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EXISTENCE OF EQUILIBRIUM IN A HYPERFINITE

EXCHANGE ECONOMY: T%

by
D, J. Brown and L. M. Lewis

I. Introduction

The purpose of this paper 1s to propose a model of
economic exchange, a hynerfinite exchange economy, which
allows & systematic and comparative investigation of eco-
nomies where there may be a finite, or measure space of
traderg and a finite or denumerable number of commodities.

Our main result is a metatheorem on existence theorems
in several different types of standard exchange economies.

We shall show, using nonstandard analysis, that the
thecorems of Gale-Mas-Colell (4), (5), Peleg-Yaari (6),
and Bewley (2) on the existence of a competitive equilibrium
in exchange economies with convex preferences, although differ-
ing in thelr assumptions regarding the number of agents and
commeodities, are feormally equivalent to the existence theorem
for a hyverfinite exchange economy.

The paper 1s divided into several sections. First, we
define hyperfinite exchange economies in Section II. The
essential feature of a hyperfinite exchange economy 1is that

it has all of the formal vroperties of an Arrow-Debreu exchange

* » [l . . L3 [] L
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economy, even though it may have an Infinite, i.e., non-
standard, number of commcdities or agents.

In Section III, we give a nonstandard oroof of the
Peleg-Yaari existence theorem for an economy with a denum-
erable number of commodities and a finite number of agents.
Bewley's exlistence theorem 1s an immediate corocllary of the
Peleg-Yaari result.

Cur proof consists of defining an appropriate hyper-
finite exchange economy and asserting that a competitive
equilibrium exlists by transfer of the Gale-Mas-Colell exis-
tence theorem for exchange economies with a finite number
of commodities and agents. The final step in the proof 1s
to take the standard part of the equilibrium allocation and
prices 1n the hyperfinite exchange economy and show that they
constitute an equilibrium in the given standard economy.

Since in the standard model, we are dealing with an
infinite dimensional commodity space, i.e., the space of real
valued sequences, the choice of topclogy is crucial to our
analysis. We shall use the product topology and give an eco-
nomic justification for it, in terms of its myopic properties,

in the final section of the paper.

In a subsequent paper, we shall show that a similar

metatheorem holds for the existence theorems of Anderson (1) and
Schmeidler (7), i.e., these theorems are formally equivalent to
the existence theorem for a hyperfinite exchange economy, where
preferences need not be convex, but there are "many more" agents

than commodities.



II. Hyperfinite Exchange Economies

Let Rw denote the space of real valued sequences and
*Rw the nonstandard extension of Rw . Rw is a linear metric
space, hence *RW is also a linear metric space.

If d is a hyperfinite integer, then *Rd will denote a

d-dimensional internal linear subspace of *Rw . Formally *Rd

has all the properties of a finite dimensional subspace of R, -

In particular, the relative topology on *Rd is given by the

nonstandard extension of the Euclidean metric on the finite dimen-
sional subspaces of Rw

et T denote an internal initial segment of *N , the
nonstandard integers, and |T] =m .

Let P denote the internal set of binary relations
on *R; , the nonnegative orthant of *Rd .

A hyperfinite exchange economy is an internal map

+
d

For each agent t , the proijection of g(t) on P,

éiT—+Px*R

denoted )t , is to be interpreted as the preference relation
. . +
of agent t . The projection of €(t) on *Rd , denoted

e(t) , is the endowment of agent t

An allocation is an internal map g:T-+*R; such that

Zg(t) = I e(t)
teT teT
c . . 0 . *_++
The positive price simplex, Ad , consists of pe Rd
d ++ ‘
such that z P; =1, where *Rd is the positive orthant
i=]1

*
of Rd .



If peoﬂd , then the demand set of the tEll trader

, +
is D(p, t}) = {xe*Rdlp-x < pre(t) and pry<prel(t) , ye*R;
= y:*tx} .

A competitive eduilibrium for a hyperfinite exchange

economy E consists of a price pEOAd , an allocation g

r

and an internal set S +that g{(t) eb{(p, t}) , for all teS ,
*®
where [S|/m~1 .

