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ADDITIVELY DECOMPOSED QUASICONVEX FUNCTIONS*

Gererd Debreu and Tjalling C. Koopmans

0,  INTRODUCTION

Let Xl,....Xm be m sets, and let X be their Cartesian product.

We say that a real-valued function f on X is edditively decomposed

m
according to the factorization )xfxi of X if there ere m real-

i=1
valued functions fl""’fm respectively on the factor sets xl,....xm
m
such that for every element x = (xl,...,x ) of X= ><J{. , one has
m 1 i=3 *
fx) = ) fi(xi) . If in addition for every i =1,...,m , X, is a

i=1
convex subset of a real vector space, the condition that f be quasi-

convex is meaningful. This article is concerned with the conjunection of
the two properties of additive decomposition and of quesiconvexity of the
function f .

That conjunction has remarkably strong implications that we summarize
here. Assume that the sets Xi are open convex subsets of finite-dimen-
sional real vector spaces, that m > 2 , and that the functions fi are
not constent. Then (1) every function fi is continucus (Theorems 1 &nd
G); (2) every function fi with at most one exception is actuslly convex

(Theorems 2 and 10); {3) if the exception arises and the function fj is
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not convex, then all the other functions fi(i.#j) have a strict-convexity
property {Theorems 2 and 10), and the function fJ itself has several of the
main properties of & convex function (Theorem 3); () for every 1 , if L

is an oriented straight line intersecting Xi » &and g 1is the restriction
of fi to L , then

(2) g 1is & continuous real-valued function defined on a non-empty real
interval; the domain of g is partitioned into three intervals D<(C<I

(some of which may be empty) such that g 1is strictly decreasing in D,
constant in C , and strictly increasing in I .

In section 2 we associate with every fumction g satisfying (a) en
extended real number c(g) , the convexity index of g . One of the main
properties of the convexity index is stated in Theorem 6: in the case of
two factors Xl . X2 that are open real intervals and of two non-constant
real-valued functions fl . f2 defined on Xl s X2 respectively, the func-
tion f defined by x = (xl,xz) " f(x)=fl(ﬁ)+f2(x2) is quasi-convex
if and only if f, and f, satisfy (a), have finite left and right-
derivatives everywhere, and c(fl) + c(fe) 2 0. In section 2 we also
introduce a class of real-valued functions he depending on a real

parameter € , and whose domain is an open real interval Z With

g °
the notation and the essumptions of the next to last sentence, we show
(Theorem T} that the function f is quasi-convex if and only if for
every x?e Xl and xge.xg » there is a function he vhose graph locally
separates suitable linear transforms of the graphs of fl and f2 . In
section 3 we extend the concept of the convexity index to a real-valued
function g defined on & non-empty convex subset Y of & finite-

dimensional real vector space and such that for every oriented straight

line 1L intersecting Y , the restriction gL of g to L satisfies
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(a). By definition, c(g) = Inf c(gL) . In the case of two factors Xl
L
snd X2 , and of two 02 real-valued functions fl and f2 s

gives the expression of c¢(f) in terms of e(f)) eand c(fz) . We

Theorem 11

conclude section 3 with a characterization, by means of convexity indices,
of the quagi-convexity of = 02 real-valued function additively decom-
posed into a finite number (a2t least equal to two) of nonconstent

functions defined on finite-dimensicnal open convex sets.

Because of our perticuler backgrounds, we give examples of possible
applications of these results only in economic theory, perteining to two
erees of that field. We would appreciste reader responses with regard to
other fields of spplication of mathematics.

Utility theory. Consider the case in which the set ¢ of the commodi-

ties of an economy is partitioned into m sybsets Cl""’cm . For instance
the commodities in set Ci are the goods and services availgble in the ij;-h
period. Alternatively in a study of economic uncertainty, the commodities in
set Ci are the goods and services whose availability is contingent on

the occurrence of the iEll state of the world. BStill another example is

the partitioning of the set C of commodities into groups of goods or
services with related physical cheracteristiecs. The consumption of a

given consumer in the economy is described by a vector x listing the
gquantities of the various commodities that he consumes. Corresponding to

the partition of C into the sets C Cm s there is e partition

1P
(xl,...,xm) of the components of x . The vector %, belongs to a subset
Xi of the commodity space associated with the commodities in Ci and x
belongs to the Cartesian produet X = :;Exi . The preferences of the given
consumer are represented mathematicallyigi & complete preorder, i.e., by

a complete, reflexive, transitive binary relation, € on X where x « x'

" x' is at least as desired as x ." If the space X and the

is read a&s
relation « satisfy mild topologicel properties (e.g. X is connected

and separeble and {(x,x')eXxX|x4x'} 4s closed), then the preference



relation « cen be represented by = continuous real-valued utility function
u in the sense that x £ x' is equivelent to u(x) < u{x'} . Denoting the
set of factor spaces of X by I = {1,...,m} we consider a subset J of

I and we fix the values of all the components of x for i ¢ J equal to
0
)

(xi Assume now that the preorder induced by «£ on :V(Xi given
ied

is independent of those particular velues, and denote

ifg -’ o
the values (xi)ilJ
that induced preorder by %y - Assume also thet there are at least three
factor spaces and that forlevery i eI, the induced preorder 5i is not
triviel in the sense that one does not have xASE x' for every pair (x,x')
of elements of X, . Then (G. Debreu [1960]) there are m real-valued con-
tinuous functions u; on Xi (i =1,...,m) such that the preference
preorder < is represented by the function u defined on X by

u(x) = .f ui(xi) . If in this situation the standard assumption of
convexi;;lof preferences is made, i.e., if the set X is convex (open

end finite-dimensionel) and if for every x' in X , the set {xex{x ¥» x'}
is convex, then the functicon u 1is quasiconcave and the results of this
article apply. In particular every function u; s with at most one ex-

ception, is concave. This observation was made for edditively decomposed

quasiconcave and twice continuously differentisble utility functions in

E. E. Blutsky's classic paper of 1915, in J. Green [21961], W. Gorman
[1970], and T. Rader [1972). It was also made by K. J. Arrow and A. C.
Enthoven [1961] in the context of twice continuously differentiable pro-
duction functions that we discuss below. In unpublished notes of 1971,
T. C. Koopmans showed that the assumptions of differentisbility and even
of continuity could be dispensed with. In & paper independently written

at about the same time end eventually published in 1977, M. E. Ysari



established the concavity pf every function u, with at most one exception

dispensing with the assumption of differentiability but retaining the assump-

tion of continuity. (An interesting sequel of this work is M. E. Yaari [1978].)
The assumption of independence for the preorder induced by < on

;ﬁ(xi is of speciasl interest in two interpretations in which it is

z;gumed that the spaces Xi are identical with the same list of physical

goods or services, and that the preorders induced on each Xi are also

identical. For m > 3 , the preference relation « can then be represented

by & utility function v of the form

), a >0, ie1I.

vix) = 7§ aiu(x 4

jer T 1
Moreover, if <« 1is convex, i.e., if v is quasiconcave, then every function
aiu » with at most one exception, is concave. Hence u is concave.

The first interpretation, which geve rise to Koopmans' initial work,
is thet in which the values 1 =1, 2,...,m refer to successive periods in
time, and ai = ai sy 0< o<1, represent successive powers of a discount
factor o .

In the second interpretation the values i =1, 2,...,;m refer to
different states of the world, and oy is the Judgmentsl probadility of the
i¥8 state of the world for the decision meker. (K. J. Arrow [1953],

J. Hirschleifer [1965], J. C. Cox [1973], €. Blackorby, R. Davidson, and
D. Donaldson [19771).

Production theory. As in K. J. Arrow and A. C. Enthoven [1961], we

consider & set C of commodities used as inputs in the production of a

single output and we assume that ¢ is partitioned into m sets C C_ .

127+ sCy

For every i = 1,...,m , there is an elementary production process trans-



forming the input-vector X, s whose components pertain to the commodities
in C, , into fi(xi) units ;f output. Thus the input-vector x = (xl,...,xm)
is transformed into f(x) = -Z fi(xi) units of output. In an attempt to
relex the standard conditionloi convexity of the set of feasible input-
output vectors, i.e. of concavity of the function f , R. W. Shephard [1953],
J. J. Laffont {1972], C. Fourgeeud, B. Lenclud, and P. Sentis [197k],

E. Dierker, C. Fourgeaud and W. Neuefeind [1976], use the condition of con-
vexity of the sets of input-vectors required to atisin & certmin level of
output, i.e. of quasiconcavity of the function f . If the assumptions that
we listed earlier are satisfied, namely if the domains of the functions fi
are open convex subsets of finite-dimensional real wvector spaces, m > 2,
and the functions fi are not constant, then all of them, with at most one
exception, are mctually concave, In other words every elementary production
process, with at most one exception, has & convex set of feasible input-

output vectors.



1. TWO FACTOR SPACES OF DIMENSION ONE

A real-valued function h on & convex subset C of a real vector space

is said to be guasi-convex if for every real number k the set

{x € ¢{ h(x) < k} is convex. Considering & guasi-convex function

f on & nonempty open real interval X, we define the intervels Xd and X as

follows.
For every k in f(X), the set {x € X| f(x) < k} is a nonempty real
interval with endpoints a(k) and b(k) where a(k) < b(k). The intervals

) < a(k

implies a(kl 2)

[a(k), b(k)] for k € £f(X) are nested since k, < k <

1
< b{k.}. We define

x= Sup a(k) =and x= Inf b(k).
kEF{X) ket (X)

The function f is weakly decreasing in the interval ]Inf X, x[. To
see this, consider x' and x" such that Inf X < x' < x" < x. Let k = f(x').
Then a(k) < x' and x < b(k). Therefore x" belongs to the intervel la{k), b(k)[
hence £(x") < £(x'). We define X* as J]Inf X, X] if f is weakly decreasing
in the latter interval, amd as ]Inf X, X[ otherwise., BSimilarly, f is weakly
increasing in the interval ]x, Sup X[. We define xt as [x, Sup X[ if £ is
weakly increasing in the latter interval, and as ]x, Sup X[ otherwise.

