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0. ABSTRACT

A new method of approximating the probability density functions
(pdf's) of econometric estimators and test statistics is developgd. It
is shown that best uniform approximants to a general class of pdf's exist
in the form of rational functions. A procedure for extracting the
approximants is devised and is based on modifying multiple-point Padé
approximants to the distribution. The new approximation technique is
very general and should be widely applicable in mathematical statistices
and econometrics. It has the advantage, unlike the Edgeworth and saddlepoint
approximations, of readily incorporating extraneous information on the
distribution, even qualitative information. The new procedure is applied
to a simple simultanecus equation estimator and gives exceptionally

accurate results even for tiny values of the concentration parameter.
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1, INTRODUCTION

The 1dea of approximating small sample distributions rather than
extracting their exact mathematical forms has a long history in statistics
and a number of different techniques have been explored (Kendall and Stuart
@ﬂ, give an introductory survey of some of these techniques in Chapters 6,

12 and 13). Approximations are clearly of importance in those cases where
mathematical difficulties have prevented the development of an exact theory.
Regression models with lagged endogenous variables as regressors provide

such an example, which is of particular relevance in econometrics. Ap-~
proximations to distributions are also useful in those cases where the

exact mathematical expressions are too complicated for numerical computations.
Some examples of the latter are discussed by Phillips B, [32].

Several authors have recently obtained approximations to the
distribution of econometric estimators and test statistics based on asymptotic
series. The approximations used in most of these studies have been based on
the first few terms of Edgeworth-type asymptotic expansions of the
distribution function (df) or probability density function (pdf) of the
statistic under consideration. An alternative approach which can, when it
is available, provide significant improvements on the Edgeworth approximatien,
particularly in tail areas, is based on the method of steepest descents in
contour integration. This method leads to the saddlepoint approximation.

Its use was systematically explored for the first time in statistics by
Daniels [9,10] and has recently been the subject of renewed interest (o,

6, §3. 0. B9, [30].

Both these methods of approximation are capable of representing the



exact distribution to an acceptable degree of accuracy in certain parameter
environments. This is confirmed by the numerical evaluvations in Anderson
and Sawa [i,z], Phillips @ZZQ, and Holly and Phillips Eﬁ. Moreover, the
approximate distributions that have been obtained in the literature have
already given valuable information concerning the small sample behavior of
competing estimators and the adequacy of asymptotic theory in simple
simultaneous equations and dynamic models. However, given the current state
of our knowledge, the use of either of these methods in practical

econometric work to advise on the choice of estimator and improve inferential
accuracy is bound to encounter difficulties, some of them major.

First of all, there are certain parameter enviromments where the
performance of the approximations is poor, sometimes a good deal worse than
the asymptotic distribution (particularly in the case of the Edgeworth
approximation). Unfortunately, the parameter environments for which this
poor performance obtains are not at all unusual. As we might expect, given
that the approximations are based on asymptotic series, this problem tends
to become more widespread when sample sizes are small, Some indication of
the wayward nature of these approximations in certain parameter
environments is already available in Eﬂ and Eﬂ. Further documentation
will be given in a companion article @ﬂ to the present.

Secondly, although general formulae for the Edgeworth approximation
are now available (Ef], Bﬂ) and widely applicable, the saddlepoint
technique is still only practicable in specialized cases where the character-
istic function is available or simple integral formulae for the pdf can be

used (such as in the case of ratios [0}) or there exist a set of sufficient



statistics for the parameters to be estimated Ei. No doubt progress will
be made in tackling some of these latter difficulties but, in the meantime,
they remain a barrier to the general use of the procedure in analysing small
sample distributions and influencing the way in which empirical work is
actually undertaken.

Another difficulty that can arise im the use of the saddlepoint
technique is that, for certain values of the argument of the pdf, singularities
can coccur within the strip of the imaginary axis containing the saddlepoint
through which the path of integration is normally deformed. In such cases,
this path of deformation ié no longer permissable and special techniques
must be used to smooth the approximation past the singularity; the
resulting approximants are called uniform asymptotic expansions. Uniform
approximants are typically much more complicated in form than the saddle-
point approximation (an example is given in [jo]). They are not always easy
to extract and further wbrk is required to splice them with the saddlepoint
approximation, where it does exist, to cover the whole of the distributionm.

Finally, it seems difficult to embody additional information on the
distribution in question into these approximations. To take a simple
example, in spite of the fact that the actual pdf is non negative and the
df momotonic it is sometimes awkward to modify the Edgeworth approximations
so that they share these properties. To take a2 more complicated example,
we often know or can find the leading term in the series representation of
the exact pdf (in many cases, without knowing the full expression for the pdf).
This leading term frequently has a simple algebraic form and is instrumental

in determining the behavior of the exact distribution in certain domains,



particularly the tails. Yet, even when this information is available, there
seems to be mno obvious way of building it into either the Edgeworth or the
saddlepoint approximation. The resulting approximatioms, therefore, end up
neglecting what is potentially very useful analytic information on the form
of the distribution.

The purpose of the present paper is to introduce a new technique of
approximating sampling distributions., The technique is very general and
should be widely applicable in mathematical statistics and econometrics,

It has the advantage, unlike the Edgeworth and saddlepoint approximations,

of readily incorporating extraneous information on the distribution, even
qualitative information. Moreover, since the technique is not based on an
asymptotic series expansion in terms of the sample size or concentration
parameter, accurate approximations can be obtained even in very small
samples. The technique should, therefore, be most useful in cases where

the Edgeworth and saddlepoint approximations run into difficulty. It turms
out that the new approximation is close to the best uniform approximant in
the class of certain rational fﬁnctions. These approximants are discussed
and the class of rational functions to be used is defined in section 2. A
general theory of best uniform approximation in the context of density
approximation is given in sections 3 and 4, These sections provide the
theoretical basis for the new technique. Sections 5, 6 and 7 describe the
procedure and give the general formulae needed in applications. In section 8
the method is applied to a simple simultaneous equations estimator, facilitating

a comparison between the new and existing techniques of approximation.



2. A GENERAL CLASS OF DENSITY FUNCTIONS AND RATIONAL APPROXIMANTS

To fix 1deas, we write the estimator or test statistic in which we are

interested as eT . In what follows, we treat BT as a scalar so that,

when dealing with estimators, we are in effect concentrating on the marginal
distribution of individual components of a complete vector of estimates.

is6
The characteristic function {(cf) of 8 is written as cf(s) = E[e T}

T

and is assumed to be absolutely integrable. This implies that eT has a

bounded, continuous pdf given on inversion by

-1

(1) pdf@) = 17 &I cr(syas.

Moreover, by the Riemann Lebesgue lemma, it follows from (1) that

pdf(x)+0 as x-»%= , Thus, the effect of the integrability requirement on
cf(s) is to confine our attention to the class of densities covered by the
following assumption:

Assumption 1 8 has a continuous pdf which tends to zero at the limits

T —_ —

_g£ its domain 2£ definition (z=) .

