of (51) we note that the quadratic

2

< - (8, +8,)x + 8,6, = x* + 4.05344x + 1.7333 has discriminant 9.497176.

To remove the real zeroes we propose to replace this quadratic by
2
(52) 1.5x + 4x + 3

where we have raised the constant and the coefficient of xz and simply

rounded the coefficient of X . According to the ideas outlined in Sec-

tion 7, we now need to proportionately adjust the coefficient of xz

and the constant term in one of the quadratics in the numerator. We select
the quadratic x° - (v;+Yp)x + Y,¥, = X + 1.695610x + 0.622414 which
(a)

we need to modify in any case to remove the unwanted zeroes of R, A(x)
E )]
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Making the proportional adjustments recommended to this quadratic we get

1.5:-:2 + 1.695619x + 1.077276 . This gives us the following modified Padé

approximant after one change of coefficients

2

a,{1.5%x" +1.695619x+1.077276}(x~-v) (x-v)

(53) Réaz(x) = s(x) 7 -
’ ba{l.Sx + &4x+ 3}H(x-8) (x=8)
This function is graphed in Figure 7 against the exact density. We see
that the singularity and zero problems have been eliminated and the per-
formance of the approximation is remarkably good. We note some reduction
in the order of contact at the points of local expansion, particulérly
the origin (or taking into account the change of origin on the graph
x-8 = =0.6 ).
As suggested in Section 7, it is worthwhile to modify at least one
of the remaining coefficients to improve the order of contact at the points
of local expansion. Note that the success of this procedure can be measured
against the original Padé approximant in the relevant localities so we do
not need a graph of the exact density to do so. Comparing the Padé and
modified Padé approximants in Figures 6 and 7 it is clear that the order
of contact of the modified Padé at the origin will be improved if we raise
the derivative at this point (i.e., x =0 or xf8 =-0.6 ). This will
be achieved by raising the coefficient of x 1in the quadratic in braces
in the numerator of (53). We make a change in this coefficient from 1.69
to 2.0 (rounding up to the nearest integer), giving the new modified Padé

approximant
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b) 34{1.5x2 + 2.0x + 1.077}(x-v) (x-7)
(58 R0 = s : —
’ b4{1.5x + 4x + 3}(x~-8)(x-6)

This function is graphed in Figure 8., Even with the rather crude
adjustments we have made, (54) is by any standards a good approximation
to the true density and is well behaved over the whole real axis. A final
adjustment can be made by renormalizing so that the area under (54) is
unity. The adjusted curve is displayed in Figure 9.

The error curve for the approximation (54) is shown in Figure 10.
The unequal oscillations in this curve indicate that there is scope for
further improvement within the same class of approximants. 1Instead of
making additional modifications to the coefficients in (54) to achieve
improvements, the general formula (43) in Section 6 was used to find a
multiple point Padé approximant of the same degrec as (54) but with inter-
polations at the points £-2.0, B8-1.5, 8-1.0 , B+0.5, B+1.0
in addition to the origin and infinity. Thus, we set I =6 , m, = 3

1

and m, = ;= m, =W =m = 1 in (43). The approximation obtained

2

in unmodified form was

8, (= 1)) (x= 7)) (x=7p) (x=7,)
(55) R ms(—I L 2 2

bk(x- 51) (x-_ﬁ-l) (x~ 62) (x~32)

where

7.514124 b, = 2.024824

=0.379459 + 1.41374541 61, 61 = 0.385829 % 0.9056261

3,
Yl ] Yl

4

Yoo ;é = ~0.374932 * 0.8666171 é = 0.139481 * 0.7001441

20 9

The approximation (55) has no unwanted zeros or poeles and gives three

decimal places accuracy over the whole real axis. When graphed against
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the exact density, RECZ(x) is in fact indistinguishable from the exact
?

density on the scale of Figures 7-9. The error curve for the approxima-

(c)
4,4

graph the error function and this has resulted in some lack of smoothness

tion R, ;(x) is shown in Figure 11, The scale has been magnified to

in the function because the exact density was computed by series summation
only to five significant figures. The unequal oscillations in the error
function displayed here show that there is still scope for further improve-
ment in rational approximants of this degree, in spite of the additional

points of interpolatiom.