We note that Xd and Xi together cover X, for if x in X belonged neither
to Xd nor to Xi, one would necessarily have x = x = X, f(x) > Inf f{Xd), and
f{x) > Inf f(Xi). However, the last two inequalities contradict the quasi-
convexity of f.

Thus, X partitions into the three intervals Xd\Xi, Xd N xi, and XJ \Xd,
of which at most two mey be empty. .In Xd N Xi, which is a proper interval
only if x<X, f takes on the constant value Inf £(X). Finally if x € X3\ X

and x' € xl\xd, then x<x'.



Clearly, if Xd is not empty, then f is not weskly decreasing in any
interval strictly containing Xd, and if Xi is not empty, then f is not
weakly increasing in any interval strictly containing Xi.

Also note that if £ is nonconstant on X, it is not possible for f
to take on different constant values £(X%) and £(x') on X and X' re-
spectively. This would require Xd and Xi to be disjoint. But then
£(x8) < £(x) wowia imply x¢ Cx! = X and £(x}) < £1(x%) would imply

v C Xd = X, contradicting the disjointness.

In the remainder of this section we always maske the assumptions

A.l, X end Y are open real intervals. f and g are nonconstant

real-valued functions on X and Y, respectively. The function F: X x Y + R

defined by Fi(x, y) = £f(x) + gly) is quasi-convex.

Clearly, the two functions f and g are quasi-convex. We associate

with f the twc intervals Xd, X" defined earlier, and with g the corresponding
intervals Yd, Yl.

In the sequel, we will often appeal to the following remarks. Let

~

the function f on X = -X be defined by f£(x) = f£(-x), and let the function
g on ¥ = -Y be defined by g(y) = g(-y). The three functions defined respec-

tively on ¥ xy, xx¥, and X x Yoy (x, y) » F(x) + gly), £(x) + gly), and

£(x) + zly) are also quasi-convexand onehas 38 = b, &= G, 34 = -yl

and ¥* = —Yd. Now consider a point (x, y) in X X Y. As we noticed earlier,



x belongs to Xd and/or to Xl, and y belongs to Yd and/or to Y'. The preceding
remarks will often enable us to assume without loss of generality that x
belongs to Xd or that x belongs to Xl, and that y belongs to Yd or that y

belongs to Yl.

Theorem 1. Under assumptions A.l, the functions f and g are continuous.

Proof: Bince g 1is nonconstant on Yd and/or on Y’ s We can assume
without loss of generality that g is not constant on Yl .
Given any € such that O < 2¢ < Sup g(Y') - Inf g(Y'), there are three

points ¥i» Yoo y3 of Y' such that

(1) yl < y2 < y3s
(2) gly;) < gly,) - €, and
(3) g(y3) < g(ye) + €.
Sup gl(Yh
Sup gly)
Iy * y<zZ .
gly ) +2cg ==~ =+ — =y ;
| '\ R ‘r : yE:\r
2¢ : jalyz) |
I F~—-=4Sup gly)-¢
'FZB ! ty<zi
| ' l'yeY
Y I : : '.
l
i
gly, )¢ ! !
—l } [}
1 T 1 T
. Y, Y ¥z 2
Inf g(Y")

Figure 1



this

10

To show this, select first ¥y in Y' so that
glyy) < Sup g(¥') - 2e.
Then choose z in Y' so that

Ssup gly) > g(yl) + 2¢.
y<z
i

yey

Next select in Y' & number Yo < z so that

gly,) > sup gly) - e.
y<z
i

yey

Therefore, y; < ¥,, and (2) holds. Finally, select 3 80 that
Yy < z. Then (3) holds.
Next, we prove

{a) li_xo € Xd, then f{x.) = f(xo-),

0

where f(xo—) = lim f(x)}.
XX
x<x0

Clearly, f(xo) ;{f(xo-). We assume that f(xo) < f(xo-) and show that

leads to & contradiction. BSelect £ > 0 such that
€ < f(xy-) - £(x,) end 2¢ < Sup g(¥") - Inf g(¥).

Thus, there are three points Y15 ¥ps ¥ in Y* satisfying (1), (2), (3).

There is also & number & in X such that a < xO and

(*)

8 £ x < x, implies flx,-) < £(x) < £x =) + €.

0
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We can choose two real numbers o > 0 and B such that x; = ayi + B

(i = 1,2,3) satisfy = S E <X, <Xy =g

Then, by {¥*), since f(xl) < f(xo-) + ¢ and since also f(xo—) ;:f(xg),
one has
(L) flxy) < flx,) + €.

Since f(x3) < f(xo-) - £ and f(xo-) < f(XE)’ one has
{5) f(x3) < f(xe) - €.

Therefore, by (2) and (k),

F(xl,yl) < F(XEJE) ’
while, by (3) and (5),

F(x3,y3) < F(xe,y2).
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These two inequalities contradict the quasi-convexity of F on the straight

line segment [(xl,yl), (x3,y3)].

Having established (a), we now prove the continuity of f:
(b) For every x, € X, one has f(xo—) = f(xo+) = f(xo).

Eince locally f is weakly monotone on the left of x , as well Bs on the right

of x.. the two numbers f(xo-) and f(x0+) {one or both of which might be —=)

09

are defined. Suppose that they are not equal. We can esssume without loss

of generality that f(xo-) > f(x0+), which implies that X € Xd, and,

conseguently by (a), fix.) = f(xo—). We select € > 0 such that

0

2e < f(x,) - £(x,*) and 2 < Sup g(¥') - Inf g(¥1).

Thus there are three points y,, ¥,, ¥5 in Y' satisfying (1), (2), and

(3). As before, there is & number & in X such that a < X, and

e < x < x, implies f(x) < f(xo) + €.

0

There is also & number b in X such that xo < b and

x, < x £ b implies f(x) < f(x,) - €.

0 0

This last assertion is obvious if f(x0+) = =, If f(x0+) is finite,

then there is b in X such that x, < b and x; < x < b implies f(x) < f(xo"') + E,

and consequently, f(x) < f(xo) - E.

We can ncw choose two real numbers o > O and 8 such that Xy = uyi + B

(1 =1,2,3) satisfy a £ x; < x, = x5 < x3 £®.
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8ince f(x,) < f(x,) + €, one has

l)
(L) f(xl) < f(xe) + €.

Since f(x3) < f(xo) - €, one has

m

(5%) f(x3) < fx,) -
Therefore, by (2} and (L4'),
F(xl, yl) < F(xes 32),

while, by (3) and (5'),

F(XBs }’3) < F(x29 y2)'

We have sgain & contradiction of the quasi~convexity of F on the

straight line segment [(xl, yl), (x3, y3)], Q.E.D.

13
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Theorem 2. Under A.1, if f is not convex, then g has the property

(P) If y,, ¥, are two points of ¥ such that g(yl) # g(yz), then

for every t in ]0,1[, one has g[(1 - t)yl + tye] < (1 - t)g(yl) + tg(y2)-

Proof: The proof rests on the same basic ideas as M. Yaari's (1977) proofs.
We assume without loss of generality that f is not convex on Xi. Therefore,
there are two points al, 32 in Xi such that al < a2 and that there are points
of the graph of f strictly sbove the chord A = [(al, f(al)), (aE, f(ae))].
Since T is weakly increasing on Xi, one cannot have f(al) = f(az). Thus
f(al) < f(ae). By continuity of f, there is a straight line L parallel to A
and supporting from above the graph of f restricted to [al, 32]. Since L

is not horizontal, there is a highest point (x*, £(x*)) in the intersection

of L with the graph of f restricted to {al, ae].

L

f{a,)

f(a,)

L T

x-————-—-——-—o
*
n

O de

Figure U



15

For every sufficiently small number s > 0O,

(1) 2 [2(x* + ) + £(x* - 8)] < £(x*).
Now consider the continuous function ¢ defined by
o(s) = F{x* + s) - £(x* - 8).

One has ¢(0) = 0 and for every sufficiently small s > 0, ¢(s) > O.
Therefore, for every sufficiently small § > 0,

(ii) there is s > O such that f{x* + ) - f(x*¥ - g) = §.

Let us then assume that there are two points bl’ b2 in Y such that

by < bo; g(bl) < g(bg); and the graph of g is not striectly below the chord
B = Kbl, g(bl)), (b2, g(be))}. Reasoning as above, we cobserve that there
is a straight line M parallel tc B and supporting the graph of g restricted

to [b bE] from above. However, in the present case M may contain B.

l:
Next, we select a point (y¥*, g{y*)) in the intersection of M and the

graph of g restricted to [bl, bE]’ and different from the enépoints of B.

FYor every sufficiently small t > 0, we have this time that

(i') £ [gly* + t) + gly* - t)]

A

gly*).
As before, we define the continucus function ¥ by
¥(t) = gly* + t) - gly* - t).