Note that the boundedness of the pdf now follows from its continuity
and behavior at += ., Assumption 1 covers a wide variety of densities
arising in econometric work. It can, in fact, be extended to allow for
certain types of discontinuity and singularity but this complicates the
development of the approximants that follow. In this paper, we will, therefore,
keep to the class of densities defined by Assumption 1. This is sufficiently
general to include all the usual simultaneous equations estimators and test

statistics, as well as their extensions to models with lagged endogenous

variables as regressors and autoregressive, moving average errors.



Having defined the class of density functions, the general problem of
approximation takes the following form: for a particular density function
pdf(x), find an approximating function which depends on a finite number of
parameters whose values are selected in such a way that the approximating
function is as close, in some sense, to the original density as possible over
its entire domain of definition. Once stated in this way it is clear that
there are two major components to the problem. The first is the form the
approximating function should take. The second is the criterion of closeness
of approximation to be used in selecting the best approximant. By a best
approximant we mean the member (or members) of the given family of
approximating functions whose closeness to the function pdf (x) cannot be
improved by any other member of the same family. Thus, the second problem
clearly raises the further gquestion of whether or not there exists a best
approximation to pdf(x) in the given family of approximants. This question
of existence will be the subjeect of the next secticn. We now define the class
of approximating functions and the measure of approximation to be used in
the rest of the article.

Definition If s(x) is a real continuous function satisfying s{x)>0 and

——

s(x)*0 as x»*» , then we define the class of rational approximating

functions Bz

P (x)

n
(2) Rn’n (x38,Y) = s(x) Qn—(ﬁ

a +ax+ ... +a xn
1 n

b +bx+ ... +bx
0 1 n

- R <D

s{x)

n

where (i) the numerator and denominator are reduced to their lowest degree

by the cancellation of identical factors; (ii) n 1s an even integer; and




(1ii) vy = (aoal, cee s an,bo,bl, ves s bn) €l , the parameter space,

which is defined as the following subspace of 2n+2 dimensional Euclidean space

F={y: 2} b2 =1, Q (x)%0 for all xe(-=,)}.

The condition 22=0b§ = 1 on the parameter space [ 1is a normalization
which eliminates the redundancy in the coefficients of the rational function
(2). Other normalizations such as bo =1 or bn = 1 are possible and may

be more useful in applications. We will, in fact, later use the normalization
bo = 1 in the application of section 8 but the present definition of T 1is
retained for the theoretical development.

The condition Qn(x)>0 ensures that the rational fractions (2) have no
poles on the real line and are, therefore, compatible with the class of density
functions to be approximated. Since this is possible only when n 1is an even
integer, we have introduced this requirement explicitly under (ii)}. On the
other hand, when the denisty function we wish to approximate is non zero on
part rather than all of the real axis, it is clear that this requirement may be
relaxed. Moreover, if singularities in the density function do occur on the
real axis we may remove the condition Qn(x)>0 . If the position of the
singularity is known, this can be incorporated directly into (2); otherwise it
must be approximated and, for certain values of n , may not be captured by the
approximation, although whether or not this occurs will depend on the technique
that is used to construct the approximation.

We might consider working with the somewhat wider class of rational
functions for which the numerator and denominator polynomials were not

necessarily of the same degree. In certain applications it may seem

appropriate to make such a generalization of the class of approximants, and

the theory we develop can be modified to take this generalization into
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account. However, there are various reasons why we do not choose to work

with the more general class in developing our theory. The first is that the

coefficient function s(x) will frequently be constructed so that it captures

the behavior of the exact pdf(x) as x appreoaches the limits of its domain.
A rational fraction of equal degree is then immediately compatible with this
behavior. The second is that when the numerator and denominator are of equal
degree, modifications to the coefficients that are designed to avoid unwanted
zeros and poles in the final approximant are easier to make. That this is

of particular importance will be seen in section 4 where the practical pro-
cedure we develop for obtaining a good approximant of the type (2) 1s based
on modifying multiple-point Padé approximants, which in crude form will
frequently possess zeros and poles that need to be removed in order to
improve the approximation over the whole real line. Finally, numerical
experience with raticnal function approximations in applied mathematics ([17],
[2&]) suggests that rational fractions with numerator and denominator of equal
or near equal degree tend, on the whole, to give better approximations than
those for which the degrees differ markedly. Taking an extreme case of
comparison, polynomial approximations usually become unsatisfactory when it
is necessary to approximate a function over a wide interval. Moreover, they
lack the capacity to turn corners sharply and then go straight for long
periods, particularly in a direction almost parallel to the horizontal axis.
‘These properties are useful ones for a density function approximant to be
capable of capturing. An important feature of rational fraction approximations
is that even low degree fractions of the type (2) are flexible enocugh to
assume this behavior, This is endorsed by the large number of numerical
results with rational approximants reported by Hastings [18] and Hart [17].

It will also be confirmed in our own applicaticn of the technique reported

in section 5.

In order to develop a theory for the goodness of approximation based on



members of the class (2) we introduce a norm to measure the error in the
approximation. We will use the uniform norm (also known as the Tchebycheff
or L norm) defined as

3 |E® |l = sup  [EG].

xe(_m,m)

If we now let £(x) = pdf(x) - Rn,n (x;s,v) denote the approximation error,
our problem is, for a given value of n and a given function s(x), to find
a value of y which minimizes the maximum errorl. At this value of y ,
Rn,n(x;s,y) is then called a best uniform (or Tchebycheff) approximation
to pdf(x).

Other cheices of norm are certainly possible and will generally lead to
different best approximations, where they exist. However, for accurately

approximating pdf (x) over a wide interval the cholce of the uniform norm seems

very appropriate.

3. BEST UNIFORM APPROXIMATION BY RATIONAL FUNCTIONS

The theory of best uniform approximation of real continuous functions
by rational fractions has a long history. One of the earliest discussions
was undertaken by Tchebycheff B3]. Frobenius Eé] and Padé &6] both
systematically investigated the properties of a specialized c¢lass of ratiomal
approximants now known as Padé€ approximants (see section 4). In the complex
domain, Runge [}7] (see Rudin [36] chapter 13) established the possibility of
uniform approximation of analytic functions by rational fractions with pre-

assigned poles. A general theory of approximation in the complex domain by

1. Note that since pdf (x) and Rn n(x) are continuous and have the same

limits at *=, the maximum error will occur at a finite point on the
real line. Note also that when there is no risk of misunderstanding
we will abbreviate Rn n(x;s,'y) to Rn n(x).

b
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rational functions was developed in the treatise by Walsh [ﬁ&]. Extensive
modern treatments of the subject covering all the classical results on the
approximation of real valued functions are given in the volumes by Rice [ja]
and Meinardus [?4]. Since the theory in this literature (with the exception
of Walsh [ﬁ&]) has been concerned with the approximation of functions which
are defined over compact sets, the present section will be devoted to the
development of a theory which is applicable over the whole real line and is,
therefore, directly relevant to the problem of density function approximation.
Qur treatment of the problem will be based on the framework laid out in
section 2 and will follow the lines in Rice [}4], particularly his section
3.8.