9. CONCLUSION

This paper has introduced a new technique of approximating probability
density functions. The approximating functions belong to a family of
rational fractions and are sufficiently flexible to be capable of producing
good approximants to a very wide class of density functions. The theory
developed in Section 3 indicates that this family of ratiomal fractions
contains approximants which are best in a well defined sense and which
will perform well in renroducing the form of the exact density functions
over the entire real axis. The practical procedure for finding good approxi-
mants in this family that is discussed in the paper is based on the use
of multiple-point Padé approximants to construct global approximations
from purely local information about the density. These multiple-point
Padé approximants are then modified to ensure that they have good global
behavior and to incorporate any additional information that may be avail-
able concerning the density. The application in Section 8 illustrates
that the procedure can produce exceptionally good approximations even in

cases where existing methods break down. 1In this application, the multiple-
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APPENDIX

We start with some preliminaries to the proof of existence in Theorem
1. We need to show that there exists a set of parameters Y* and a cor-
responding rational fraction belonging to (2) for which

(A1) HRm’n(x;s,Y*)-pdf(x)” = izi”Rm’n(x;s,Y)-pdf(x)” =p, say,
Our approach is based on the work of Achieser [ 1] and Rice [37]}. Unfor-
tunately, neither of these standard works give results which can be directly
used here. Achieser's proof of existence in [1] on pages 53-54 is some-
what defective because he does not allow for the possibility that <y* may
not lie in T and may not give rise immediately to a rational fraction
of the form (2). Rice's proof is given explicitly for approximation on
the finite interval [0,1]) and for the class (2) in which s(x) =1 .
We therefore show the development of the existence proof in full, follow-
ing in the main the approach taken by Rice [37] in Chapter 3.8.

From (4) we have 0 < p < = and we can find a sequence of rational
fractions {Rm’n(x;s,Y(j))} for which

@) oy = IR, Gxisy ) -pat |
and

(A3) lim pj =p ,

J"'m

(3)

It remains to prove that the parameter sequence {y'~°} has a convergent
subsequence which converges to a set of finite parameters. If we call
the latter vy* then it will follow from (A3) that y* satisfies (Al).

As discussed by Rice ([37], pp. 26-27), the crucial part of the proof
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of existence is to demonstrate that the parameters lie in a compact set.

First, we show that we may restrict our attention to bounded subsets of

DEFINITION (Condition E of Rice: [ 1, p. 27). The approximating function

R (x5, ) e said to satiefy Condition E for the norm I 1| if, given

M+ o, there ig an N + = such that

IRy o s8] < M

implies that

méx]YiI <N
i

where vy = (yi)

In view of (A2) and (A3), there is an integer for which

Io
o) Ir, (G35, - pag o] < ona

for all j > j0 . Moreover, from Assumption 1 it follows that there exists
K > 0 for which ||pdf(x)]| < K and, hence, using (A4) we have the in-

equality
(a5) ”Rm’n(X;S,Y(j))” < Kbp+l .

We now verify that Condition E holds for the approximating function

Rm,n(x;s,\r) .

LEMMA 1 The rational fraction R n(x;s,v) defined by (2) satisfies

Condition E for the uniform norm (3)



Proof

We consider the set

a6) {y : |r

XS, <M, M >0}

Since HRm n(x;s,y)" <M implies that, for a given number 1 >0,
L

max |R (x;s,y)] <M
xe[~L,L] m,n

it follows that (A6) lies in the set

a7y 1y : max |R_._(x;5,7)| < M}
xe[-L,1] ™0

Now for x e [-L,L] and taking L > 1 , we have

max |s(x)]|

. xe[-L,L]
|Rm,n(x,S.Y)l > = 1Qn(x)||Pm(X)l
xe[-L,L]
SL(L2—1)1/2 | I
(A8B) > P (x)| .
- 1/2"'m
(L2(n+1) -1)

where

s, =  max |s(x)| > 0.
xe[-1,L]}

Thus, when vy lies in the set (A7), we have

1/2
=1) b max |P (x)] = max | ] a xi|
/2 = yel-L,L] ® xe [~L,L] iZO i

M(L2(r1+1)

sL(Lz -1)
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and the polynomial f;=oaixi is bounded uniformly on the interval [-L,L] .