Theorem (1) If € is a hyperfinite exchange economy satis-

fying the following assumptions, for all teT :

(i) dirreflexivity: =x %:x

(11) monotonicity: X>Y , x#y = x}iy

(1311) continuity: {(x, y):x)iy} is relatively
open in *Rg
(iv) convexity: {xe*R;:x>£y} is convex for all
+
*
Y *Rjg

and (v) L e(t) »>0 .
teT

Then Ei has a competitive equilibrium,

Proof: By transfer of the Gale-Mas -Colell existence theorem (4},
{5) .

II11. Markets with Countebly Many Commodities

Peleg and Yaari proved the existence of a competitive
equilibrium in a market with countably many commodities and
a finite number of traders. In this section we give a non-

standard proof of their result, where we drop their assump-

tlons that preferences are complete or transitive.

*
Note that for m finite, this is the "standard"™ definition

of a competitive eguilibrium in an exchange economy.



In the (P-Y) model, there are m traders whose
. + .
consumption sets are Rw + With the product topology.
Each trader, t , has an endowment vector i(t)e:R$

and a utility function Ut: R;-+R , where U is assumed to

t
be quasi-concave, strongly monotonic, and continuous with
respect to the product topology.

If T7={1, 2, ..., m} , then an allocation is a func-

tion g: T—+R$ such that T gty = I i(t)
teT teT

Let the social endowment be denoted as % , then they

assume that % = I (i)>» >0 .
teT

Peleg and Yaari restrict their attention to price se-
guences peR;+ having the property that p-% < o or equiva-
lently p-% = 1 . Demand sets are defined in the obvious
fashion for such price systems and a competitive equilibrium
is then a price p and an allocation g such that g(t) is
in the demand set of each agent t .

It is important to note that a (P-Y) competitive price
system need not give a finite value to arbitrary consumption
vectors xeRg and may not be summable. Despite these limi-
tations, every competitive equilibrium, in the sense of Peleg-

Yaari, is Pareto optimal.

Let d be an infinite integer and *Rd be the internal

set of sequences x , such that X; = 0 for all i:>d . We

define the hyperfinite exchange economy & where:



(iy T= {1, 2, ..., m}

(ii) ej(t) = *ij(t) for j < d

0 for j > d

149 1 * *
(iii) x>y iff U, (x) >*U(y)
and *i(t) , *Ut denote the nonstandard extensions of 1i(t)

*
and Ut to Rw .

It is immediate that é? satisfies the conditions of
Theorem 1. Hence é? has a competitive equilibrium <p, g’.

et g ==-p where o = p+ I e(t)

teT

L=

Theorem (2) <Oq, og> exists and is a competitive equilibrium

for the given (P-Y) economy.
Proof: Let e = I e(t), since |T| is finite we see that ¢
teT
is standard. I g(t) = I e(t) = e , hence g(t) < e for
teT teT v -
all t . Therefore, each g(t) 1is near standard. ¥

e = 1 implies that g is also near standard.
Consequently, <0q, Og> exists.

gre(t,)>, 0 for some ¢t.eT , since gre = I gre(t) =1 .
0% % 0 v teT

Suppose q; ~ 0 for all finite i . Let y = 0g(to) and

x =y + (1, 0, 0, ...) , then x}t vy by monotonicity of }E .
0 0

Since }£ is continuous in the product topology, which is
0

#
Throughout this paper. near standard will be defined with
respect to the product topology.



strongly myopic (see Section IV), there is some n such that

v
X XY .
n t0

where

%
Il
|
e
[
Hh
o]
H
’_l
| A
o}

Again by continuity of > in the product topology,

t
0

§n'>t g (t,) , but a*X_ "~ 0 , hence is in the budget set of
0 n-

trader tO’ which contradicts the maximality of q(to) . There-
fore, for some finite i , say i =1, q; % 0 .

Since 21 % 0 , some trader, say t has a noninfinite-

1 r
simal amount of the first good.

Therefore, q-g(tl) = q-e(tl) % 0 . Suppose for some finite

j # 1, that qj ~0, say j=2 . Let z = 0g(tl) and v =z +

(6, 1, ...0, 0, ...) , then gmkt z by the same argument as
1
v , +
above. But q-vm é q-e(tl), hence there is a ust such that
g*u ﬁ q-e(tl) and Em>¥lg(tl), by the continuity of >El , 1in
the product topology. This contradicts the maximality of g(ti).
Hence gq; ¥ 0 for all finite i .