To establish the existence of a best uniform approximant to a given
pdf(x) in the class of rational fractions defined by (2) we need to show

that there exists a set of parameters y* for which

{(4) lan’n(x;s,y*) - pdf(x)ll inf ltRn’n(x;s,Y) - pdf(x)l‘.

yel
=p , s3Y.
Now O<p<* and we can find a sequence of rational fractions {Rh n(x;s,Y(j))}
for which
) oy = IR 38,79y - paro ||
j n,n 35y
and

(6 1lim Py = P>
jam
{Y(j)}

It remains to prove that the parameter sequence has a convergent

subsequence which converges to a set of finite parameters. If we call the
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latter Y* then it will follow from (6) that y* satisfies (4). As dis-
cussed by Rice (pp. 26-27 of [34]), the crucial part of the proof of existence
is to demonstrate that the parameters lie in a compact setl. First, we show
that we may restrict our attention to bounded subsets of T

Definition (Condition E of Ricez)

The approximating function Rn n(x;s,y) is said to satisfy Condition E

for the norm || | if, given M<= , there is an N<= such that

RSN CIERD ] I

implies that

max]Yil <N
i

where v = (Yi).
In view of (5) and (6), there is an integer jO for which
) R s,y ) - pafo ] < o1
n,n

for all j>j0 . Moreover, from Assumption 1 it follows that there exists

K>0 for which llpdf(x)]I:K and, hence, using (7) we have the inequality

(8 HRn,n(x;s,Y(j))Il < Khp+Hl.

We now verify that Condition E holds for the approximating function Rn n(x;s,y)

Lemma ! The rational fraction Rn n(x;s,y) defined by (2) satisfies Condition E

for the uniform norm (3).

1. at least in this region of the overall parameter space I'. We can, for
example, exclude as irrelevant in terms of (4) those regions of T for
which the parameters yield unbounded rational fractionms.

2. See [34] page 27.
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Proof

We consider the set

(9 Ay: lan,n(X;s’Y)ll <M ,M>0}

Since Ian,n(X;S,Y)lljﬂ implies that, for a given number L>0,
max R _(x;8,7)] <M
xe[-L,1] ™%

it follows that (9) lies in the set

(10)  {y: max |R__(x;s,v)| <M}
xE[}L,L] msn

Now for xs[—L,L] and taking L>1 , we have

min |é(x)|
xe[—L,IJ

IR, aGs 0 > |P_(x)]

max Q. (x)| ''n
xe[-L,L]

1
2_1v7%
sL(L 1)

(11) » |Pn(x)|.

— (L2 (n"]'l)_l)

where

s, = min |s(x)| >0.
xe [-L,L]

Thus, when Yy lies in the set (10), we have

w2 (M) gy

n
T > max [P (x)| = max _|Z aixi|
sL(L2-1)1 xe[}L,lJ n xe[}L,L] i=0

and the polynomial E?goaixi is bounded uniformly on the interval E—L,IJ

It follows that the coefficient parameters a; are also bounded. Moreover,
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22=0b12 = 1 by definition, so that the parameter set (10) is bounded. By
implication, the same 1s true for the set (9) and, thus, Rn,n(X;S’Y)
satisfies Condition E for the uniform norm. []
This Lemma shows that we can confine our attention to bounded subsets
of T 1in searching for a best approximant. Hence, for all jzjo the
sequence {Y(j)} introduced earlier lies in a bounded subset of T . We

may, therefore, select a subsequence that converges to the vector y* , say.

If we reindex the subsequence we can write for the individual components of

L @)

S bi(j) =b* for i=0,1, ... ,n .

= *
ai and 1imj+m

Now it is important to note that since T 1is not closed y* may or may
not 1ie in T . If y*cI' then Rn,n(X;s’Y*) is a rational function of the
form defined in (2) and, in view of (4), is therefore a best uniform approximant
of pdf(x). But, if +v*¢I' then Rn’n(x;s,y*) is the limit of a sequence of
functions and is not necessarily a rational function itself. In fact, it
may not even be continuous (we give an example later in this section). However,

the limit function Rn n(x;s,Y*) will differ from a rational function,

R; n(x;s,‘y*) say, only at a finite number of points. And, in fact,
]

R;’n(x;s,y*) is a best uniform approximant to p#f(x) in the class defined
by (2).

The problem discussed in the last paragraph arises because although the
denominator polynomial Qn(x) = Qn(x;Y) >0 for vyel' , this nc longer
necessarily holds when y does not lie in T . Since vy* 1is a sub-
sequential limit of elements of T i1t follows that, in the limit, Q;(x) = Qn(x;y*)
can have at most n zeros. If we let Pnf(x) = Pn(x;y*) be the limit
Y(j)

of the numerator polynomial as +y* it follows that there are at most
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n points where R& n(x;s,y*) = s(x)Pn*(x)/Qn*(x) is undefined. At all

other points we must have Rn n(x;s,Y(j)) = Rﬂ n(x;s,Y*) . Moreover, since
;] 3

Ré n(x;s,y*) = pdf(x) + {Rn n(X;S,Y(j)) - pdf(x)} + {R;,H(X;S,Y*) -

’ »

Rn n(x;s,Y(J))} it follows from (7) that for j>jo
] —

[Ré’n(x;s,v*)l <K+p+1+ IR;,n(x;s,y*) - Rn,n(X;s’Y(J))|

and allowing j+= we deduce that

(12) lR;’n(x;s,Y*)l <K+p+1

Hence, for all x other than zeros of Qn*(x) , we have the inequality

(13)  sx) [P *(x)] <K +p + 1) Q*(x).

By continuity, (13) holds also when Qn*(x) = 0 , Thus any real zero of
Qn*(x) is alsc a zero of Pn*(x) , since s{(x)>0 for all finite x
We, therefore, eliminate by cancellation each linear factor of Qn*(x)
corresponding to a real rodt of Qn*(x) = (0 ., We call the resulting rational
fraction R; n(x's,Y*) and note that for all values of x other than zerocs
*
of Q *(x)
1 . * - . *

Rn,n(X,S,Y ) Rn,n(x:ssY )

while at the zeros {xk: k=1, ... ,m <n} of Qn*(x)

' . %Yy = . *
Rn’n(xk,s,y ) lim Rn n(x,s,Y Y.