It follows that the coefficient parameters a, are also bounded. More-

over, I:=0bi = 1 by definition, so that the parameter set (A7) is bounded.
By implication, the same is true for the set (A6) and, thus, Rm n(x;s,y)

satisfies Condition E for the uniform norm. [:]

Proof of Theorem 1 (Existence)

Lemma 1 shows that we can confine our attention to bounded subsets
of T in searching for a best approximant. Hence, for all j 3_j0 the
sequence {y(j)} introduced earlier lies in a bounded subset of T .

We may, therefore, select a subsequence that converges to the vector «* .
If we reindex the subsequence we can write for the individual components
at3)

jodi™ T a; and limjﬁmbéj) =b* for i=0,1, ..., m and

of vy, 1lim I

k=0,1, ..., n.

Now it is important to note that since T 1is not closed y* wmay
or may not lie in T ., TIf y* ¢ T then Rm,n(x;s,y*) is a rational func-
tion of the form definmed in (2); and, in view of (4), this is a best uniform
approximant of pdf{x) . But, if vy* ¢ T then Rm’n(x;s,y*) is the
limit of a sequence of rational functions and is not necessarily a rational
function itself. In fact, it may not even be continuous (we give an ex-
ample later in this section). However, the limit function Rn,n(X;s’Y*)
will differ from a rational functiom, R;’n(x;s,Y*) say, only at a finite
number of points. And, in fact, this ratiomal function Rﬂ,n(X;s'Y*)
is a best uniform approximant to pdf(x) in the class defined by (2).

The problem discussed in the last paragraph arises because although
the denominator polynomial Qn(x) = Qn(x;Y) >0 for ye T, this no

longer necessarily holds when Y does not lie in T . Since y* is a

subsequential limit of elements of T it follows that, in the limirt,



Q:(x) = Qn(x;y*) can have at most n zeroes, If we let P:(x) = Pn(x;y*)
be the limit of the numerator polynomial as Y(J) + y* it follows that
i . *Yy = * *
there are at most n points where Rm’n(x,s,y ) s(x)Pm(x)/Qn(x) is
(1)

undefined. At all other points we must have R n(x;s,y ) = R__(x;8,7v%)
]

m,n

as j + « . Moreover, since Rm n(x;s,y*) = pdf(x) + {Rm n(x;s,Y(J)) - pdf(x)}
]

(i . . .
. * - .
+ {Rm n(x,s,y ) Rm,n(x,s,y )} it follows from (A4) that for j > 3

(1)
|Rm’n(x;s,v*)[ <Ko+l R Gus,yR) Ry (68, I

and allowing j - = we deduce that

(A9 |Ry | (x35,7%) | < K+p+1

Hence, for all x other than zeroes of Q:(x) , we have the inequality

(a10) s(x)|P;(x)| < (Rep+L)Q) (%)

By continuity, (A10) holds also when Q:(x) = 0 . Thus any real zero of
Q:(x) is also a zero of P;(x) , since s(x) > 0 for all finite x .

We, therefore, eliminate by cancellation each linear factor of Q:(x)
corresponding to a real root of Q;(x) = 0 . We call the resulting rational
fraction R;’n(x;s,y*) and note that for all values of x other than

zeroes of Q:(x)
. vg wk) = ce ok
Rm’n(X,S,Y ) Rm’n(x.s.v )
while at the zeroes {xk t k=1, ..., ko} of Q;(x)

1] . * =
Rm,n(xk’ s, Y*) 1lim Rm

x+xk

n(x;s,Y*)
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Finally, we note that
HRm’n(x;S,Y*) - pdf (x) ” = sup IRm n(X;S’Y*) - pdf (x) I
*¥e (—=, =) ’
= max{xsifg>wi]Rm,n(x;s,y*)-pdf(x)l, lRm,n(xk;s'Y*)"Pdf(xk)la
x#xk
i=1, ..., m}
> sup IR;’n(x;s,Y*)-pdf(x)] = ”Rn’n(X;S,Y*)-pdf(x)H .

XE (-m’m)

The rational function R; n(x;s,Y*) is, therefore, a best uniform approxi-
]

mation of pdf(x) . []

An Example of Degeneracy
To illustrate the problem of degeneracy in the rational spproximant
that arises in the proof of this theorem because T is not closed, we

consider the following density function of the Pareto distribution

aka

pdf(x) = a+l ?
x

a>0, x>k>0.