We now show that <ipq, Og> is a (P-Y) equilibrium.

o =% ey ,ana %z gwn = 1 %w ,
teT teT teT teT
0( I e(t)) = I 0e(t) since |[T| 4is finite. Hence
teT teT
0 _ . 0.0
I "g(t) = I i(t) . Suppose for some to, q- g(to) <

teT teT



0q-i(t) , then by monotonicity, continuity of >£ in product
: 0
topology, and the strong myopia of the product topology there
. + v 0o v 0. .
is for some n , and stw ’ xn>£0g(t0) where qrx, < q i(t) .
v . s 0.0 0_ .
Hence q-x_ < q°e(t0) , a contradiction. Hence ge g(t) > "g-i(t)
for all t . Suppose for some tl that 0q-og(t) > 0q-i(t) .
Then I 0q-og(t) > I 0q-i(t) , which contradicts
teT teT

0 _ .
I "g{t) = I i(t) .
teT teT
Therefore 0q-og(t) = 0q-i(t) , for all +teT . Suppose for

. + 0
some tl , that Oq-y < 0q-l(tl) , yeRw ., and y}tl g(tl) .

Again invoking the continuity of >t in the product topology
1
and the strong myopia of the product topology, there is an

v . +
m such that Ym>ilg(tl) . Hence there is a wueR, such that

E {t,) and Oq-ﬁ < 0q°é(t ) by continuity of » in
m’%lg 1 b} 1’7 tl

v
product topology. That is, q-%m < grelty) and up >t;9(t;)

a contradiction. Therefore, og(t) is in the demand set of

trader t .

It is doubtful if the original argument of (P-Y) can be
extended to uncrdered preferences, since theilr proof used the
equal treatment property of core allocations in a replicated
economy and Scarf's existence theorem for the core of an N~-person
game, where in both instances agents are assumed to have quasi-

concave utility functions.



Bewley's existence theorem for an éxchange economy
wlth a finite number of agents, where the commodity space is
2, the space of bounded real valued sequences, with the

[~e]

Mackey topology for the pairing <%_, 2,) and 2, 1is the

1
space of summable real valued sequences, is an immediate

conseguence of the (P-Y) exlstence theorem.

Bewley assumes that each agent has 2: . the space of
nonnegative bounded real valued sequences, as his consumption
set; that the social endowment i is uniformly bounded away
from 0 and is in 2: ; that preferences are given by quasi-
concave, strongly monotonic, and Mackey continuous utility
functions. He then demonstrates the existence of a competi-
tive equilibrium with strictly positive prices in Ql

Since %52: , we can assume that each agent's consump-
tion set is norm bounded, but on norm bounded subsets of &
the Mackey topology agrees with the product topology. Hence
by the (P~Y) existence theorem there exists an allocation g

and a price pe:R$+ such that g{(t) 1is in the demand set

of each agent +t and p-% =1 . The allocation g takes
values in Ri , since g(t) < i for each t . Let

a= (1,1, ...1, ...) , then iflsu where B > 0 . Hence
Rgru < q-i =1, and g+u < 1/8 . That is, g 521 .

!
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ITI. A Myopic Characterization of the Product Topology on R

w

A topology ~ on R, is said to be strongly myopic;

v .
if for all xeRw ; X converges to x with respect to ~7 .

n

The fact that the product topology, ~JL , 1s strongly myopic
played a crucial role in our proof of the (P-Y) existence
theorem. It is conceivable that there are other topologies

on Rw ;, €.9., the uniform topology or the box topology, which
are finer than the product topology and are strongly myopic,
in which case, those topologies would admit a larger family

of strongly myopic preferences than the product topology.

In this section, we shall show that if these topologies
are required to be locally convex (linear) topologies on Rw
then this is not the case. That is, the product topology is
the finest locally convex (linear) topology on Rw which is
strongly myopic.