X%
Finally, we note that
R, _(x58,7%) = pdf ) || = sup  [R_(x58,7%) - pdf (x) |
’ xg(—m,m) :
= max 4§ sup IRn n(x;s,Y*) - pdf(x)[,IRn n(xk;s,y*) - pdf(xk)]
XE (_m’m) b ] ]
x#xk



- 15 =

| v

sup |R; n(x;s,y*)_ - pdf(x)]
xe(-=,®)

L}

HR) L Gis, %) = pdf GO ]

The rational function R; n(x;s, *) is, therefore, a best uniform approximation
3

of pdf(x) and we have proved the following []
Theorem 1 (Existence of a best uniform approximant)

If pdf(x) satisfies Assumption 1 on ({(-~,=) , then there is a best

uniform approximant to pdf(x) in the class of rational functions defined by

(2) L]
To illustrate the problem that arises in the proof of this theorem because
T is not closed, we consider the following density function of the Pareto

distribution

aka

a+
%=1

pdf(x) = a>0 , x>k>0

We consider the case in which a = 2 and a class of rational approximants of
the form (2) is being used with s{x) = 1/x (x>k) and n =4 . Now consider

the sequence of approximants defined by

1
[ 1 V2 _ [ 1 ]{
(i) 2k? +k* T 232 T+k* ~ 232
R4’4(X;S’Y ) = % .
1 Ll Py 1 o 1
[1+k‘+ 232];& [1+k‘* 2j2] X"+ 3

Thus

O [ JL Pl L Vg1 K1
Y - 1+k1+ 2j2 »0, 1+k‘-9 2j2 10:07:-’!0: = 1+kl+ - 2j2 ,0,

and, as jo= ,

G ymr o [ Vs g [V g 0,00 - (K" Vo q [ 1%
LA [f 1R | 0 (TR | 2 0:050,0, — |5 06 |1
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The limiting function is then

(
2
ZL x)k
x3
R, 4(x3s,7%) = 5
0 x =k

which is not a rational function nor is it continuous on the interval [k,m)

However

2k2
' . & - ——
RA,A(X’S’Y ) S x>k

X

is rational, continuecus and is clearly the best uniform approximant to pdf(x)

on [k,m) .

4, A CONVERGENCE THEOREM

As the degree of the best approximating rational fraction increases,
the error E(n,s) = |]pdf(x) - R;,n(x:s,Y*)ll must be at least as small.
In fact, as Theorem 3 below shows, E(n,s}*0 as mn= , s0 that the best
approximant Ré,n(x;s,y*) converges to pdf(x) as m= . It follows that,
for any choice of density function satisfying Assumption 1, there is an
arbitrarily c¢lose rational approximant. In this semse, the ratiomnal
fractions of the class defined by (2) are dense in the set of density
functions that satisfy Assumption 1.

Meinardus [24] proves a related theorem on the convergence of rational

, 1
fractions to a continuous function over a bounded interval™.

1. The Welerstrass Theorem ([24] p. 7) established the same result for
polynomial approximants.
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Theorem 2 (Meinardus)

(1) The real valued function f(x) 1s continuous and non-negative over

the interval [}1,1] and is approximated by

Pm(X)

Q_(x)

n

(18 R G =

where Pm(x) and Qn(x) are polynomials with real coefficients and Qn(x)>0

for xa[fl,lj .

||

(i) E_ _(£) = inf {|f - Ron

m,n
} R €V
m,n  m,n

where V_ is the set of all rational functions as in (14).
»

Then

lim E (f)
n m,n

H
o

independent of the manner in which we pass to the limit.

Proof Meinardus [ ] pp. 158-160. []

Theorem 3 If pdf(x) satisfies Assumption 1 on (~=,=) and

E(n,s) = ||pdf(x) - RY (x35,¥9) ||

where R; n(x;s,y*) is the best uniform approximant to pdf(x) 1o the class
E

of rational fractions defined by (2) then

1im E(n,s) = 0.

b el
Proof
Let ¢>0 be arbitrarily small. Then, by Assumption 1 and the definition

of Rn n(x;s,Y) , there exists an L>0 for which
]
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sup [pdf(x) - R' {(x:s,vy%)| < =,
n

1
o,

xi>L
Now
[[paf () - Ry Gxis,y#) || = max jmax JEHCES WINCIERT T
xe[-L,L
sup [pdf(x) = R' (x;s,Y%)
i a,n |
= max max |pdf(x) - R! (x's,Y*)|,a
xs[—L,L] n.n

It only remains to show that there is an n, for which n>n implies that

{15} max ]pdf(x) - R' (x;s,y*)]<e
xe [-1,1] mo

For then, since € dis arbitrarily small, we can approximate pdf(x) by
R;’n(x;s,y*) over the whole real line as closely as we please for sufficiently
large n . Hence, E(n,s)+0 as n+= .,

In fact, (15) follows from Theorem 2. We need only transform x = Ly

with -l<y<l and setting

Ro n®xisay®) = s(ly) o=y =

pdf (x) = pdf(Ly) = pdf(y)

we have
Saf P_'(y)
max |pdf (x) - R n(x)[ = max  s{y) Pff(Y) _.m
xe [-L,L] ’ ye[-1,1] S5 )
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Since pdf(y)/s(y) is continuous and non-negative over E~1,1] it

follows by Theorem 2 that (15) holds for n sufficiently large [j

5. LOCAL EXPANSIONS FOR DENSITIES

The theory of the last two sections shows that for a given pdf in the
class defined by Assumption 1 there exists a best rational fraction approximant
of the type (2) and that, as we increase the degree of the approximant, this
converges to pdf(x) over the entire real axis. In any practical situation,
of course, we will need to prescribe the degree of the approximant to be
used and attempt to find the best approximant in the given class. This
normally requires numerical methods and the algorithms discussed in the
literature1 rely on knowledge of the true function values at a grid of points
as well as, in certain cases, the function derivatives. This seems too much
to expect in an econometric context where, even in those cases where the
exact density function is known in analytic form, numerical computations are
often impossible because of convergence problems with the multiple series
representation of the density or the inadequate tabulations of the special
polynomials that appear in the amalytic expressioms.

We are, therefore, left with the problem of how, in a given situationm,
to get close to the best approximant in the class (2) without having to rely
on arbitrary evaluations of the exact distribution. The sclution we present
to this problem in the present and succeeding section of the paper is based
on the idea of using the local behavior of the true demsity in the body of

the distribution and in the tails to construct a global approximation of the

1. See for example [24] pp. 170-171 and [34] ch. 6.
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form (2). 1In principle, the procedure we develop for moving from local to
global density approximations can be based on the knowledge of local behavior
at an arbitrary set of points. But, in practice, it will be sufficient to

use information concerning the local behavior of the density in the tails and
around the centre of the distribution. The application we consider in section
8 will show that this information is sufficient to secure excellent global
approximations to rather complicated density functions even with rational
fractions of lower degree.

Local behavior of density functions can take the form of expansions
about the value of the function at a certain point or perhaps estimates of
the function values obtained from Monte Carlo simulatioms. We will deal
with the case where some analytic information from local expansions is
available while, at the same time, it should be clear how the procedure we
develop can also be used to accommodate Monte Carlo evidence.

Qur present analytic knowledge of the exact distribution of a variety
of econometric estimators and test statistics show that there exists an

asymptotic expansion of the demsity function in ascending powers of x !

as
the argument x approaches the limits of its domain (¢ or +=} . In

general, we can write the expansion about infinity in the form
~ 2 3 4
(16) pdf(x) t(|x|){a0.+ 01/X,+ a2/x + u3/x + ahlx eee }

as x+te= ., The coefficient function t(le)+0 as |x|+~ and, in the case
of most of the common simultaneous equations estimators, is of the form

t(lx]) = lx‘-k where k>2 . Thus, in the case of the two stage least squares
estimator k = Q2 where. £ is the degree of overidentication in the

equation being estimated. An expansion of the type (16) was developed by
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Sargan and Mikhail [41] for the instrumental variable estimator and was
used by Sargan [Ao] in the analysis of Monte Carlo estimates of moments that
do not exist.
At points {di:i =1, ... ,I} where pdf(x) is continucusly differentiable

to an appropriate order we have the Taylor expansions

- _ _ 2 - 3 _q 34
(17) pdf(x) Big + Bil(x di) + Biz(x di) + 813(x di) + Bia(x di)
+ ... (1=1, ... ,I)

In a number of cases, we also have the analytic form of the leading term in
the series representation of the density. If we dencte this leading term by
w(x) , then it will be useful to consider extensions of the expansion (17)

which take the form

(18)  pdf(x) = w(x) {8, + 8, (x-d,) + Biz(x-di)z + 813(x—di)3

Y
+ BiA(X di) + ...}

Two obvious choices of the points di are: (1) the origin, particularly for

certain test statistics like the "t" ratio; and (ii) the true value of the
relevant parameter, when pdf(x) refers to the marginal distribution of a
certain estimator.