We consider the case in which a = 2 and a class of rational approximants
of the form (2) is being used with s(x) = 1/x (x> k) and n=4 . Now

consider the sequence of approximants defined by

r 1/2
(3 ) 1Jl/zx2 ) k4 1 }
4y - 2k2] 144 242 2

x 1/2
[ 11 ]1/2 4 ¥ } 2

RA’A(X;S,Y

"
+
e | p

14?242 14K 24
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+4 2j2 14k 232
1/2
) kl. a1 . 11 1/2
T 232 T L 232
and, as j -+ = ,
1/2
X ()Y 1 )2
YJ > yk' = —-—-—-—4- ,0, 7 » 0, 05 0, 0,
| 1+k 1+k

The limiting function is then

2
Z%; » X >k
. *Yy =
Ré’a(x!s’Y ) X
0 , x=k

which i1s not a rational function nor is it continuous on the interval

[k,=) . However

2
2k
' . *) = S5
Ra,a(x,s,y ) 3 s X2 k

X

is rational, continuous and is clearly the best uniform approximant to

pdf(x) on [k,=) . L]

The following version of the Weierstrass Theorem on the uniform
approximation of periodic functions by trigonometric sums is useful in

the proof of Theorem 2.
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LEMMA 2. The system of trigonometric sums

n
(A11) a, + I (ak cos k& + bk sin k&)

0 k=1
is dense in the space of continuous periodic functions with period 2= .

Proof (Meinardus [25], p. 8). ]

PROOF OF THECREM 2

Since R;n(x;s,y*) is the best uniform approximant to pdf(x) we

have the inequality

(A12) E(n,s) < |lpdf(x)-Q (||

where

P (%)
(Al13) Qn(x) = s(x)———lL-:;7§ (n = even integer)

(l+x2)

for every choice of polynomial Pn(x) and for every value of n (even).

We now substitute wvariables according to the transformation

6 =2 tan-lx

which takes the interval - < x <= into -m <8 <7 . We have

Q_ (tan(8/2)) = s(tan(e/2)) [a,cos™(8/2) +a cos®™ 1 (8/2)sin(e/2)

1

I ansinn(ﬂlz)]

and using the relations
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sinB = 2gin(8/2)cos(8/2)

r-1 .
sin’T(8/2) = 2727{ J (-1)r'32[2.r]cos((r—j)e) + [2‘]
320 3 -1

r-1
cos?T(8/2) = 2—2r{ 1 2[%;1c05((r-j)8) + [;?1}}
j=0

we deduce that (Al3) can be represented as

Qn(tan(BIZ)) = s(tan(8/2))sn/2(8) , =T <8 <

where Sn/2(8) is a trigonometric sum of the form (All).

We deal first with the case in which pdf(x)}/s(x) tends to a finite
limit as =x - 2= ., Setting pdf*(6) = pdf(tan(6/2)) and s*(8) = s(tan(8/2))
for -7 <8 <7, we have

pdf*(6)

def*(e)-s*(B)Sn/z(G)ll_5 l{s* () ]| —ngaj-“-sn/z(ﬁ)u

where the uniform norm is now taken over the interval [-w, w] . Since
pdf*(8) /s*(8) 1is a continuous function over -7 < 6 < 7 and by Lemma 2
can be uniformly well approximated by trigonometric sums of the type
sn/2(e) , 1t follows that there exists an n, and a trigonometric func-
tion SHO/Z(G) for which

pdf*(8) €
s%(6) Snolz(a) MG
where C = |[s*(8)|| and € > 0 is arbitrarily small. Hence,

*(9) - g*
l|pdf*(e) - s (G)SnO/Z(e)” <e.
Now consider the case where pdf(x)/s(x) becomes infinitely large

as x =+ to , We split the coefficient function into two factors as
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s(x) = sl(x)sz(x) s where both sl(x) and sz(x) are positive functions
which + 0 as x =+ *= and where pdf(x)/sl(x) tends to a finite limit
as Xx =+ #» , (For example, sl(x) could be a positive constant multiple
of pdf(x) .) Then, there exists an M > 0 for which |[|pdf(x}/s(x)]| = M < » .,
We define sI(B) = sl(tan(8/2)) and s;(ﬁ) = sz(tan(B/Z)) for -~m <8 <1,
Given ¢ > 0 arbitrarily small, since s;(e) . s;(e) both + 0 as