One has ¥{0) = 0. Moreover, the inequality g(bl) < g{y¥*) implies that
y* is in Y'. Therefore, for every sufficiently small t > 0, ¥(t) > 0.
Consequently, for every sufficiently small & > O,

(ii') there is t > O such that g{y* + t) - g(y* - t) = 6.
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We now choose § > O small enough so that both (ii) and (ii') are
satisfied. Thus, there are s > 0 and t > 0 such that

(iii) f{x* + 58) - f(x* « 5) =6 = g{y* + t) « gly* - t).

Defining x, = x*¥ + 5, x

1 = x¥ - 35, ¥y = y*¥ - t, &nd ¥p = y* + t, we

2
obtain from (iii), (i), and (i'),

(1v) Flx), y;) = Flx,, ¥,) = 3 [Flx), y,) + Flx,, y,)] < F(x*, y¥).

)+ (x )] = (x*, y*), (iv) contradicts the quasi-

20 Yo

. 1
Since E-f(xl, Y,

convexity of F, Q.E.D.

(P) says that the graph of the function g is strictly below any chord
B = [(yl’ g(yl)), (ye, g(yz))] thet is not horizontal. In fact, if y,, ¥,
are two points of Y such that y, <y, and g(yl) = g(y2) # Inf g(Y), then
the graph of g is also strictly below the chord B. To see that this is
implied by (P), select a point y, in Y such that g(yo) < g(yl) = g(yg).
Since the graph of g is strictly below the chord with endpoints (y,, g(yo))
and (yl, g(yl)), end strictly below the chord with endpoints (y,, glyy))
and (y2’ S(ye)), it is strictly below B.

Moreover, y,; < ¥, and g(yl) = g(ye) = Inf g(Y) implies g{y) = Inf g(Y)
for every y in [yl, y2] by quasi-convexity of g. Therefore, the function g

i i, d
is actually convex (and strictly convex on YA Y! and on YhYY).

Theorem 3. Under A.1, at every point x of X, the function f has a

finite left-derivative and a finite right-derivestive satisfyving f' Cx)i}”+(x).

Both derivatives are strictly positive in Xi\Xd and strictly negstive in

xd\xl. The function f'_ is continuous on the left and the function f'+

is continuous on the right. At every point x of X outside a countable set,

f'__(x) = f'+(x) and the functions f£' and f', are continuous. At every

point x of X outside & set of Lebesgue measure zero, f' (x) = £' (x)

and the functions f'_ end f' have the same finite derivative f"(x).
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Proof: If f 1is convex, it has all the properties listed above.
Therefore, we study the case in which f 4is not convex.
First, we assume that the open interval X:'L N Xd is not empty and we
prove that f is strictly increasing in that interval. Consider a point
d

X in X\ Xd. There is a point Xy in X* \ X% such that Xy < X, and

f(x,) < f(x would belong to Xd. We can without loss

1 0), because otherwise x

0
of generality assume that there is a point Yo of Y such that the convex
function g is strictly decreasing in a neighborhood of ¥g-

We define the set
T = {{x, y) X x Y| f(x) + gly) < f(xo) + g(yo)},

which is convex and closed relative 1o X x Y. By continuity of g, there
is a point y; of Y such that y, <y, and g(yl) é:g(yo) + f(xo) - f(xl).

Thus

(1) x; < x5, ¥ < ¥y, and (x5 ¥,) € T.

(x5, ¥,) (x,yo)

1x I ET

(x,,y)ET Figure 5

Moreover, for every y in Y such that y < y,, one has gly) > g(yo).
Consequently,

(ii) y € Y end y < yg imply (x,, y) ¢rT.

(i), (ii), and the convexity of I imply that for every x in X such
that x > x,, the point (x, yo) is not in I'. Therefore, x in X and x > x,

imply f(x) > f(xo)-
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Having esteblished that f is strictly increasing on X\ Xd, we choose

an open interval I around Xq sufficiently smell so that I C X\ Xd and

that the open interval f(x,) + g(y,) - £(I) is contained in g(¥%). Clearly,

there is an open interval J around Yo and contained in Yd \ Y' such that

glJ) = f(xo) + g(yo) - £(I).

The function The function
g () f(x)+ glyg) - f(e)

T2

.r——n?

The function

Y

Figure 6



19

For every % in I, there is & unique y in J such that
gly) = I‘(xo) + g(yo) - f{x}). Let ¥ be the function from I to J defined
in this manner. Y is strictly increasing on I. Moreover, for every x in I,
the point (x, Y (x)) is in the lower boundary of the convex setT. To see
this, note that obviously (x, y (x)) belongs tol, while, as in {(ii), for
every ¥y in Y such that y < vy(x)}, one has {x, y} € I'. Thus, the function
Y is convex.

Let x tend to xj from the left. Then Y(x) tends to Y(xo} from below.

One alsc has

£(x) - £lxg)  gly(xy)] - ely (x)] v (x) -y (xg)
X = Xg vy (x) —1‘(x0) X - Xg
Since g is convex,the first factor of the right-hand side tends to -g'| Y(xo)].
f{x) - f(xo)
The seceond factor tends to Y:(xo)- Therefore, % - has a limit
- %0
t = ot ' ' ' _
f_(xo) g_(yO)Y_(xo), where g_(yo) < 0 and Y_(xo) > 0. Conse

guently, fl(xo) > 0. Similarly, fi(xo) exists and equals -g;(yo)yl(xo)-
We have chosen for Yo any point of Y where g is strictly decreasing.
Since the convex function g has a finite derivative at every point of Y outside a

'(yo) < 0.

countable set, we could have chosen y. in Y such that g'(y ) =g
0 . +

] 1 = 2 L] t
But then y!(x,) £ y](x,) implies f'(x,) < fi(x,).
In the preceding reascning we have associated with every point &8 in
XN Xd, an open interval a; around a and contained in Xl N Xd, and a strictly

increasing convex function af on aI such that for every point x in aI one has

£1(x) = —g!(x(x)) y'(x) end £1(x) = -g!( ¥{x)) x1x).
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Since the functions g'_ and aY'_ are continuous on the left and the
function oY is increasing, the function f'_ is continuous on the left.
Similarly f! . is continuous on the right.

At every point x of &I outside a countable set aDl’ one has

ay'_(x) =.Y',(x) end the functions oY '_ &nd ', are continuous. And at

every point y of aY(aI) outside a countable set aDp» one has g' (y) = g'_,_(y)

and the functions g'_and g'+ are continuous. Therefore at every point x

. -1
of I outside the countable set oD = oD Yy (aDE) s, one has

' (x) = f'+(x) and the functions f'_ and f', are continuous.

At every point x of oL outside a null {i.e. of Lebesgue measure zero)
set N, one hes a’y'_(x) =Y '+(x) and the functions oY '_and y' have
the same finite derivative a.Y"(X)' And at every point y of ay(aI) outside
& null set N, , one has g' (y) = g', (y) and the functions g' and g',
have the same finite derivative g'(y). We claim that aY_l(aNe) , the

image of the null set 1N, by the concave function aY'l, is null. Given

2

any compact intervel E contained in a.Y(a.I) , the function aY—l is Lipschitzian

on E and consequently the image of the null set E N aN by aY_l is null.

2

However the open interval aY(aI) can be covered by a coumtable union UEi
i
. -1 - -1
of compact subintervals E, . The eguality ¥ (aNE) = LiJaY (Ei N aN2)

proves our claim., Consider now a point X of aI outside the null set

- -1 =
N = F U (aNE) . One has f'_(xo) f'+(x0) . Moreover for any
x # X, in a.I ,
£ (%) - f'_(xo) N -g'_(ay(x))a\{'_(x) + g'(aY(xo))aY'(xO)
X = X X - X,

o (1) - yrix) g () - gy lx)) y(x)-y(x)

= -g'_(a'r(x)) ) P aY'(xo) ) aY(X) - aY(XO) x - X
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' (x) - £ (xo)
- - 'l " -
When x tends to X, Ty tends to -g (aY(xO))aY (xo)

£, (x) - f'+(x0)

2 ..
n L |
g (aY(xo))[aY (xo)] . Clearly =g tends to the same finite

limit when x tends to Xy -
In summary, with every peoint a of Xi\xd we have associsted an open

interval, aI, around a and two exceptional subsets of aI, one of them, aD’

countable, and the other, aN,null.'I‘he intervals Ia cover Xi\\Xd. Thus,

by Lindelof'!s theorem (Kelley (1955, p. 49), we can cover Xi‘\Xd‘with a

countable collection of intervals a.I' The countable unions of the corres-

ponding exceptional sets aD and aN form the two exceptional subsets D and

N of X?’\Xd respectively, the former being countable and latter being null.

The properties of the function f listed in Theorem 3 have been
established in Xl \ Xd. In a similar manper they hold in Xd \Xi. They
also hold trivially in the interval ]Inf Xi, Sup Xd[. Only the cases in
which x = Inf Xi or x = Sup Xd remain to be considered. A minor
modification of the preceding proof, namely choosing an interval I having
x a5 an endpoint, establishes that in the first case f has & finite left deriva-
tive f'_(x) < 0 continuous on the left, and in the second case f has a finite
right derivative f'+(x) > 0 continuous on the right, Q.E.D.