Although expansions such'as (16) and (17) usually produce good
approximations only in the immediate neighborhood of the point of expansion,
they can be used to construct approximations which perform well outside the
immediate locality of the approximation, while retaining the good behavior
of the original expansions within the locality. With reference to (17), the

fourth degree polynomial in x may yield a goed approximation to pdf (x} in
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a neighborhood of the point di ; but, in most cases, its performance will
rapidly deteriorate outside of this neighborhood and it will be quite inadequate

as an approximation on the tails, On the other hand, the coefficients Bi in

1
the expansion (17) usually contain information which can produce greatly
improved approximations ocutside the range in which the expansion (17) itself
is immediately useful. That this is so is demonstrated by the extensive
practical experience with Padé approximants in the applied mathematics
literature. These approximants are rational fractions for which the cor-
responding Taylor series matches the Taylor series expansion of a given
function to as many power§ as is possible. In the present context, we can

refer to the following example used by Baker [ ]:

1

_ (142x)% 1. 55,13 3 14l 4
(19) f(X)- 1+X] -1+2X-§'K +16x —W + ...

The Tayleor series for f(x) in (19) has radius of convergence equal to %.' Yet
as x becomes large f(x) is a well bahaved function which tends to Y2 as

x+» . Using only the first three coefficients 1, %; --% in (18), we

construct the Padé approximant

1+ (7/4)x.= 1 5 5 . 25 3
(20) T+ (5/4)x 1+ 2% - g% + EVL + ...

This has the same Taylor series expansion about the origin as f(x) to 0(x?)

and it tends to 7/5 = 1,4 as x+o ., Thus, using only three coefficients

in a local expansion about the origin, the Padé approximation {19) provides

an approximation at infinity to f(x) which differs at the second decimal

place. Even within the radius of convergence of the Taylor expansion (20)
outperforms the Taylor expansion: for instance, at x = 1/4 £(x) = 1.0954451,

the first three terms of the Taylor expansion give 1.0859375 while (20) equals
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1.0952381 providing at least another decimal place of accuracy.

This example suggests that Padé approximants can have the useful property
of accelerating the convergence of a given power series within its circle of
convergence, while at the same time considerably extending the domain over
which truncated series expansions can give useful results. These features
make Padé approximants attractive for constructing first step rational fraction
approximations from the information embodied in purely local density
expansions such as (16}, (17) or (18). Section 6 will be devoted to the
algebraic details of this construction and will give the appropriate formulae.

Since the coefficlents in the local expansions are needed in the
construction of rational fraction approximants, we now give an analytic
procedure for extracting local density expansions such as (16) and (17).

It will be useful to first ﬁake explicit the general form of the characteristic
function,

Assumption 2 (i) The characteristic function cf(s) has the general form

(21) cf(s) = cfl(s) + cfz(s) + cf3(s)

where
ins M-1 m
cfl(s) = e £=0 pm(ls) .
K L(k)
cf,(s) = einsls‘]'l I I qk2|s|k(£nls|)E wM; L(k) = 0or 1

k=0 2=0 for _a_l_]_._ k

cf3(s)€L(-w,m) , 1.e. is absolutely integrable over the interval
(-=,=) , for 3=0,1, ... ,N where N is the
smallest integer >p+K+l

cf3(j)(s)+0 as srtw,

(ii) The behavior of cf(s) as s*0 is given by the asymptotic series
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expansion
M-1 e L(k)
cf(s)meins b pm(is)m + ]s]u I I qke|S|k(in|S|)£ .
m=0 k=0 =0

This assumption is sufficiently general to include a very wide class of
distributions and should apply to most econometric estimators and test
statistics both in classical and non-classical (including dynamic model)
situations. The first component of the characteristic function cfl(s) is
analytic and ensures that integral moments will exist to order M-1 if this
is an even integer and M-2 if M-1 1is odd [23]. 1In cases where the
distribution does not possess all its moments, the second component,

cfz(s) , of (21) is important in the local behavior of cf(s) in

the neighborhood of the origin and is, as we shall see below, instrumental

in determining the form of the tails of pdf(x).

We start with the following two basic results which rélate the taii
behavior of Hensity functions to the regularity properties of the characteristic
function. They follow without difficulty from the standard discussions on
this subject in the literature;1 but theylalso demonstrate that we need to
go somewhat further to extract a tail expansion of the form (16).

Lemma 2 If the distribution with density pdf(x) and characteristic function

f
cf(s) has finite (M-1) th absolute moment, then cf(s) is M-1 times

continuously differentiable and the derivatives cf(n)(s)+0 as s»t= for

each n= 0,1, ... ,M-1
Proof The first statement follows by dominated convergence from the existence

]
of the (M-1) th absolute moment. The behavior of the derivatives at i«

1. See, for example, Feller [15] or Lukacs [23].
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follows from the representation

cf(n)(s) = {: eisx(ix)npdf(x)dx

and, since (ix)npdf(x) is absolutely integrable on (-=,») , the Riemann-

Lebesgue lLemma ensures that cf(n)(s)*o as srt® for each

n=0,1, ... ,M-1 . ]

Lemma 3 (Erdé&li) If cf(s) is M-1 times continuously differentiable, if

cf(n)(s)+0 ag s*» and if cf(n)(s) is absolutely integrable for each

n= 0,1, .oy ,M"’l 'Y then

. . —ME1 .
pdf(x) = %? I e_lsxcf(s)ds = (;i) I e_lsxcf(M 1)(L-'.)ds = o(x-M+l)
as x+o
Proof Erdéyli [14] p. 47
Lemma 3 shows that pdf(x)»0 as x*t=» at least as fast as x-M+1 :

1
but this is, in general, not a very sharp result. For, if the (M-1) th
absolute moment of the distribution exists and pdf(x) satisfies Assumpticn 1

-M-5

then we would expect that pdf(x) = 0(x ) for some 6>0 . For example,

in the case of the Cauchy distribution cf(s) = e-lsl and Lemma 3 demonstrates
that pdf(x) = o(l) whereas, in fact, pdf(x) = 0(x_2) . Thus, Lemmas 2
and 3 are not very helpful in providing local expansions about infinity of
the form (16).