If R, 1is the set of real valued sequences which are
nonzero in at most a finite number of places, then the product
topology is the Mackey topology for the duality <Rw, RQ> ]
(See example 3 on page. 249 in (g)). Suppose ‘;r is a strongly

myopic topology on R.W ., then every ~7Lcontinuous linear func-

tional L can be represented asa sequence P . This can be seen

by considering ui ={0, 0, ..., Ofg%% 0, ...) and letting

p, = L(ui) ;, for i=1, 2, ... . Then L(Xn) = _Elpixi '

but §n converges to x with respect to J andl—L is

chontinuous. Therefore, L(x)} = .;1pi}%. = p*x . Hence, PER,
i=
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Let :7;m be the finest locally convex (linear) topology on

Rw which is strongly myopic. ;7;m exists since it is generated
by the family of seminorms || I!a , where for each =xeR_ ,
ll;n - x||u converges to 0 . Note that every peR_ defines
such a seminorm, |p*x| . Hence every linear functional defined

- - 7
by a PeR_ is ‘ng continuous. Therefore :7;m =V, -

-

But yj; is strongly myopic, hence ~J; =y ng

This result complements our work in ( 3) , where we showed
that the strict topology is the finest locally convex (linear)
topology on %, which is strongly myopic.

In (3), we explored the economic interpretation of myopia,
when the xef_ were interpreted as state-contingent claims. We
argued that myopia resolved the St. Petersburg paradox in the
sense of Buffon, i.e., agents "neglect" sufficiently unlikely
states. This resolution has been justly criticized as assuming
away the essential feature of the St. Petersburg paradox. That
is, xeRw and xgL_ 1is the interesting case. The myopic
characterization of the product topology, given above, is a response

to this criticism.?

*
We owe this observation to John Geanakoplos.
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EXISTENCE OF EQUILIBRIUM IN A HYPERFINITE

EXCHANGE ECONOMY: TII™

by

D. J. Brown and L. M. Lewis

I. Introduction

Hyperfinite exchange economies were defined in (1), where
it was shown that the existence theorems of Gale-Mas-Colell {4) and
Peleg-Yaari (7) are formally equivalent to the existence of a com-
petitive ecuilibrium in a hyperfinite exchange economy with convex
preferences.

Here we extend that analysis to the nonconvex case. Our
first result is a new proof of the existence of a near standard
competitive equilibrium in a nonconvex hyperfinite exchange economy,
where there are "many more" agents than commodities, first established
by Lewis in (5)

With this proof in hand, it is relatively easy to demonstrate
the formal equivalence of the existence theorems of Anderson (2) and
Schmeidler (9)}.

our proof consists of first proving the existence of a com-
petitive eguilibrium in a hyperfinite exchange economy with noncon-
vex preferences, where the ratio of the number of commodities to the
number of agents is infinitesimal, by transferring Anderson's exis-

tence theorem for approximate eqguilibria in a finite economy with

* . £] - - »
Note: This is a preliminary draft forprivate circulation, and 1s
not to be quoted without the author's permission.
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nonconvex preferences. 1In theorem (2), we establish the existence
of a near standard competitive equilibrium where the initial endow-
ment is integrable and agent's preferences lie in the nonstandard
extension of a compact set of preferences, each of which is contin-
uous in the product topology. Then, following Rashid (8), we
construct a measure-theoretic exchange economy from the hyperfinite
exchange economy and demonstrate that Schmeidler's theorem holds by
taking the standard part of a near standard competitive equilibrium
and showing that it is a measure-theoretic competitive eguilibrium.
Finally, using Rashid's construction, we prove our major result,
the existence of a competitive equilibrium in an exchange economy with
a measure space of agents and a countable number of commodities, where
agents have nonconvex and incomplete preferences, which are continuous
in the product topology. This result extends the Peleg-Yaari theorem

for a finite number of agents to a measure space of agents.

ITI. Hyperfinite Exchange Economies

Let R denote the space of real valued seaguences and *Rw

the nonstandard extension of Rw . Rw is a linear metric space,

hence *Rw is also a linear metric space.

If d 4is a hyperfinite integer, then *R, will denote a

d

d-dimensional internal linear subspace of *R, - Formally *Rd

has all the properties of a finite dimensional subspace of Rw .
In particular,the relative topoleogy on *Rd is given by the non-
standard extension of the Euclidean metric on the finite dimen-

gional subspaces of R, -
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Let T denote an internal initial segment of *N , the
nonstandard integers, and |T| = m .

Let P denote the internal set of binary relations on
*Rg ; the nonnegative orthant of *Rd .