The function g obvicusly has in Y the properties that the function

has in X,
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2. THE CONVEXITY INDEX OF A QUASI-CONVEX FUNCTION AND A CLASS OF SEPARATING
FUNCTIONS

We have shown that under A.1, the fimection f is continuous and the
interval X is partitiocned into three intervals XSd = xd\xi s X° = xdrwxi ’
and XSi = Xi\Xd (some of which may be empty) such that X5d<:xc<:XSi ,

f is strictly decreasing in XSd s, constant in x° , and strictly increasing
in XSi . To define the convexitj index of ¢ on X , we first define

sl . Then, letting § be the

and study the convexity index of f on X
function with domein X = -X such that F(x) = £(-x) , we define the
convexity index of f on Xsd as the convexity index of f on -XSd .
Next we set the convexity index of f on X% to be . Finally the
convexity index of f on X is defined as the smaliest of the convexity
o as sd c si .

indices of £ on X , X 4, and X that are determined, i.e., for

which the corresponding interval is not empty. Thus in section 2 (with the

exception of the last three paragraphs) we make the assumptions

A.2. X and Y are non-empty open real intervals. f and g are

J—

strictly increasing continuous real-valued functions on X eand Y re-

spectively. The function F: XXY + R is defined by F(x,v) = f(x)+gly).

The inverse ¢ = f-l of £ is defined on the non-empty open real

-1

interval U = f£(X) , and the inverse ¥ = g of g is defined on the

non-empty open real interval V = g(Y) .
1
Given a resl number A such that 0 < A <3 {(Sup U=-1Inf U), we

let
1

A
= ¢(u) - ¢(u-A)
AlA) = IEf log [¢(E+A) ~ :(ﬁj]
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In the last Infimum, u is restricted to be such that u-4, u,

and u+A belong to U.

The convexity index of the function f is defined &s

A = lim sup A{A)
A-+0

Equivalently the convexity index can be defined in the following,

perhaps more Intuitively appealing, manner. Let

5 Cpues) - FWI] - SrPlW) - Flu-a)
i)

B[UJA]=_A hd

[flusa) - Plu)]

|

We claim that

(8) A = 1im sup Inf B{u,a)
A=+ 0 u

Proof of {B) : Let

alu,a) = %- log Flu) - lu-a)
Au+p) - Pu}

so that A = 1lim sup Inf alu,A)l . One has
A->0 u

alu,a) = % log [4 + 88lu,8)] .

For any A > G, the function z = %-log{ 1+ Az] 1is

strictly increasing ; therefore

Inf alu,A) = % log[ 1 + A Inf glu,a)]
u u
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Let now

v(A) = Inf B{u,A)
u

Since -% log[ 1 + Avy(A)] < y{4) , one has

(1) lim sup % log[ 1 + ay(A)] < lim sup v(4)

A+ 0 A=-+D

Next consider two reesl numbers ko , k1 such that ku < k1 < lim sup Y(A).
4 +0
There is an infinite sequence An > 0 such that An -+ 0 and for every n ,

1
5 logl1+ k&, 81
n n

1
y(a ) 2 k, . Therefore = logl1 + 4 Y(An]] >

The last expression tends to k1 . Hence for n large enough ,

-1-10g[ 1+ k, Al > k_ . Therefore lim sup 1 log 1 + ay(AY] > k_,
A 1™n = 0 A = 0
n A+ 0
and
{41) lim sup % log[ 1 + ay(A)] 2> 1im sup v{8)
A=»D A-+D
Q.E.D.

We first show that under A.2, a convex function f is characterized

by the fact that A2>0 ., To this end we need two lemmata.

Lemma 1. Under A.2, let w and uy be two points of U such that

H<u;1ﬁ A be a point in the domain of A such that Ai%-%;

let k be a real number different from zero such that kii(l,\) ; and

: 110-111

A

oluy) - olw) 2> Ie(w)) - ¢luy-4)] "‘:ﬁ_:f-

let p be &n integer such that 1<pg Then
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Proof: One has 1.L_L_<=u0-pA . Hence ¢>(ul)§=¢(u0—pA) . Therefore

oluy) - ¢(u)) 2 [6luy) - ¢lu -2)] + [¢(uD-A) - ¢luy-28)] + ...

+ [9luy - (p-1)8) - ¢(uy~pa)]

2 lolug) - dluy -2 + &2 s L4 KPR
kpA
e T -]

= [¢(u0) - ¢(u0-A)] : , Q.E.D.

In & completely similar manner we establish

Lerma 2. Under A.2, let u, and u, be two points of U such that

1.J.0<u2 3 let A be & point in the dommin of X ; let k be a resl number

different from zero such that kiX(A) 5 and let q be an integer such that
uy - uy

q2> A and uo+qAEU. Then

-kqA_l

¢(u,) - ¢>(u0) < [¢(u0+A) - ¢luy)] ge—_-i‘é-_'l—



Theorem 4. Under A.2, the function f 4is convex if and only if

Proof: Assume that f is convex. Then ¢ is concave and for

A ¢(u) - ¢(u-b) | .
every u and ., one has olutd) - o(u) = 1 Therefore for every A ,

one has X(A);O . Henmce A > 0.
Conversely assume that A 2 0 , and consider three points uo s 1.1:L s

and of U such that <u.,<u Select a real number k<0 .
U b

o -

There is an infinite sequence An> 0 such that

A +0 and, for every n , (A )>k .

n
!
Denote by pn the greatest integer < A s &nd by qn the smallest
integer > R . By Lemmata 1 and 2, for every n ,
n
ekpnAn-l
$luy) - oluy} 2 [¢(u)) - $lu -8 )] — 5,
e Mo1
~ka by
e -1
o(uy) - ¢lu) < [o(uy+4) - ¢(uy)] —:la;—*“—
e -1

¢luy) -o(w)  olu)-eu-a) L Ml K4

Therefore > . .
dlup) -0l ) = olug+d ) - ¢(u,) e-kqnﬁn_l l-ekAn
kp 8 kp 4
e U P R N PP
=" Ky -kann
e ""l e _l
¢(uy) - ¢lw))
Ao mram . plugowy end qpfvup-yy . Hemce g yom )
l-ek(uo-ul)
“k{u_-u ) . Now let k=+0 . One cbtains
e Euo_l

oluy) - 6u))  9luy) - o))
™ T %

whieh implies that ¢ is concave, Q.E.D.

We note that if the function f is convex but not strictly convex,

there is a non-empty open interval on which f is linear, hence & non-



enpty open interval U, on which ¢ is linear. Given any u€U for

0 0°?
every & small enough, u+A and u-A belong to UO’ hence X(A)=0 .
Therefore A=0 .,

In the case of & C° function it is possible {Theorem 8) to give &

simple expression of the convexity index. To prepare for that result we

remark

. .- .
(7) Under A.2, if £ is € and at a point %, of X, f'(xo)afo, then

1
o(ug) - ¢(u,-A) 8
letting uj = f(xo), one has z_i;lg log [¢(uO+A) - ¢{uo):l
f"(xo)
(f'(xo))2 .

Proof of (7}: Since f‘(xo) # 0 , the function ¢ is locally c® at

u, An application of Taylor's thecrem yields
' 1
_ ¢luy) - o(u-aY]E  ¢"(uy) 1
Al_:;na log WUO‘H‘BT- ¢:(u03 = -Wu_o)- . But ¢ =7° yields
) " (u,) i " (x4) .
o) (erx))?

Of special interest is the class of C2 functions h , defined on

the nonempty open real interval Z , such that for every z , h'(z}>0,

1
a
and, denoting nt by ¥, log [%g:iﬂg E'(:I('sg] is independent of w

and A , hence equal to a real number & . According to (7), for every =z ,
h"{z) _
— = = B . Now two functions f and f*¥ such that ¢* = a¢ + Db ,
(n'(z))
vhere a>0 and b are two reel numbers, obviously have the same convexity
index. Therefore there is no essential loss of genereality in assuming that

0eZ and in normalizing h in such & way that h(0) = 0 and Rn'(0) =1 .

By integration one obtains
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it 8#0, he(z) - _ dog (1-62 defined in Z4 = {zeR|Oz<1} ;

" B

if 6=0, ho(z)

z defined in ZO =R .

i M
Note that if 81< 92 and 0#2528 ZB

, one has hg (z) <hg (z)

1 2 1 2

@D

8<0

D[

6=0 8>0

-1

The inverse I,Ue = he is defined on R by

Volw) = "5

ir 040 ; yy(w) =w.

The convexity index of hB is easily seen to be © since

1

we(w) - \be(w-ﬁ) -A—
Wwﬂ)_-— we(w)

ee Some properties of we that we will use later

on are also noted here. For any w , we(w) is continuous in 6 . For w>0 ,

lim we(w) =0, For w<0, 1lim we(w) ==, For w#0, we(w) is

Gteo

Bteo

strictly decreasing in 6

Theorem 5 gives eonditions under which in arny point X5 of its domain,

the function f is

hl *

supported from below by a suitable linear transform of

Before stating and proving it we remark
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(8) Under A.2, if A>-= and fl(xo) and f_;(xo) exist at a point

); f_;(xo) .

x, of X, then f'(x

0 0

Proof of (8): Assume that f.:(xo) > f_:_(xo) . Bince f 1is increasing

£1(x4)20 . Let uy = f(x,). Then 0i¢l(u0)<¢_:_(uo), where ¢!(u,)

0 0 0

is defined to be <o in case f;_(xo) = 0 . Moreover

¢{uo) -'¢(u0-a) ¢1(u0)
= = <1 . Consider an arbitrary resl number
¢+(u0)

0 S ) - e(ug)
1
¢(uo) - ¢(uO-A) A

¢(uO+A) - ¢(u0)

k . Tor every small enocugh A , log < k , hence

*(A) £ k . Therefore A<k . Consequently X\ = -= , a contradiction,

q.E.D.

Theorem 5. Under A.2, the convexity index A is strietly smaller than +o ,

If A>=-= and fl(xo) exists and is finite at a point x, of X , then

£1(x,) >0 and

1
(= < - <
for every x € X such that xZx, end Mx xo) _-(_”.'. % , one has

£(x) - £lxy) 2 hyl£!{x ) (x-x)1 .

