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0. ABSTRACT

The theory of Fourier transforms of generalized functions is
used to extract general formulae for the tail behavior of a probability
distribution from the behavior of its characteristic function in the
locality of the origin. The theory is applied to develop asymptotic

formula for the tails of the stable distributions,

1. INTRODUCTION

The tail behavior of a probability distribution is known to be
closely related to the behavior of the characteristic function of the
distribution in the neighborhood of the origin. While certain precise
results have been established about this relation (see, for example,
{41, [5]), no general formulae which characterize this relationship
seem to be available in the literature. The object of this paper is
to show that, from a very general representation of the characteristic
function in the locality of the origin, it is possible to extract cor-

responding asymptotic formulae which describe the tail behavior of the
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probability distribution. The formulae derived should be applicable to
a wide class of probability distributions and useful in many applications.

We illustrate their use in the case of the stable distributions.

2. GENERAL FORMULAE FOR THE TAILS OF A DISTRIBUTION

We let cf(s) be the characteristic function of a real valued
random variable. The behavior of c¢f(s) as s =+ 0 is assumed to be
given by the following asymptotic series
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where n , u, Vv, P s qjkg are real constants and sgnis)} =1, 0, -1
for s >0, =0, <0 . In general, we will find in most applications
that p>M, v>0, K(j) =0 and L(j) =0 or 1 for all j

The representation (1) is sufficiently general to include a very
wide class of distributions and should cover most distributions of practical
interest in mathematical statistics. The first component in braces
on the right side of (1) is analytic and ensures, when u > M , that
integral moments of the distribution will exist to order M-1 if this
is an even integer and to order M-2 if M-l is odd [4]. 1In cases where
M 1is finite and the distribution does not possess all its moments, the
second component of (1) is important in the local behavior of c¢f(s)

in the locality of the origin and is instrumental in determining the

form of the tails of the distribution as the following result shows.



THEOREM.

If the characteristic function cf(s) 1is absolutely integrable

and can be decomposed into the form

where

cf(s) =
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ig absolutely integrable for j =0, 1,..., N and N

is the smallest integer > p + Jv +1
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then the corresponding probability demsity function pdf(x) has the

following asvymptotic expansion as k] » =

(2)

Proof.

pdf(x) =
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We use the theory of asymptotic expansions of Fourier transforms

as developed in Lighthill [3] and Jomes [2].

The notation fti(x) is used to denote the inverse Fourijer transforn



of cfi(s) . Since the functions cfi(s) for i =1, 2 are not absolutely
integrable, the fti(x) cannot be defined in the usual way but do exist
as generalized functions. In particular, the cfi(s) can first be de-
fined as generalized functions since there exists a G > 0 for which
(l-+sz)“Gcfi(s) is absolutely integrable; the fti(x) are then defined
as the generalized functions obtained as the inverse Fourier transforms
of the generalized functions cfi(s) [3].

Starting with cfl(s) , We now write

M-1
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and then, by definition,
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where 6(y) is the Dirac delta function and é(m)(y) is its m
derivative. We deduce the asymptotic behavior of ftl(x) as |x[> =

immediately from (3) as
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for any value of k > 0 .

The second component of

cfz(s)

On inversion,

ftz(x)
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The third component of the characteristic function is cf3(s)
Now ft3(x) is the inverse Fourier transform of cf3(s) so that
(-ix)thB(x) has the inverse Fourier transform cféN)(s) . By assumption,
cféN)(s) is absolutely integrable over (-«,») and it follows from the
Riemann Lebesgue lemma that (—ix)th3(x) = 0(1) as lxl + o , This

last result together with (4) and (5) implies that as |x£ + o

]
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3. APPLICATIONS

To illustrate the use of the theorem, we first take the simple

example of the Cauchy distribution with cf(s) = e_|s| . In this case

I
=

cfl(s)

J 341
-1~
|S|j£d(j+l)! s

1l

cf,(s) &

’



J+2
cf3(5) = lﬁl,h_e*efsl
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and we deduce from (2) by setting p =1

, n=0, v=1, K =0

and L(j) = 0 for all j that
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where 2n = 3j and 2N = J . The expansion (6) can be verified directly

-1
from the probability density pdf(x) = [n(l-+x2)] itself.
As our second example, we consider the stable distributions, whose

characteristic functions take the form [1]
- . ! F 1,
(7) cf(s) = exptiys—-c|s| jexp - 51wK(a)Bs/]s|

for o #1 and
- . .22 8
(8) cf(s) = exp 1Ys-c|s|[1-18w'Tngn|s]]

when o = 1 and where K(a) = 1 - |1-a| . It is clear that both (7)
and (8) fall within the class of characteristic functions with local
expansions at the origin of the form given by (1). As discussed in
[1] we may, without loss of generality, restrict ourselves to the case
in which y=0, ¢=1, x>0 . The behavior of (7Y as s > 0 is

then governed by the series
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Setting p =0, n=0, v=oa in (1) we then obtain directly from
(2) the following asymptotic series for the probability density as
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This formula has been obtained by contour integration in the separate
cases o <1 and a > 1 by other authors (see [1], pp. 54-56).

When o =1 we have
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which is also of the general form (1). We set K(j) =3, & =k

b
n=0, =0 and v =1 in (2) and we find the corresponding asymp-

totic series for the probability density as x » =
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which has been given in alternative integral form in [1].
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