A hyperfinite exchange economy is an internal map
E:r —>Px*Rg

For each agent t , the projection of Ett) on P,
denoted >-t , is to be interpreted as the preference relation of
agent t . The projection of E(t) on *R; , denoted e(t) , is

the endowment of agent ¢t

An allocation is an internal map g:T -+ *R; such that

L g{t) = Z e(t)
teT teT
CL . . 0 . ++
The positive price simplex Ad , consists of p *Rd
d 4+ . sy
such that z p;, = 1 , where *Rd is the positive orthant of
i=1
*®
Ra
If pEOAd , then the demand set of the tEE trader is

+
D(p, t) = {xe*R;]p-x < pre(t) and p-y < pre(t) , ye*Rg =$yﬂ-tx}.

A competitive equilibrium for a hyperfinite exchange economy
é; consists of a price psoﬂd , an allocation g , and an internal

set S such that g(t) eD(p, t) , for all teS, where |Si/mn1 .

Theorem (1) If é? is a hyperfinite exchange economy satisfying

the following assumptions, for all teT :
(i) dirreflexivity:  x)b x

{ii) monotonicity: X>y , X £y = x>ty
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(iii) continuity: {(x, y): x>%y} is relatively open

+

3 *
in Rd

(iv) transivity: X>Y : ¥ 2 X2

and (v) L e(t) >>0.
teT

(vi) d/m 0

Then & has a competitive equilibrium,
Procf: By transfer of the Anderson existence theorem (2).

A vector xe*Rd is said to be near standard if for all finite
i, X4 is finite, i.e., x is near standard in the product topo-
logy.* x>%>0 means x; > 0 for all finite 1 .

If & is finite, then a family of preference relations on
*Rg is said to be near standard if they lie in the nonstandard ex-
tension of a family of preference relations on Rg , denoted é? '
which is compact in the topology of closed convergence.

If 4 is infinite, then a family of preference relations on
*R; is said to be near standard if they lie in the nonstandard ex-
tension of a family of preference relations on R$ , denoted & '
which is compact with respect to the Hausdorff uniformity on closed

subsets of R; b4 R; , Where R; has the product topeology.

A near standard competitive equilibrium for a hyperfinite
exchange economy é? is a competitive equilibrium <p, g, SY» such

that p is near standard and "almost all" traders in S have near

*

If x 1is a near standard vector in *Rd . then Ox , the standard
part of x , is the seguence 0xi ; the standard part of X5 0 for
all finite i .



CPP 81222 5

standard allocations. That is, for every E'ﬁxo , there exists an internal
set of traders, V_ , such that {teS|g(t) is not near standard}

<
c Vv, and |V |/m < ¢

If h(t) is an internal map from T into *Ry , then h(t)

is said to be integrable if for all finite i , (% T h(t))i is
teT

integrable, i.e., (% I hit)); is finite and (% ) h(t))i ~no o,
teT tev

if |v|/m~ 0, for all finite i .

For the remainder of this paper, we shall assume that prefer-
ences are near standard, i.e., lie in *03, where each preference
relation in F s irreflexive, strongly monotonic, convex, and

continuocus in the product topology.

Theorem (2): If € is a hyperfinite exchange economy satisfying

the following assumptions:

(i) preferences, >t , a&re near standard

{ii) z e(t) » >0
teT

{iii) e(t) 1s integrable

1

(iv) Z el(t) >>0,

teT %

then & has a near standard competitive equilibrium <§ N« N s>

r

where ¢ >¢> ¥

Proof: Assumptions (i) and (ii) guarantee that E: satisfies
the conditions of Theorem (1), hence 8 has a competitive equili-

brium <p , g , S> . Let g = é p , where o = p-% L e(t) . We
teT
shall show that <g v 9 S> is a near standard competitive equili-

brium and that g >¢> o .
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q-% I e(t) =1 , hence by assumption (iv) g is near
teT

standard. “Almost all" traders have near standard allocations,
since e(t) 1is integrable and we can apply lemma (1) of Brown-Khan
(3} , which states: If & is an integrable function from T to
*R , then (¥e >, 0) @neN) { W] /m > 1-¢} where W' = {teT||4(t)| < n} .
We simply use this lemma to construct a standard sequence, which for
the given € bounds the allocations, on the finite indices, of all
but €]8| traders. Hence (g , @ , S} is a near standard competi~
tive equilibrium.

Suppose gy is infinitesimal for all finite i . Since
q-% tETe(t) = 1 , there is a noninfinitesimal fraction of traders
in SE who have a noninfinitesimal income at prices g . In addition,
a noninfinitesimal fraction of these traders have near standard allo-
cations.