If X>=-e and f_;_(xo) exists and is strictly positive at a point

of X , then f_:_(xo) is finite and

*a

for every x € X such that x2>x

o ? one has

£(x) - £lx)) 2 ny[£3(x ) x-x}) .
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-— (%)
/
I/"—_—f(xo) + hA[f_;(xo)(x- xo) ]

f(xo) + hA[f_'_(xO)(x- xo)]

Figure 8

Proof: Assume that A>-= and f!(x)) exists and is finite at x, .

Chocse any x€X such that x<x, eand let u = f(x) and u, = f(xo) . Select
a8 real number k such that O # k< ). There is an infinite sequence An >0

such that

An + 0 and, for every n , X(An) >k .

u,-1u
Denote by 1 the greatest integer smaller than or equal to OA
n
By Lemm=z 1,
-5 ) - kp A
¢.(u0 An) ¢(u0) 1_e BN
plu) - ¢lu) < .
ot = -An 1l kAn
A—(e -1)

n
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¢(uy-8,) = o(uy) 1
-+ 0. ' =
As n = +°, one has An 0; — An -+ ¢-—(u0) = ax—oy .

kA
which may be +=; pnAn - ugTus Fl- (e n--l) =k . Therefore
Il

k( uo-u)

o(u) - olu) < o'(yy). EE—— = ¢2(u) ¥, (uu).

Since tpk(u-uo) <0, if ¢1(u0) = +», one obtains ¢(u) = ==, =a
contradiction of the fact that ¢(u) is finite for every u € U. Thus

0 < fl(xo).

Next let k > A. If A = =, wlg(u-u ) * —=, and again ¢{u) = =,

0
Thus A < +»°, and,in the limit,

(1) for every u € U such that u < g é(u) ~ ¢(u0) < ¢1(u0) wk(u-uo).

From (i), for every x € X such that x < xo, one has X=X <

T(];{;Y wk[f(x) - f(xo)]. Hence
(i) wl[f(x) -f(xo)] > f_‘_(xo)(x-xo).

Now f'(xo)(x-x ) belongs to Z, if and only if lf:_(xo)(x-x ) <1,

0

i.e., if and only if

0

1
A(x-xo) < fl xo

Therefore from (i'), for every x € X such that x £ x, end

Mx-x,) < f(lx_oy » one has  £(x) - £{x;) 2 b, [£(x,) (x-x))] .
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We have shown that if A > — and there is a point X of X at which
f“(xo) exists and is finite, then A<+, However, according to Lebeszue's
theorem (F. Riesz and B. Sz.-Nagy [1955], pp. 5-9), the increasing func-

tion f has a finite derivative almost everywhere. Therefore A > —=

implies A < +», 5o, obviously, does A= o,

Assume now that A>-® agand f_;_(xo) exists and is strictly positive

at Xy - In 8 completely similar manner one can show that for uw € U such

that u>u, and for O # k <), one has

¢(u) - ¢(uy) < ¢_',(u0)¢k(u—uo) .

Since wk(u—u0)>0 , if db_:_(uo) = 0 , one obtains ¢(u) < ¢(u0) , &
contradiction of the fact that ¢ is strictly incremsing on U . Thus

f_;_(xo) is finite. letting k—+A , one cbtains

(1i) for every u € U such that uzu, , ¢p(u) - ¢(u.) < cb_;_(uo)lp;\(u-uo) .

one has x~x. <

From (ii), for every x € X such that x > x 0 2

0’
ﬁ w;\[f(x) - f(xo)]. Hence

{(ii") IJJA[f(x) - f(xo)] > f_:_(xo)(x-xo) .

Now f_:_(xo)(x-xo) belongs to Z, if and only Af_;_(xo)(x-xo) < 1.

This inequelity is obviously satisfied if A < 0. It is also satisfied

-)\(u-uo)
i-¢ H(x ) (x=x )
if A > 0, for in this case (ii') implies > 2 £ (x ) {x-xp),
-Mu-up) e
hence Af'(xo)(x-xo) <l-e < 1. Therefore from (ii'), for
+ f —3

every x €X such that x 2 x, f(x)—f(xo) > hl[fl(xo) (x—xo)]. Q.E.D.



3

The assumptions made in Theorem 5 lead one to ask whether A>-w
implies the existence of left and right derivatives of f everywhere in
X . The following example gives & negative snswer to that question.

Consider the family of functions from R to R defined by

%a,8
u~ ¢a,8('u) = ale"-1) + 8 , depending on the two real parsmeters a>0
and B . We construect a strictly increasing continucus real-valued func-
tion ¢ such that ¢(0) = 0, ¢ has no right-derivative at O, and the
convexity index of ¢_l is finite. Let L ©be the straight line in R2
through 0 with slope 1, and M be the straight line through 0 with slope 2.
Let also P be the point of M with abscissa p>0 . There is exactly

one function ¢ such that the graph of ¢a 8 goes through P , and is
]

a, B
tangent to L at a point to the left of P ., The corresponding parameter

o 1is the smallest of the two roots of the eguation
aep-loga—Ep-l=O,

and the corresponding B is given by
B = a-loga-1 .

Moreover letting @ %be the point different from P where the graph of
¢a,8 50 determined intersects M , one can easily prove that if p<1 ,
then the abscissa q of Q satisfies 0<q<§ .
Take p0=l , obtain uO’BO and the abscissa Py of the point of inter-

section of the graph of ¢a 8 and M . Repeat the construction starting
0**0

with P obtaining al,Bl and Py s+« o Since pn<—:~la » the sequence P,

5

tends to zero.



Figure 9
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To define the function ¢ , consider first u such that O<u<l
and u does not coincide with any of the P, - Then u belongs to

exactly one of the intervals [Pn+l’pn] . Define ¢{u) as ¢ (u) .

n’Bn
For all other values of u , namely u<o , or u=p for some n , or

l<u , define ¢{u) as 2u .

Clearly ¢ is increasing and continuous, ¢{0) =0 , and ¢ has no
right-derivative at 0. There remains to prove that the convexity index
of d;_l is finite. If u<0 , or us= P, for some n , or 1<u , then

olu) - ¢plu-A)
p{u+d) - ¢lu)

obviously for every A>0 , > 1. If u€]0,1{ and u

does not coincide with any of the P.» then u belongs to exactly one of

the intervals [pn+l,pn] . Denote ¢a B by ¢n » and consider an ar-
n’"n
- (u) = ¢ _(u-4)
. dlu) - d(u-8) . %n n _ -
bitrary A>0 . One has S(usd) - 6(u) rd P -0 (w ~ & -
Therefore for every u , and every A>Q , 1°£|:$E3)-|-Z\)¢£u¢_(ﬁ§] > -1,

Consequently the convexity index of da-l is at least equal to =1 .
In an entirely simlilar manner, one could construct & function having
a8 finite convexity index and no left-derivative at 0 .,

We now establish two lemmata needed in the prdofs of Theorems 6-8.

Lemma 3. Assume that A.2 holds, and that £ and g are 02 . The

functicn F is guasi-convex if and only if

(i) for every (x,y) € XxY , one has f'(x) #0 , e'(y) £0,
£10x) . _g"(y) . 0
(£1xN? (gryn)?




34

Proof: Consider (x ) EXxY gand let

0*Yo
I'= {(x,y) € xxY|f(x) +ely) < f(x,) +aly )} .

One has, for the boundary 8TI' of T

ar = {(x,y) €Exxy|r(x)+gly) = flx,) +&lyy)} -

Denote by pro,j:IL the projection from XXxY into X. Clearly
pro,j:L 3l is a non-empty open real interval, and for every x € pro,jl ar,
there is a unique point vy(x) of Y such that (x,y(x)) € 3r.

If f'{x) # 0 and g'(y) # 0 everywhere, the function Y is c®

and one has for every {x,y) € T,

(%) . g"(}[‘) - _ Y"(x) E?gx)

(£1(x)2  (g'(y))? (£1(x))2

Assume now that F is quasi-convex, then the set T is convex
and the funetion vy is concave. By Theorem 3, f'(xo) >0 and
g'(yo) > 0. The concavity of Yy implies Y"(xo) < 0. Therefore
(x,5¥,) satisfies condition (i).

Conversely if (i) is satisfied, one has Y"(x) £ 0 for every
x € pro:]l 3. Therefore the function y 1is concave, and the set T

is convex. Consequently F is quasi-convex, Q.E.D.

Lenms 4. Assume that A.2 holds, and that for every (x,¥p) € XXY , there

are two open intervals I and J containing x. and Yo respectively and

Q
* 3
two Btrictly increasing functions f and g defined on I and J
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*
respectively such that (i) f (xo) = f(xo) end for every x €1,

£ (x) < f(x), (ii) g*(yo) = g(yo) and for every y €J, g*(y) < gly),

»* *
(iii) the function from IXJ to R _defined by (x,y)*¥ ¢ (x) + g (y)

is gquasi-convex. Then F is quasi-convex.

€ =
o,yo) XxY and the sets I"l

[(x,y) € IxJ[F(x,y) S Flx,¥y,)} sna T, = {{x,y) € IxJ|f (x) +

Proof: Consider {x

* * *
g (v) & Flxpy )} . SBince T (x) +eg (y) £ £(x) + g(y), one has
® *
c . . . * : c N .
l":L I‘2 Since f,g,f ,g are strictly increasing, (xo,yo) 81"1 81‘2
Moreover 1"2 is convex. Consequently there is through (xo,yo) &
straight-line supporting I‘2, hence T from above. This implies

l’
that the set I = {{x,y) € XxxY|F(x,y) < F(x )} is convex. Hence

0*Yo

F is quasi-convex, Q.E.D.