However, a sharper result which does lead directly to the asymptotic
expansion (16) can be obtained from the more explicit representation of the
characteristic function (21) and the theory of Fourier Transforms of

generalized functions and their asymptotic expansions ([20], [22]).
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Theorem 4 If the distribution with density pdf (x) and characteristic function

cf(s) satisfies Assumptions 1 and 2 then pdf(x) has the following asymptotic

expansion as |x|-e

X k k
pdf{x) = ——— & I c [sgn(x)] + I c [sgn(x)}
nlx Pt r=0|kti=r K% kg4m=r 0
m>1
+I 4, in[xl[sgn(x)]k x T+ o(lx]—N}
kt+i=r
where the coefficients o * Sram and dki in this expansion are

defined by equations (26) and (27) below and N is the least integer >ptk+l .

Proof This is based on the theory of asymptotic expansions of Fourier
Transforms as developed in Lighthill [22] and Jones [20].

We will use the notation fti(x) to denote the inverse Fourier Transform
of cfi(s) . Now, since the functions cfi(s) for i=1,2 do not lie in
L{(-=,=) , the fti(x) cannot be defined in the usual way but do exist as’
generalized functions. In particular, the cfi(s) can be defined as
generalized functions since there exists a G>0 for which
(1+sz)_Gcfi(s)aL(—m,M)1; the fti(x) are then defined as the generalized
functions obtained as the inverse Fourier Transforms of the generalized functions
cfi(s)2

Starting with cfl(s) we write

M-1
_ lim _ins ~fs|t,, \m
cfl(s) = o0+ © i—o e (is)

and then, by definition,

1. See, for example, Lighthill [?2], page 21
2. [22], page 18.
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. M-1
- lim ) 1 o -—isx ins -|slt m
fr,00 = o 35. & Py e e e (is) ds
m=0
M-1 m s
o1 m lim [d© e ~i(x-n)° _-|s|t
T 2% L pm(—l) 0+ 4 m £w € € ds
m=0 dx
.
_ 1 Eg-l (_1)m 1im ‘i_ f: e[—i(x—ﬂ)-t]sds
21 P t>0+ | m
m=0 dx
+ f: e[i(x-n)—t]sdsl
M-1
1 )
(22) - i-:o Pm("l) $ (x n)

where 6(y) 1is the Dirac delta function and G(m)(y) its m'th derivative.

We deduce the asymptotic behavior of ftl(x) as x»= immediately from (22)

as

{23) ftl(x) = o(x-k)

for any value of k>0 .,

The second component is

ins

e s|u+k +

It

cf,(s) T {qkol

[[qko * 9
[[qko

ins
e n z

k=0

K
I
k=0

_ lim ins

= e
>0+

A%

d

s

3 -ls|t
+qk1 Ellslae lsl:‘

1[slu+k£nls|}

1

Ja=utk

a=p+k
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On inversion, we obtain

K
lim 1 0 « -isx ins -|s|t; |
ft. (x) = == I [q +q ——] f_e e e |s| ds
2 t>0+ |21 k=0[ k0 kl daj = amptk
1im | 1% 3 ) .= -(iy+t)s o
" a0+ |Zn o [ko S aa][fo e s ds

+ fm e (-1y+t)s sads]
° a=pt+k

y=x-1

K
-1 2 |1lim -a-1 _qeyo-l
T [[qko T Ba][t+0+ Floth)y(eriy) =+ (e-dy) ]}a=u+k

k=0
y=x-1n
K ir ir '
=_%; . . 3 Fot) | l_a_l e~ 5 sgn(y) (at+l) , 2 sgn(y) (atl)
=0 [{%0 " 9%k Ta y
a=p+k
y=x-1n
= -1-lz( [q + q 8—] 2T (a+l) cos{%'rr(a+1)}|y|-a-1
2m X=0 kO kl 3o a=ptk
y=x-n
K
==F T'(a+1) cos{%n(at+l)}iq, ~ + [w'(a+1) - k1 tan{kn(at+l)}
n k=0 kO
=(a+l)
- salylfay f1v]
kl a=u+k
y=x-n

where '(z) = I''(z)/T(z) , the logarithmic derivative of the Gamma functiom [ ].
Thus, the asymptotic behavior of ftz(x) as x*» 15 given by the series

1 K

(24) ftz(x) = z

T [%(a+1) cos{kw (a+1}} %o t [w‘(u+1) - Lrtan{kn(at+l)}
k=0 =0

. (D)o, = (et1)
- tnfx| + I % [E]m] Qi T2 [%] =] 7 .

m=]l
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where (c1+1)1 = T(a+1+2)/T(a+l).

The third component of the characteristic function is cfs(s) . Now
ft3(x) is the inverse Fourier Transform of cf3(s) so that (-ix)thB(x)
has the inverse Fourier Transform cf3(N)(s) . By Assumption 2, ch(N)(s)
is absolutely integrable over (~=,») and it follows from the Riemann
Lebesgue lemma that (—ix)th3(x) = o(l) as x+= . This last result together

with (23) and (24) imply that as xo=

pdf(x) = ftl(x) + ftz(x) + ft3(x)
K m L
1 -k @ |lin o (prk+1)2 In
(25) =——= L x| |a, * qpiE —[—] - snlx| | B S H
ﬁ]XIU+l k=0 kO kl m=1m X 0=0 ! X
+ o(]x[—N)
' L
) K g lutktl) n k
(26) =— 7! z o [sgn(X)]
nlxlu =0 |k+2=r )
£
qki(u+k+1)£n +m k
+ I 1 [sgn(x)]
k+2+m=r o
m>1
a, ] GwHe+1) o K . .
- 3 o znlx][sgn(x)] x =+ o(|x|™)
kt+i=r :
where
qké = T(u+k) cos{lm(u+k+l)} Qg * [w'(u+k+1) - M tan{%ﬁ(u*‘k‘i'l)}]qkl ,

Q1

T(utk) cos{lm(utk+1) }q,
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and N 1is the least integer >utk+l . We rewrite (26) in the form

1 K k k
27y —m—1I I ¢ [sgn(x)] + I c [sgn(x)]
rlx " r=0 |ktp=r ¥ MR —
m>1

k -r -N

-z dkglnlxl[sgn(x)J x =+ o(|x]™)
kti=r
and this establishes the result, []

To illustrate the use of Theorem 4, we take the simple example of the

Cauchy distribution with cf(s) = e s . In this case

cfl(s) =1
X k+1
(-1) k
ef () = |s| 1 L |
2 g (D)
s k+2 —ﬁls]
cf3(s) = () 1 e 0<B<1

and we deduce from (26) by setting p =1 , n=0 and 9y = 0 that

K r+l
1 (-1 T (r-2) {3m (r+2)} - -K-2
pdf (x) = ;;; i=0 ) Er+l)?os m{r+2) {sgn(x)]r x T+ o(]x| )
1 K T+l -r
=1 (-1)7 cos{l4n(x+2)} |x]|
mx2 r=0