Let t, be one such trader, i.e., tyes , q-e(tl)>%(}, and
g(tl) is pear standard. Let y = g(tl) + (1, 0, 0, ...) , then
y >t1 g(tl) . Hence §n>fj_g(tl) for some finite n . This
follows from the assumptions that each preference relation in 6> is
strongly monotonic, continuous in the product tépology-—therefore
strongly myopic--, and that g(tl) is near standard. Hence, for

any standard preference > in £, ¥H.> g (tl) for some finite

n . Since >t is near standard in the topology of closed conver-
1

gence, {(or near standard with respect to the Hausdorff uniformity,
see appendix), the same conclusion holds for >t . But q*¥n v o,
hence ¥n is in the budget set of agent ty . contradicting the
assumption that t1 eSS , i.e., g(tl) e D(qg, tl) , the demand set of

agent tl .
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Hence, for some finite i , say i =1 , a, %0 .

Suppose for some finite i, £ 1 , that qio ~ 0 . By
assumption (iv) and an argument similar to that above, we can
find a trader t2 such that gl(t2)>¢ 0, g(t2) near standard,

and t, € S . Again using strong monotonicity, strong myopia, and

2
the fact that preferences are near standard, wecan find a

+ v ..
VveR, such that vhfatzg(tz) for some finite n , q-gn < gre(ty) o
a contradiction.

Therefore, g, ¥ 0 for all finite i
l.—-

ITII. !larkets with a Measure Space of Agents

Under assumptions (i), (iii), and (iv) of theorem (2), Rashid (8)
has given a method for constructing a measure-theoretic exchange
economy % from a hyperfinite exchange economy & , for finite 4
The measure space is simply the Loeb space over T , generated by the albegra
of internal subsets of T with counting measure, The measurable

assignments of traders to preferences and endowments is just the

standard parts of > and e(t) , denoted Q>t and 0e(t). +
Theorem (3): If (f satisfies the assumptions of theorem (2) and

d 1is finite, then %E has a competitive equilibrium.

Proof: By theorem (2), 29 has a near standard competitive equili -

brium <q , g . S> , where g >%> 0 . We shall show that <0q, 09>;

*Note that oé? satisfies the conditions of Schmeidler's existence
theorem, i.e., preferences are irreflexive, transitive, strongly

monotonic, and continuous. Moreover, the assignment of agents to
preferences is measurable and the initial endowment is integrable.
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the standard parts of g and g(t) constitute an equilibrium in
0g

First, we show that g(t) is Loeb integrable:

(1) = Ia(t) =21 Ie(t) and I 1 e(t) is finite,
teT teT teT
hence 1 I g{t) is finite,
m
teT

(ii) let VvV be an internal set of traders such that

|v]/m ~ 0 and consider % I g(t) . Then

teV
teT teV teV
= ge: 3 e(t) v 0. Since e(t) is integrable
m teV -

and g is near standard. But each component of
g 1s noninfinitesimal, hence % Z gf{t) ~ 0.
teV -

Conseguently, ng exists and ng = foe .

If teS , then g-g(t) = g-e(t) . Hence, 0q-og(t) =

0q-oe(t) on a set of Loeb measure one, i.e., |S|/m 1

Suppose for some teS , there is a standard x such that
Oq-x < 0q-oe(t) and x0>i 0g(t) . Then by continuity and the fact
that preferences in é? are near standard in the topology of closed
convergence, there is some y such that y>£g(t) and g'y < gee(t) ,

a contradiction. This completes the proof.

We now drop the assumption that d is finite.
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Theorem {(4): If éf’ satisfies the assumptions of theorem (2), then

Oéi has a competitive equilibrium.

Proof: By theorem (2}, é? has a near standard competitive equili-

brium <q, g, 8» , where g >¢> 0 . Let 9, be the nonstandard

0

extension of g , the standard part of g , and define g_=qg-g

C

(qc):_L

Let hi(t)==gi(t)- for all i

Then for almost all t and for all finite 1 , hi(t) v gi(t) .
qc-h(t) = qc'g(t) -g cle(t)-g(t)]=geg(t) -g_+e(t) =g-e(t) -g_relt)
= g, relt)
<0 0 > . s s

We shall show that d. v h{t) is a competitive equilibrium
for Oéf.