In Theorem 6 and in its proof, the function B and the convexity

index | e&are associested with g as i and A &are associated with f.

Theorem é'. Under A.2, the function F is guasi-convex if and only if

A+ u>0 and at every (x,y) € XxY, £'(x), f_:_(x), g'(y), end

g_:_(y) exist and are finite.

There is clearly someredundancy in the assumptions following "if
end only if" since A +u >0 implies that at least one of the two con-
vexity indices is > 0 . However, by Theoren L, under A.2, a function
whose convexity index is >0 is convex, and therefore has finite left

and right-derivatives everywhere.
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Proof of Theorem 6. Assume first that F is quasi-convex. Consider x,x*, x"

in X end y,y',¥y" in Y such that x' <x <x", y" <y <y' eand
F(x',y') = F{x,y) = P{x",y"). Since f and g are strictly increasing,
the point (x,y) is not strictly below the diagonal of the rectangle

in Figure 10.

yl
N
>
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~
~
~
s
~
~
¥ I
\
\
\
\
\
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\
N
N

1}

y x! L1

X X

Figure 10

Therefore the absolute values of the slopes of the dashed segments
satisfy L_I y—y— Hence

xx‘“x

let now u, v and A > 0 be such that u-A, u, and utd are

in U; wv-A, v, and v+A are in V. One has

dlu) = ¢(u-b) , X{v) = X({v~A) >1
o(uth) - 6lu)  X(v+B) -X(v) =~ °

Therefore
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{9) for every A € (domain A) 0 (domain 1), one hes A(A) + n(A) >0 .

Since, by Theorem 5, A < +¢ and u < 4+, the sum A+pu is well
defined. If one had A + 4 < 0, there would be X' and u' such that
A<A', p<i' and A' + p' < 0. For every A small enough, -A-(A) <
X' end u(A) < y'. Hence }_\(A) + u(A) < 0, =a contradiction of (8).
Therefore A + W > 0. The existence of the finite left and right derivatives
of f and g is asserted by Theorem 3.

Assume now that f and g have finite left and right derivatives every-
where and A + p > 0. BSince A < +° and Y < +®, one has A > —= and

Uy > ==, Consider (x ,yo) € XxY.

0

According to Theorem 5 and (8), 0< fl(xo) < fi{x.) and 0<g'ly

+'%p )<

0
g_;(yo). Select two numbers a,f such that

£1lxg) a2 f)x)) end g!ly,) <8 <elly,).

By Theorem 5, since h)\ is a strictly incressing function, for

every x € X such that x 2 x or such that x < x_ and J\(x—xo) < % s

0’
one has f(x) - £(x,) > b, [o(x-xy)].

0

This leads us to define the function ;‘ and its domain X as
follows. If A >0, then X=3X. If A< 0, then X =
1 - -
]Ma.x{x0+a » Inf X}, Sup X[. In either case, for every x €%, F(x) =

h, [a(x—xo)]. Therefore
for every x € X, f£(x) > f(xo) + F(x).

Note that f(xo) = 0, and for every x € X, ¥{x) > 0 and
?n(x) _

A,
(F'(x))?
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Similarly define the function g and its domain Y as follows.
If ¢ >0, then Y=vy. 1r L <0, then Y= ]Ma.x{y0+"813 , Inf Y},
sup Y[. In either case, for every y € ¥, gly) = hlJ [B(y—yo)]-

Therefore

for every y €Y, gly} 2 g(yo) + gly).

As before, E(yo) =0, and for every y €Y, g'(y) >0 and

")

(3'(y)°

According to Lemma 3, the function from XxY to R defined by
(x,y) = f(xo) + g(yo) + F(x) + gly) 1is quasi-convex. According to
Lemma L, the function F is quasi-convex, Q.E.D.

Note that if F is quasi-convex and f is not convex, then
A<0 and, by Theorenm 6, A+u>0 . Hence u>0. Consequently, according
to the remark we made after proving Theorem 4, g is strictly convex, a

restatement of Theorem 2.
As a consequence of the preceding results, the function F is
quasi-convex if and only if the two functions f and g can be separ-

ated by a function of the class he in the following sense.

Theorem 7. Under A.P2, the functiop F is guasi-convex if snd opnly if for
every (xo,yo) € XxY, there are three real mmbers o > 0, 8 >0,

and 6 and an open interval I containing X such that

for every x €1, g(yo) - g[yo - gB_ (x-xo)] < he[a(x—xo)];f(x) - f(xo)-
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Assume first that P is quasi-convex, and consider
< ! < g! <
< f+(x0) and 0 g_(yo) <

Proof.
(xo’yo) € XxY. By Theorem 3, 0 < fl(xo)
g;(yo). By Theorems 5 and 6, A+ u>0, A > @, u> -,
a and B such that

Select two numbers

£1(xy) o< rilx)) end g'(y,)) < B < gy,

For every x such that y_ - %—(x-xo) €Y, i.e., x € Xq =

(Y—yo), we define

R|m

% (x—xo)].
+(xg) =

-~

g(x) = gly,) - ely, -
=0; &'(xy) %QJ_(YO) 2a2fx)); &

Note that é(xo)
f,é are defined as in the proof

gl(yo) <a < f'(xo).
X,Y and the functions
- = R -
(x xo) Y, one has g[yo B (x xo)]

w|e

The szets
of Theorem 6. For every Yo = %

- o

> - - = — . = . .
g(yo) ==g[y0 2 (x xo)] hu[—a(x xo)] However z €2 implies
end h_ (-z) = -hu(z). Consequently for every x € Xy -

_zezu
B s
o (Y"yo)’

(1) &lx) b lalx-x,)].

Moreover -4 < X and he(z) is increasing in ©. Therefore if
1
- € i.e. € + = U < <
oflx xo) ZA’ ie., x€x +12, and -4 < 8 <A, one has

(ii) h_u[a(x-xo)] < he[a(x-xo)] < hk[a(x-xo)].
Finally for every x € X,

(111) b [a(x-x )] < £(x) - £{x,).
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_ B = 1 -
Let I = [xo - (Y-yo)] N [x, + 52,1 NX, and note that I is
an open interval containing Xy- Suming up (1), (ii) and (iii), one

has

for every © € [—u,A], for every x €1, g(x) < he[a(x-x'o)] <

f(x) - £(x.).

¥

£(x)
f(xo) + he[a(x -—xo)]

f(xo) + g(yo) - S[YO-%(x-xo)]

f{x ).................'

-\
A8 asdksdy dods eIV ABIR
Oll"i!i‘.t..!OOHCOOOQOOCO.3_
L 3 BN B I I B BB R R BB NN BN NN A LR

.I-..'Ill.....“.

o
»

al

Fig. 11

Conversely assume that for every (xo,yo

real numbers a > 0, B >0, and ©, and an open interval I contein-

) €EXxY, there are three

ing x_. such that for every x €I,

0

elyy) - g[yo -% (x-xo)] S nplalx-x )] < £(x) - £x).

Let J =y, - % (I-—xo). For every y € J, one has g(yo) - gly) <

he[-B(y-yo)] = -h_e[B(y-yo)]. Hence

for every y €J, gly) - g(yo) 2 h_e[B(Y-YO)]-
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Morecover,
for every x €1, f(x) - f(x;) ;{he[u(x—xo)l-

* »
Now let f (x) = hola(x-x )] and g (y) = h_g[B(y-y )]. By Lemma 3,
* *
the function fram IxJ to R defined by (x,¥y) " f (x) + g (y) is

quasi-convex. By Lemma 4, the function F is quasi-convex, Q.E.D.

Theorem 8 gives an explicit expression of the convexity index of a

02 function.

Theorem §. Under A.2, if the function f 1is 02 and for every x€X,
" '
£'(x) # 0, then A = Inf —f—(-")—z .
x (£'(x))

Proof. Assume that XA > - gand gelect a real number Xk < A. There

is an infinite seguence An > 0 such that

v
=

An - 0 and for every n, X(An) 2

Therefore for every n, for every u €U such that u—An and
1

o(u) - o(u-a )] " |
u+An are in U, log ¢(u+An) m_—y ey > k. Hence, by (7), for

E f"(X)
every x © X, — 2 k. Consequently
{(£'{x))
"
Int _.f_(l.(_)_.g ; X,

x (f£'(x))

This inequality also obviously holds if A = =,
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f"(x)
Conversely assume that Inf — >
x (£'(x))
£"(x) . . .
and let k = Inf —_ . We have defined earlier the function
x (£'(x))

h-k from Z_k = {y € Rl-ky <1} to R and noted that its convexity

index is -k. Moreover for every y € Z . h‘k(y) >0 and

h" (y) "
--—i———-; = -k. Therefore for every (x,y) € XxZ ? __lf‘__(_l‘_f_z_z_ +
(n!, (y)) (£*(x))

h" (y)
-k :
3 2 0. According to Lemma 3, the function defined on XXZ_

(n', (¥)) 5

by {(x,y) » f(x) + h_k(y) is quasi-convex. Therefore by Theorem €,

A—k; 0. Hence

l;Inf—f-'—'(x—)E.
x (£'(x))

1
This inequality also obviously holds if Inf -—£7L5115 = =, Q.E.D.
x (£'(x}))

The assumption that the intervals X and Y are open was made only
to simplify the exposition. All the definitions and results of this sec-
tion can be extended to the case in which X end Y are non-degenersate,
i.e., contain at least two distinet peints. It suffices to cobserve that
(1) the convexity index of f on X is equal to the convexity index of
the restriction of £ to int X, (2) if the restriction of F to
int Xxint Y is quagi—convex, then F is quasi-convex. To prove the last
assertion we show that if K is & convex set with & non-empty interior,

G is a continuous real-valued function on K such that the restriction
of G to int K 1is quasi-convex, then G 1is quasi-convex. Let x,¥

be two points of K , and z be & point of the straight line segment [x,y] .
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Subjecting K to a translation if need be, we assume without loss of
generality that the origin of the space belongs to int K . Define

x = (l-i-)x s Y, = (1—%)3“ z =(1-%)z , where n is a positive integer.
x ,y and z arein int K . The point z bdelongs to [xn,yn] . By
quasi-convexity of G on int K , one has G(zn) < Max {G(xn), G(yn)} .