Lersl

Now cos{}n(r+2)} equals (-1) when r is an even integer and zero

when r d1s odd. Hence, setting r=2n and K=2 , we have
N

I DPGED)T + o[(x2>'(N+1)}
n=0

pdf(x) = 1
'n'xz

This expansion can be verified directly from the density function pdf(x) =

rO+)]™ itself.
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Theorem 5 If chf(s) 1s absolutely integrable over (-=,2} then the local

expansion of pdf(x) about the point x =d, is given by

N-1 . N
(28) pdf(x) =1 B, (x-d ) + 0(x-d,)
._pn 1] i i
j=0
where
. =isd,
B,. = =i f” (-is)le  ‘cf(s)ds jo= 0,1, ... ,N-1
ij 2r3! == e * '
s N . -isx .
Proof Since s ef(s)eL{-=,») we expand the exponential e in the
inversion formula
pdf(x) = %; {: e 5%t (s)ds
about the point x = di and integrate term by term giving
RS 5 ~isd; 1 . y ~isd .
3737 §=o [, (-is)~e cf(s)ds(x-d;)" + 57, (-is)'e cf(s)ds(x~d,)
where di lies on the line segment connecting x and di . [j

Local expansions of the type discussed in this section for the tails and
the body of the distribution can also be extracted under similar conditions
for the distribution function. These expansions will be useful in the
development of a corresponding theory of global approximation for the
distribution function rather than the density and will be discussed in a
later paper. Expansions of this type are already given for many of the common

distributions in the statistical literature ([44]).
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6. MULTIPLE-POINT PADE APPROXIMANTS

As discussed in the previous section, Padé approximants can be used to
improve the convergence properties of local Taylor expansions and have the
useful additional property that they frequently extend the domain over which
these locallexpansions provide good approximations. This section will show
how Padé approximants can be derived from the local density expansions (16)
and (17). These approximants will provide a preliminary set of rational
fractions. They can then be used directly as approximations to pdf(x) or
modified sc that they belong to the class of rational fractions (2) and have
satisfactory global behavior. The question of modifying the preliminary
rational fractions will be taken up in section 7.

We start by writing the density function in the form

(29) pdf (x) = s(x)pdfs(x) —ogy <@

where s(x) is a real continuous function satisfying s(x)>0 over the
entire real axis and s(x)*0 as x»t= . This representation of pdf (x)
reconciles with the class of rational fractions defined in (2) and allows

us to accommodate information about the coefficient functions t{(|x|) and
w(x) which appear in the local density expansions {(16) and (18). In many
cases, s(x) will represent the leading term in the multiple series
representation of the density pdf(x) and, in such cases, s(x) will usually
be identical to t(|x]) and w(x) . When this leading term in the density
is unknown, a suitable alternative will be to set s(x) = t(]x|) directly
or some modified form of t(|x|) which has the same asymptotic behavior but

which is well behaved elsewhere on the real axis. If recessary, the
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expansion (18) can then be adjusted to take account of this modification so
that (17) is correct to the same number of terms.
If we write the local expansions of pdfs(x) in the form

~1 -2 -3 4 @
(30) pdfs(x)ﬂVaO + X + o + @ 4% + @,X 2 S X+t

~ - IR Y -4 y3 Y
(31) pdfs(x) 510 + Bil(x di) + BiZ(x di) + BiS(x di) + Bia(x di)

oo sl LD, xd

our problem is to construct a ratiomal fraction of the form

P () a.+ax+ ...+ a X
_'n 0 1 n

(32) [n/n] NS iy — T3 %0 n = an even integer
n 0 1 e n

which has the same local behavior as (30) and (31) and to as high an order as
possible. Such a rational fraction is called a multiple-point Padé approximant
and is discussed by Baker [ 4, ch. 8]1

The equations which define (32) can best be introduced by considering
the approximant based on the Taylor series about a single point. We take the
case of (31) with di = 0 and normalize (32) by setting bo =1 ., This
normalization ensures that Qn(O) = 1>0 so that the [ﬁ/n] approximant will
not have a pole at the origin (this now being the point of expansion of the
Taylor series (31)). The coefficients of [ﬁ/n} are now determined by the

equation

(33)  pdf_(0Q, () - B () = o[xz““]

1. This work together with [5 ] and the collection of articles in [38] provide
a systematic coverage of the extensive literature on the theory of Padé
approximants and their applications, particularly in mathematical physics.



- 34 -

Explicitly, we have the relations

Bi0 = 3
Bi1 t Bighy =3,
Bip T Biiby  * Bigby =2
Big * Bigby  F Bypby  F Bigby = a,
(34)
Bin + Bin—lbl + Bin—2b2 + ein—3b3 oo F BiObn = an
Brl ™ BinP1 Yt BypiPy T BynoPg Foeee T Byp =0
Bion T 2i20-1P1 * Pizn-2P2 T Byop-3Py toeee By =0

which comprise 2n+l equations in the 2n+l required coefficients of

[}Jn] viz {ao,al, er a3 3h ,bn} . Baker [4 ]1 has proved that,

1
although a solution to (34) does not necessarily exist for all positive
integers n there is an infinite subsequence {nj} for which the Padé
approximant [nj/nj] exists for any formal power series with BiO#O .
Further, when the approximant [ﬁ/n] exists, it is unique.2

We see, by inspection of (34), that in order to compute the coefficients
of [n/n] we need the coefficients in ﬁhe local expansion (31) to order 2n .
Even for low values of n , this is likely to become prohibitive quite quickly
when dealing with the distributjion of an econometric statistic because of the
increasing difficulty in extracting higher order coefficients and the
complications of the resulting formulae. Moreover, in view of the smoothness

of most density functions, in practice there will be little advantage to be

gained from increasing the order of contact at a particular point past n = 3

1. Theorem 2.4 of [4].
2. Theorem 1.1 of [4 ]
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or 4. In many cases, n = 2 will be sufficient to provide a highly
satisfactory local density approximant.1

Multiple point expansions provide an excellent means of enabling us to
reduce the order of contact at individual points to within manageable limits
while extending the domain over which the final approximant will perform
well., Thus, a two point Padé approximant [ﬁ/n& might be based on the
first n+l equations of (34) which require local expansion coefficients up
to Bin and a corresponding set of n equations with expansion coefficients
up to order n-l for a point other than the origin. These equations will
then yield an approximant with contact of order mn at the origin and n-l
at the second point,

If one of the points of local expansion is infinity, then the equations

take on a slightly different form. In this case, rather than (33) we require

(35)  pdf_(x)Q_(x) - P_(x) = O[X—Zn—lJ

as x+~ . We then have the following explicit relatioms from (30), (32) and

(35)

aObn = an
albn + uObn-l = an--l
ab  togb g togb o =a

(36) - - . - - + ese . .
unbn un—l n-1 + un—an-Z + ... + ao = ao
an+1bn <+ anbn-l + an—lbn—Z + ... + al =0
®2nPn * %2po1Pne1 F %2ne2Ppe2 Tere s - 7O

1. These issues will be taken up in greater depth in a later paper.
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As with (34), this is a system of 2nt+l equations in the same number of unknown
coefficients.