Rw with the product topology is a metric space and Loeb (6)
has shown that the standard part of an internal near standard func~
tion from an internal measure space into the nonstandard extension

of a metric space is measurable. Hence, 0e(t) is measurable.

Anderson (1) has extended this theorem of Loeb to uniform
spaces. Hence, 0>t is measurable.

If f:T » RW , where fi(t) is integrable for every i , then
we define the integral of f as ffi for 1 =1, 2, ... , and
denote it as [f .

Now applying Rashid's construction to é? , we see that 08

is a standard measure~theoretic exchange economy,



CPP 81222 10

Oe is integrable by assumption (iii). Suppose for some

internal set of traders V that |V|/mn 0 . Consider

rln I h(t) . Then qc-;}l— Z h(t) 21%1 I qc-h(t) =% I qc~e(t)
teV teV tevV teV
— -l z
9" m e(t) ~ 0, since e(t) is integrable and gq is
teVv — c
standard. But (qc)i is noninfinitesimal for each finite i ,
hence (3 £ h(t)); n 0 for all finite i . Therefore, 'h is

teVv
integrable and foh = foe .

We have also shown that qc-h(t) and qc-t(t) are integ-
rable, hence for almost all ¢t , qc-h(t) and qc-e(t) are
near standard. It is clear that if 0(qc-h(t)) exists, then

0 0

q, oh(t) < 0(qc'h(t)) ;, then using

a-"n(e) < Otaenten) . o1r Oq

strong monotonicity, strong myopia, and the fact that preferences
are near standard, we can find a ye*R+w such that g-y < gre(t)

and vy >tg(t) for some teS, a contradiction. Hence, for almost

all t , Oqc' Onie) = O(qc°h(t)) )

Let S be an internal set of full measure, where for all

teS:
(a) g{(t) 1is near standard
(b} g-g(t) 1is near standard
(c}) g(t) is in the demand set of trader +t .
Suppose teS and for some infinite Ny and n; . that
n, a
_ : _ ¥ 2t
@y T a5 g.(t) ¥ 0 . Let vy g, (t) + g (1, 0, 0, ...) .
j=ng+1 J 0 1

Then Yy >t§ (t) and ¥ (t) vwg(t) , hence y >_g{(t) ; but
n0 n0 - t
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g-y 2 g-g(t) = gre(t) which contradicts (c). Therefore,
ol Ny

)
- g.+g.(t) = z = I g.-g.(t)
=n._.+ .
5 n0 17373 j=n0+1 n tes J 73

=1
1
2
1]
=
m 1

<
o
v
=
rt

1 1
= ) d.*= I g.(t) . q;(= I g.(t))
j=ng+1 I ™ tes - j=1 3™ gep 7]

n n
1 0 1 0 1 0
=5 T (I a g5t)) v o T (I g, g4(th) ~ & T T q

g.(t))
teT j=1 2 tgS §=1 I J

T T q. gj(t)) = % I g-g(t) = % I gee(t)
eS tesS

n
0 1 4
z T . e, = .e.
{ qj ej(t)) + = L ( I q ej(t))

M ter tET §=1 T j=ny+1

| &
™=
&1
1]
®
o
I
=l

= I Q2 I e.(t)) + g . (E T e.(t))
=1 I ™ ger J j=ng+1 7 M ter J

=i

1 . 1
g. (= I e.,(t)) ~ 0, since = T g.(t) = I e.{t) ¥v. .
IM e D M oyep 73 ter J

d
r ( I q. ej(t)) ~ 0 , which implies for almost

Therefore,
tET j=ny+1 7

d

all tes , z qg.

] n
3 ej(t) o0

j=n0+l

Consequently qc-e{t) ~ gre{t) for almost all t ¢ S . Hence,
0

qc'oe(t) = 0(qc'e(t)) ; and therefore 0qc-oh(t) = 0qc°0e(t) for

almost all +teg .
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The argument that h(t) is maximal in the budget set

|0qc°y_§ Oqc 'Oe(t)} is now the familiar one given above,

+
{yaRw
employing strong myopia and the fact that preferences are near
standard.

This completes the proof.