As n++» , G(z) < Max {G(x), G{y))} .

The convexity index can readily be defined for a broader class of functions
than those we have considered so far in this section. If f is & strictly
decreasing continuous real-valued function on a non-degenerate real
interval X, let f be the function defined on X = -X by f(x) = £(-x) .
The convexity index c(f) of f is defined as c{(?#), the convexity index
of f’ . If £ 4is a constant real-valued function on a non-empty real
interval X , the convexity index of f is defined to be += .

Consider now the class € of continuous real-valued functions f
such that (i) the domain of f is & non-empty real interval parti-
tioned into three intervals 5% < x° <« x® {some of which may be empty),
and (ii) f is strictly decreasing on
XSd , constant on x© , and strictly increasing on XSi . According to the
results of seetion 1, if f and g are non-constant resl-velued func-
tions defined on the non-empty open real intervals X and Y repectively,
and the funetion from XXY to R defined by (x,y) ¥ f(x)+gly) is
quasi-convex, then f &nd g belong to €. Let f be a function in ¥
and denote by de . fc , and fsj' the restrictions of f to XSd ,

[+

a
X S

and X°T respectively. The convexity indices c(f c(£%) , and
c(fsj‘) are determined if and only if the corresponding intervals XSd s
x¢ , end ¥ are non-empty. The convexity index c(f) is defined as
the smallest of the convexity indices c(de) , e(£%), and c(fSi) that
are determined. With this definition, the extension of the results of

this section to the cless & is straightforward.
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3. EXTENSIONS TO HIGHER DIMENSIONS AND TO MORE THAN TWO FACTORS

In this section we make the assumptions

A.3. 5 and T are finite-dimensional real vecior spaces;

X and Y are open convex subsets of 8§ and T, respectively; f and g are non-

constant real-valued functions on X and Y, respectively; the function

F: X x Y + R defined by F(x, y) = £f(x) + gly) is quasi-convex.

We first note

Iheorem 9. Under A.3, the functions £ end g are continuous.

Proof: Eince g is non-constant on Y, there are two points yl,y2 of Y such

that g(yl) # g(yg). Let M be the straight line through y, and y, and let g, be

the restriction of g to YOM, which is a convex subset of M open relative to M.

Consider now an arbitrary straight line L in 8 and let fL be the restriction

of £ to XML, which is a convex subset of L open relative to L. The function
from (X NL) x (Y N M) to R defined by (x, y) + fL(x) + gM(y) is quasi-convex.
Therefore, by Theorem 1, if fL is non-constant, it is continuous, while if

fL is constant, it is trivislly continuous. Thus for every L, the function

f. is continuous. We shall show that, msccording to Proposition 4 of Crouzeix [1977]

L]

this implies that the guassi-convex function f. is continuous. Following Crouzeix,

{i) £ is lower semi-continucus.

For this one has to show that for every real number k, the set

v, = {xex| #(x) <k}

is closed relative to X. By gquasi-convexity of f, the set Vk is convex.
Moreover, for every straight line L in 5, the set Vk N L is closed relative

to X by continuity of fL. These two properties together imply that Vk is

closed relative to X. To see this, consider a point Xq of X adherent to Vk.
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Select & point x. in the relative interior of V,. If x, = X5 then x, is

1 .4 1 0

[

in Vk' if xl # Xg» then every point of the straight line segment [xl, Xq

is in Vi (Eggleston (1969, pp. 9-11)). Since the intersection of the
straight line through Xy and X, with Vk is closed relative to X, the point
X, is 1p Vk'

(ii) f is upper semi-continous.

For this one has to show that for every real number k, the set
U, = {x € X] £(x) < x}

is open. By quasi-convexity of f, the set Uk is convex. Moreover, for

every straight iine L in 8, the set Uk N L is open relative to L by continuity

of £ . These two properties together imply that Uk is open. To see this,

L
assume that Uk is not empty and consider a point X of Uk' Let {el,...,em}
be a basis of S. For every i = 1,...,m, there is ti > 0 such that Xy =~ tiei

and x. + tiei belong to U The convex hull of the 2m points obtained in

0 k'
this menner is s neighborhood of Xqs and is contained in the convex set Uk'
Hence f is continuous, §.E.D.

We zlso note

Theorem 10. Under A.3, if f is not convex, then g has property (P)

of Theorem 2.

Proof: 1If f is not convex, there is a straight line L in 5 such that the

restriction fL of f to XNUL is not convex. Let then Yis Yo be twoc peints
of Y such that g(yl) # g(ye), and denote by M the straight line through
¥y and Yo and by 8y the restriction of g to Y N M. By Theorem 2, the

function g, has property (P), Q.E.D.
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For every 1i=1,... m>2, let now Si be a finite-dimensional
real vector space, Xi be an open convex subset of Si . fi be & non-

constant real-valued function on Xi s and assume that the function

m m
f: XXi+R defined by xeof(x) = § fi(xi) is quasi-convex. By
i=1 i=1

Theorem 9@, every function fi is continuous, and by Theorem 10, if a
certain function fj is not convex, then for every i#J , the function
f; has property (P) of Theorem 2,

Our next purpose is to extend the definition of the convexity index
given in Section 2. Let KX be a non-empty convex subset of & finite-
dimensional real vector space, and G be a resl-velued function on K
such that for every straight line D intersecting K , the restriction GD
of G to D belongs to the class ¥ defined at the end of Section 2.

By definition, the convexity index c(G) of G is

e{G) = Inf e(G.) ,
D D

where the Inf is defined over the set of straight lines intersecting K .

We note that f and g satisfy all the conditions impesed on G .

Let L be a straight line in 5 intersecting X and such that fL
is not constant. Let M be & straight line in T intersecting Y and
such that &y is not constant. According to Theorem 6, c(fL) + c(gM) >0.
Therefore c{f) and c(g) are both finite and satisfy

c(f) + clg) 2 0.

2
Theorem 11. Assume that A.3 holds, and that f and g are C . If c(f)+c(g)>0,

then c(lﬂ = c(lf) + cng) . If c(f)+eclg) =0 and cf(f) «clg) # 0,

then c(F}) == . If o{f) =0=c{g), then c(F) =0 .

In the case covered by the second sentence, if one of the two convexity

. 1
indices, say e(f) , vanishes, the other is strictly positive. Thus Nl
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. e . 1 . . 1 . st
is infinite while C_(E)— is finite. Therefore m is infinite and

Proof of Theorem 11. We assume at first that X and Y are open real

intervals and f and g are strictly increasing. Consider an arbitrary point

(xo,yo) € XxY and an arbitrary straight line D through (x ) with

0*Yo
slope g . If g is finite, the restricticn FD of F to D satifies

FD(x,y) = f(x) + g[y0+c(x-x0)] vhich we denote by +t(x; xo,yo,c) .

If ¢ 1is infinite, the restriction F_. of F to D satisfies

D
. . 2
FD(x,y) = f(x0)4-g(y) . Sinece t is C” , by Theorem 8 we have if © is finite

and (xo,yo,o) are such that t'(xo; xo,yo,o) # 0,

" .
C(F) - Inf t (x03 xo’yosc)
2
X3Y(s0 (t'(xo; xo.yo,c))

To cover the case in which o is infinite, it is sufficient to check that

"X 5 X ,¥~s0) g'(y.)
c fgfte °o_0°°0 5 2 : > which we will do below in every
L] . 1
(t'(x53 %45¥520)) (g'(y,))
case.
Now
1 . = 1 t
t (XO, xo.yo,c) f (xo) + og (yo) and

n . " 2 n
To lighten notation we let

t"(xo; xo,yo,o)

Y(xo,yo,o) = , a'= f'(xo) , a"=.f"(x) ,

(t'(xo; xo.yo,c))2 0

T = L] " = "
Thus

bllcz + al!

(10) if d'o+a' # 0, ¥(x,yyo) =——
{(p'c + a')
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For a given point (xo,yo) » We seek the infimum of this ratio as o

varies, recalling that by Theorem 3, a'>0 and b'>0 , and by Lemma 3,

" "
a = . b - > 0.
(a') (b*)
a" b“
The case in which > + > >0 .
(") (b*)
-bl!o,2 + &N
A routine study of the function o+ ————————— shows that its
(b'c + &')
a" -bll
2 ° 2
N . a' b! "
minimam is -(-H . Moreover this number is indeed < b >
+ b!
(a)2  (®")2 v
" "
The case in which —2 5+ b s = 0.
(a') (b}
4] L " N
If 8" #0#7Db", then 228 - b bo-a
(b'c+a')2 (p1)2 Plota
1
Letting o tend to -:—, on the right if b">0 , on the left if bd"<0 ,
n 2 "
one obtains Inf —-b--g*-:-g—g = e,
o (b'g+a')
" " b"U + a"
If & =0=1b" , then for every o , (———? = 0 . Therefore
bl'a+a’
1] 2 L "
+
Min—b—c——ag = 0, vhich is indeed ¢ —— = 0 .
g (b'o+a') (b')

In the following we appeal to the properties of the function

uy
(u,v) » elu,v) = ==
defined on H = {(u,v) € thu+v > 0} .