6] > m , we can find 6,> 8, > 0 such that

s;(e) < ef4M for all 6 in [-m, -61] and [62, 7]

¢ o o* -
52( el) 52(62) £
and

s;(e) <e for all & in [-m, -91] and [62, 7]

We let © denote the interval (-81, 92) and eiz its complement in

12

{-n, 7] . We define the continuous function

*
52(8) , B¢ 912

S**(s) =
2 8 e 6°
€ ’ 12

Now, since pdf*(B)/s;(e)s;*(B) is continuous on [-w, W] there exists

a trigonometric sum of the form Snlz(ﬁ) and an n, for which

pdf*(8) S £
sup ®)| < 5=
Be[=myw] SI(e)s;*(B) n0/2 2D

where

D= sup s*(8)s¥*(s)
ge[=7m,m] 1 2

It follows that



All

sup |pdf*(8)-s;(ﬂ)sg(a)sno/z(ﬂﬂ sup |pdf*(3)-s;(e)s;*(e)sn{)/z(eﬂ

96912 65012
el . £
‘ D[Tﬁ} =2
and
sup |pdf*(e)-s’{(e)s;(a)snofz(e)l $ sup Ipdf*(e)-SI(G)s;*(e)Snolz(e)[
66, 6e6,,
* %k
+ sup {51(9”%0/2(9)”52 (8) - s5(o) |}
Bc@lz
2 e |[2M €, €
) D[‘zﬁ] * [m)[?]‘ AR
since

sup |Sn /2(8)1 < sup |— df*ii) -8 /2(9) + sup |— df*ii)
c 0 c |s¥(8)s57(8) 0 c {s-{B8)sZ"(8)
ee912 85612 1 2 93@12 1 2
< 2 sup df*ii) < %?-.
= . =
c |s*(8)sTT(8)
Be@lz 1 2

Hence, given € > 0 arbitrarily small there exists an n, and a trigono-

0
metric sum SnO/Z(B) for which |lpdf*(9)-s*(B)SnOIZ(B)]] < e . It follows

from (A12) that E{n,s) <e¢ for all n 2mny -

O
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PROOF OF THEOREM 3

de la Vallée-Poussin first proved this theorem for polynomial
and trigonometric function approximants. Achieser's proof in [ 1} on
pp. 52-53 for rational fractions holds also for our class of rational

fractions (2).

PROCF OF THEOREM 4 (outline)

The proofs of Part B (sufficiency), Part A(i) (necessity in the
numerator most degenerate case) and Part A(iii) follow as in Achieser
[ 1], pp. 55-56. The difference with the classical theory in Achieser
arises in Part A(ii). 1In this case, when the denominator is most degen-
erate we cannot use the construction that appears in the classical proof
and, as the example in the body of the paper shows, the classical result
on the necessary number of alternations does not in general apply. A
full proof of the necessary condition given here in Part A(i1) together
with a discussion of special cases in which the classical result still
applies will appear elsewhere (Phillips [36]) and can be obtained from

the author on request. []

PROOF OF THEQREM 5.

Achieser [1], pp. 56-57. []

PROOF OF THEOREM 6

The first statement follows by dominated convergence from the exis-
tence of the (M—l)th absolute moment. The behavior of the derivatives

at > follows from the representation

c£™ (s) = [ e (1x) pas (m)ax



and, since (ix)npdf(x) is absolutely integrable on (~=,») , the Riemann-
Lebesgue Lemma ensiires that cf(n)(s) - 0 as s > 3= for each

a=0,1, ..., M-1 . 1

PROOF OF THEOREM 7

By integration by parts, following the argument in Erdéyli [15],

p. 47. D

PROOF OF THEOREM 8

By the theory of Fourier transforms of generalized functions and
their asymptotic expansions as developed in Lighthill [23]. Full details
of the derivations are given in [35], which is available from the author

on request. [:]

PROOF OF THEOREM 9

Since chf(s) is absuvlutely integrable we expand the exponential

~-igx .
e in the inversion formula

pdf (%) =-§;I_we-isxcf(s)ds

about the point x = di and integrate term by term giving

N-1l @ -isd
5%%7'2 f (-is)je icf(s)ds(x-—di)j +
‘jzo )

-isd

1 f (—is)Ne icf(s)ds(x-—di)

27N1

where di lies on the line segment connecting x and di . []
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