Corollary 4.1: If (i) Ef satisfies the assumptions of theorem (4}

{ii) there exists finite noninfinitesimal positive

c and ¢ such that for all teT ,

G 1
cou < e(t) < ¢; u where
u= (1, 1, ..., 1)e*Ry .
Then QE- has a competitive equilibrium, with prices in 21
Proof: By assumption (i), Qg has a competitive eguilibrium
<. . “nw)) .
By assumption (ii), foe(t) is uniformly bounded away from

zero. Hence 0qc is in %4

If one wishes to consider R: as the commodity space with
the Mackey topology for the pairing <2w ‘ 21> : assumes that prefer-
ences are Mackey continuous; and assumes that consumption sets are
norm bounded. Then corollary 4.1 implies Bewley's (unpublished)
theorem on the existence of a competitive equilibrium in an economy
with a measure space of agents and a countable number of commodities,
where we have dropped his assumptions that preferences are complete
or convex.

This result follows from the observation that the Mackey
topology reduces to the product topology on nofm bounded subsets

of 2 .

o0
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APPENDIX

The Compact Topology on the Space of Preferences

In "Neighboring Economic Agents," Debreu remarks that an
appropriate way to topologize the space of preferences over a
commodity space, whose topology is metrizable, is to define a
uniform structure over the space of preferences. This uniform-
ity is called the Hausdorff uniformity by Bourbaki and is derived
from the uniformity, generated by the metric, on the underlying
commodity space.

For the case at hand, the metric space is R, X R, with
the product topology and metric d . Let U be the uniformity
generated by the bounded metric d, = d/1 + 4 . As is well known,

1

d and dl generate the same uniformity on R, ®* R, . Since

RW X Rw is a bounded metric space under d the Hausdorff metric

l r

R x R
2 W L

on the closed subsets of Rw X R.W + denoted ;» generates

R x R
the Hausdorff uniformity on 2 v v

(see E. Michael, "Topclogies
on Spaces of Subsets").

Narens, in "Topologies of Closed Subsets," defines a topo-
logy of seminal importance in the nonstandard analysis of exchange
economieg. This is his so-called compact topology. The properties

of the compact topology necessary for this paper are given in the

next three propositions of Narens.
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Proposition (1) Let (X, T) be a topological space. BRe*I' can

be considered in two ways: as a closed subset of *X and as a

peint in the space (*I' , *C}) where C = {¥|Yc T, Ac*Y¥ ﬁ>0AeW} .
0

Consider B as a closed subset of *¥ and let A = "B . Then in
the space (*I' , *C), B is near standard to *A , and 0(*A) = A .
Proposition (2) (I , C) 1is a compact space.

Proposition (3) If (X , T) is a bounded metric space, C 1is

the compact topolqu on [ , and * the Hausdorff topology on T ,
then c<c¥ .

From (2} and (3) we see that a subset of " which is compact
with respect to .j¥ is also compact with respect to C . For our
purposes, X = Rw % Rw with the bounded metric d1

If > 1is a binary relation on R; which has open graph,
i.e., continuous in the preduct topology, then > , the complement of
> in R; X R; is relatively closed. We assume that our prefer-
ences, i.e., > , belong to a set P which is compact with respect
to the topology induced by the Bausdorff uniformity, hence compact
in Narens' compact topology. If M<*P , then Q¥- denotes its
standard part with respect to -}v. Since »3; is finer than C .,
the standard part of » with respect to 3 equals the standard

part of » with respect to C . The following theorem is

essential for the analysis of this paper.

Theorem If x and y are near standard, then Ox 0>- 0yé=>u {(x) >uy)

, where u(x) denotes the monad of =x with respect to the product

topology on Rw .
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Proof: Immediate consequence of proposition (1).

Note that if the underlying space X is compact then Narens
shows that C = J . Hence, when the commodity space is a finite
dimensional locally ¢onvex (linear) topclogical vector space, i.e.,
Rn , the topology of closed convergence on the space of closed sub-
sets is identical to the compact topology of Narens, i.e., we com-
pactify Rn by taking its Alexandroff compactification.

If X 4is an arbitrary uniform topological space, then we
do now know the relationship between the compact topology and the
topology induced by the Hausdorff uniformity on the space of closed
subsets of X . To extend the analysis of this paper to commodity
spaces which are nonmetrizable infinite dimensional locally convex
(linear) topological vector spaces--hence uniform topological
spaces--we would have to show that the topology induced by the

Hausdorff uniformity is finer than the compact topology of Narens.