The function e is continuous and strictly increasing in u and in
v . Moreover let (uo,vo) €Q3H . If uy #0#v, ,thenas (u,v) in H
tends to (uo,vo) , elu,v) » -, If u, = 0 = v, , then as u tends to
0O on the right end v tends to O on the right in such a way that ({(u,v) € H,

one has e(u,v)+0 because ef{u,v) < u+v .
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We now distinguish two cases.

e{f) + cl{g) > 0.

fn(x)
(£1(x))2 =

( '('();2 2 c(g) , hence - f'('(;c;"‘ T g'('(s)r;2 70 fecording o the
gr y = f'(x 8' ¥

f"(x) . E"(y)

For eny (x,y) € XxY , one has e(f) and

2 2
= {f£'(x)) (g'(y)) N
above Igf v(x,y,0) = r ey N =) . By continuity and

(£1(x))2  (g'(y))°

monotony of the function e , ¢(F) = Inf Inf y(x,y,q)
o
Xy

Inf _£"(x) _1Inf "(y)

L ex)® Y (ere)® | eln) . el)
Inf _ " (x) , Inf __g"(y) e(f) +clg)
o) Y (g(y))?

el{f) + clg) = 0 .

Two subcases have to be considered.

(1) ef{f) # 0 # c{g) . There is a sequence (xn,yn) € XxY such that

f"(xn) g"(yn)
5 tends to e(f) , and 5 tends to clg) . If for some n ,
L} []
(£'(x ) (g'(y ))
n n
f"(x ) gn(y ) f"(x ) gn(y )
n2+ n2=0,then——n§=c(f) and—-—--n—é—=c(
L} 1 L L
(f (xn)) (g (yn)) (f (xn)) (g (yn))
According to the above, Igf y(xn,yn,c) = —w., Hence ¢(F) = -=. If for
f"(x ) g"(y )
every n , 2t > + t 5 > 0 , then according to the above,
(r'(x)) (g (yn))
11 L1}
f (xn) . g (yn)
(212 )% (g'(y )
Inf Yix .y ,0) = ) —gn(yn) . Moreover as n-++w, the
+

(£1(x ) (g'(y ))?

g)
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last ratic tends to =-®., Hence again ¢(F) = =», In summary, in sub-
case (i), ¢(F) = ==,

(11) e(f) = 0 = e{g) . Consider an arbitrary (x,y) €EXxY . One

has f"(x)>0 and g"(y)20 . According to (10), for every o , one has

¥(x,y,0) >0 . Therefore c(F)>0 . Moreover there is a sequence
f" X L]
(x ) g"(y,)

(x_,y.) € XxY such that ——5—  tends to 0, and ————DB —  tends
n’n (£7(x))° (g'(y ))?
n g\,
f"(x ) g"(y )
to 0. If for some n , B, I = 0, then f(x ) =07=¢g"(y ),
n n

, 2 , 2
(fr (xn)) (g (yﬁ))

and by (9), Y(xn,yn,cr) =0 for every ¢ . Hence c¢(F) =0 . If for every n ,

f"(xn) ] g"(yn)
Il n N :
(£'(x ) ' (g'(y ))° > 0, then Ipf ylx,.y,.0) (x ) g"(y,)
n n N

(er(x D% (g(y )P
When n->+o, the last ratio tends to 0 . Hence again c¢(F) =0 . 1In
summary, in subcase (ii), e(F) =0 .

This concludes the proof in the case in which X and Y are open
real intervals and f and g are strictly inereasing. The preceding re-
sults held as well if f and g are no longer restricted to be strictly
increasing. In that case f and g belong to the class € defined at the
end of Section 2 and the definition of the convexity indices c¢(f) and c(g)
maekegs the extension immediate.

Finally we consider the case in which X and Y are open convex sub-
sets of finite-dimensional real vector spaces. In the remainder of this
proof, L denctes & straight line in S intersecting X ; M denotes a

straight line in T intersecting Y ; K denotes the product L xM ;
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FK denotes the restriction of F to K ; Ln denotes a sequence such

that c(fL
n

tends to ecf{g) .

) tends to c(f) ; M denotes a sequence such that c(gM )
n

As we noted before stating Theorem 11, one has c(f) + c{g) > 0.

The case in which c{f} + c(g) > O .

Consider a straight line D in S5xT intersecting XxY . There
are L and M such that D CK . One has c(fL) + c(gM) > 0 , hence

C(fL) . c(gM)

= (f) cflg)
c(FD) > c(FK) = c(fL)+c(gM) > z(f)ff:(i) . Consequently

(£) + e(g)
o(F) > Eff)+g(g)

Consider now the sequences Ln ’ Mn , and Kn . One has
o(F, ) = oty )+ elgy ) re mare (e} tends te SE)ec(d)
K elfy )+ clgy ) - ’ K e(f) +clg)

n M n

n n
ve . c{f) +c(g)
However c¢(F) ic(FKn) . Hence c(F) = (5 *ole

The case in which ec{f)+c(g) = 0 .

Twe subcases have to be considered.

(1) c(f) # 0 # c{g) . Let Ln . Mn , Kn be as sbove, If for some

)+c(gM ) = 0, then c(fL ) = c(f) &nd c(gM ) = clg)
h

n n n

n o, c(fL

Conseguently c(FK ) = -~w. Hence ¢{F) =-x. If for every n ,
c(fL ) -c(gM )
n n

n
) . As n-atow

c(fL)+c(gM)>O,then c(FK) = 5 J+el
n n n L

€y
n I

c(FK ) tends to -o. Hence again c¢(F) = = =,
n

{(ii) ec(f) =0 =cf{g) . Let D be a straight line in SxT inter-

secting XxY . There are L and M such that D CK . If c(fL)+c(gM) >0,
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e(f ) - c(gM)
c(fL)+c(gM7

then c(FK) >0. If c(fL) + c(gM) = 0 , then

c(fL) =0-= c(gM) and c(FK) = 0 . In either case, c(FD) > c(FK) >0,

Consequently c(F) >0 .

Let nowv L , M , K be as above. If for some n , c(fL )+c(gM ) =0
n n

then c(fL ) =0 = c(gM ) . Consequently t:(FK ) =0 . Hence c(F) =0 .
n n n

e(t, ) +clg, )

If for every n, e{(f, )+ c(g, ) >0, then c(F. ) 1 1
UL fu_ K c(an)+c(gMn)

As n++o, (:(FK ) tends to 0 . Hence again ¢(F) = 0 , Q.E.D.
n

For every i=l,...,m_>=2 s let Si‘ be & finite-dimensional real

vector space, Xi be an open convex subset of S fi be a C2 non-

i E ]

constant, real-valued function on 'Xi such that the restriction of ¢

i
to every straight line intersecting Xi belongs to the class ¥ . Define
m m
the function f: X, +R by x£(x) = § fi(xi) . Theorem 11 permits
i=] i=1

a complete characterization of the functions f that are quasi-convex.

Consider first the case of two factors Sl and 82 . As we noted be-

fore stating Theorem 11, if the function f is quasi-convex, one has
c(fl) + c(fz) > 0 . Conversely assume that c(fl) + C(fE) >0. For i=1,2,

let Li be a straight line in Si intersecting Xi + Dencte by fi-L the
i
restriction of fi to L; . One has c(fl-Ll) + c(f‘2 )20, and by

Theorem 6, the restriction of f to leL2 is quasi-convex. Let D be

-L2

a straight line in Slx82 intersecting }L_LXXE . Choose Ll and L2

such that D C L1>=L The restriction of f to D is quasi-convex.

2 -
Therefore f is quasi-convex. Summing up, f is quesi-convex if and only

if el(f)) +e(fy) 2 0.
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Consider now an arbitrary number m>2 of factors. Two cases must
be distinguished.

(a) If f is convex (equivalently if e(f) >0 ), then for every i ,
fi is convex, and c(fi)io . Conversely if for every i , c(fi)io .
then every fi is convex, and f is convex.

(b) If f is quasi-convex but not convex (hence e(f) <0 ), then there
is J for which fj is not convex, hence c(fJ)<0 . For every 1#3 ,
£, is convex, hence c(fi)=—>—0 . Let I=1{1,...,mN{j}, and f_. be the

I
function >< X, +R defined by x»fI(x) = 3 fi(xi) . According to the

ict iel
preceding paragraph c(fJ) + c(fI) > 0 . Therefore c(fI)> 0 . Conseguently
1 1
> 1= =
by Theorem 11, c(fi) 0 for every i€1 , and W iélaf_iy . However

a3

. . 1 1 1
c(fI) ;-c(f‘j) implies m;-af—:}y . Hence o(f) = izlmi 0.

Conversely assume that for some J , c(fJ)‘CO ; Tor every i#3, c(fi)> 0 ;

m
1 1 1 1 1
and 121 _TC(fi <0 . Then _—Yc(fI = iél PER] fi , and ﬁ(fx + G fj < 0.

Hence c(fI) + C(f,j) >0, and@ f is quasi-convex.
Summing up, f is quasi-convex if and only if either (1) for every i ,

c(fi);o , or (2) for some j , c(fJ)<0 ; for every i#) , c(fi)>0 ;
1

m
and IF(?—);O

i=]l i
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