In the general case of expansions about arbitrary points di as in (31),
the equations which determine the coefficients take the form

3 _ 2n+1
Bij(x-di) Qn[d1 + (x-di)] - Pn[di_+ (x—di)] = 0[(x—di) ]

(37) 4T
i=0

i=1, ... ,1

1f we write y = x-d, and expand Qn(di+y) and Pn(di+y) as

i
n n
i i
Quldyty) = L bk(di+y)k =1 bk(l)yk = Qn( ) (9)
k=0 k=0
n n . .
Pn(di+y) =1 ak(di+y)k =z ak(l)yk = Pn(l)(y)
k=0 k=0
we have
a8 v =Wy CORC VN
where
(39
(i) - [ 2 3 - o ] . .(i) - -_ (i) _ - -y
K = 11 di di di ces ~di b bO , b= bO
2 n}. n-1 (1)
01 2di 3di .e [l}di bl bl
n}, n-2
00 1 3di . [2]d1 .
(1)
0 0 0 0 . 1 bn bn
i _ "] B
s ¥ T T
a(l) = |a (1) , a=la .
o o
(1)
al al
(i) a
L—an 4 L n_
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and {37) becomes
@ 2ntl
w (£ s e P -2, P - O[y ™|
_ n n
j=0
which is of the same form as (33) but in the transformed ccefficients.

To work in terms of the original coefficients we can use the

transformation matrix K(i) in the case of the vector a(i) as in (38) but

(1)

in view of the normalization on the vector b we partition K and b
as follows
] s
k@ = (B , k. 45955843 v 0 “:{
------ i’ i
o x
\ 22
b' = [bo,b;] = [1,b}]
We then have from (38)
iy _ (D) (1) _ , (D
b0 =k 'b, , b, = K22 b,
We now define
@ _T ] W _T,
G = 0 0 0 s 0 ) g Bio
-Bio 0 0 ene 0 Bil
-Bil —Bio 0 aew 0 .
“Bip Byy “Byg v O .
Bin-1 “Bin-2 “Bin-3 *0 P10 | B4
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The first n+l equations of (34) can be written as

(1) (1)

a+G 'b, =g

or, in the general case of a local expansion about the point di {not

necessarily the origin)

@ a4 Wy D LW, @y @

Transforming back to the original coefficients in the rational fraction we

get

MEOBRCVMCON

SN C N DY

or

42) ﬂﬂa+%u&g)_éﬁgnim=gu)

The system of equations (42) holds for each point of local expansion i.e. for
i=1, ...,1 in our original notation (see (31)).

Note that as we have constructed (42) the system involves n+l equations.
In practice, it may be convenient to use fewer equations at each point, thus
reducing the order of contact of the Padé approximant at each point and
requiring less analytic information about the expénsion coefficients. The
procedure allows us to make up for this reduction in the number of equatiouns
at each point by increasing the number of points we use in developing the
approximant. This process has the additional advantage of improving the

global nature of the final approximation.

In the general case we let K(l) be (mi+1) x (nt]) G(i) be (mi+1)
(1) (1) (1)
xm, , K22 be moxn , g be (mi+1) x1 and k be nx1l
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The complete system of equations which determine the coefficients in the
[n/ﬁ] Padé approximant are then based on (36) and (42) and take the

following general form:

< ntl — + n + -
4 \ a,) 1+
A O I ¢ (1M (gcl) !
1 22 a 1
o mmmm 1 R
_____ | ___l |24 o
LA G SR (0 (1) (D), ) 1 @]
I|K 6 UKy, mg k! b o1
ol |\ 2 - R
1 : G4l T%re2 0t Pnir 0 T
] %y %+l ot _an+r-l
rx (n+l)
I - " . - » b
n
_____ T T M~ W o
il T T s 0
l 0 -ao . » -an_z .
l . L[] - »
v | o 0 c . =g 0 »
L 1 A L A

where m_=n+r+l . In {43) we need to select I , the m, and m_

in such a way that Zi=1mi +m_>2ntl . In the final block of equations in
(43) we will often select r = 0 so that m_ <mtl . As with the case of
the local expansiomns (31) about the points di this will reduce the number
of final expansion coefficients that are required to solve for the [n/n]

Pade coefficients. 1In some cases (the application in section 8 turns out to

be such a case) we may have more than enough coefficlents, so that
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zmi + m >2ntl  and we may neglect some equations of (43) to obtain a

solution. When this happens it would seem preferable to neglect those
equations which refer to higher order points of contact of the Pade approximant
with the local expansions than those which refer to lower order points of

contact.

7. MODIFYING THE PADE APPROXIMANT

By solving (43) for the Padé€ coefficients we obtain a preliminary
rational fraction [ﬁ/n] as in (32). This can be used to construct an
approximation to pdf(x) of the form s(x)[n/n] = s(x)Pn(x)/Qn(x) . In some
cases, this will turn out to be a perfectly satisfactory approximant. In
others, it will need to be modified to produce a good approximation to pdf (x)
over a wide interval. This is because there is nothing in the procedure
outlined in section 6 which prevents the occurrence of zeros in the
polynomial Qn(x) on the real axis. These zeros induce poles in the
approximant and will need to be eliminated if the approximation is to
perform well, unless the zeros appear in remote and irrelevant regions of
the distribution. My experience to date suggests that the latter is not
usually the case. The normal occurrence is for the procedure in section 6
to produce a preliminary approximant with either no poles at all or a pair
of poles, at least one of which lies within the main body of the distribution,

In addition to unwanted poles, the [ﬁ/n] Pad& approximant may become
zero at a finite number of points on the real axis. Since we will, in
general, have pdf(x)>0 for all finite x we will normally wish to

eliminate the zeros of the approximant unless they occur well outside the
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region of interest in the distributiom.

When poles occur, they are typically found in the bridging region between
the points of local density expansion used in (43) to comstruct the Padé
approximant. This suggests that an obvious way of helping to remove unwanted
poles is to introduce an additional point of local expansion in (43),
perhaps at the price of reducing the order of contact at another point.
However, there is no guarantee that this method will eliminate poles and it
has the disadvantage of requiring additional information about the distribution
to be operational. The procedure we suggest below does not suffer from these
disadvantages. It will eliminate the poles and it is sufficiently flexible
to allow for additional information about the distribution to be incorporated
at the time of modification, if that information is available.

Before we outline the procedure, it may be worth mentioning that the
occurrence of unwanted poles in Padé approximants is a long standing problem.
The presence of poles in the approximant is one of the reasons why it is
difficult to prove general theorems about the convergence of Pédg approximants
to a given function as the degree of the approximant increases. Many of the
general results that are available1 concern the convergence of subsequences
as n»~ . For an example of non-convergence, we can cite Chui [B ] who
proves that in the general family of entire functioﬂs there exists a function
for which the sequence of [ﬁ/n] Pad€ approximants is divergent everywhere
in the whole complex plane except at the origin.

The procedure we suggest for modifying Pad€ approximants so that they
are well behaved over the whole real axis is based on the following simple

jdea. 1If zeros of the numerator and denominator polynomials Pn(x) and

1. See, for example, Part II of Baker [4 ].
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Qn(x) occur on the real axis, they will occur in pairs since n 1is even,
We then replace the real roots of the associated quadratic equations by
complex conjugate pairs in such a way that we preserve, as far as possible,
the known behavior of the function at the points of local expansion.
Various degrees of sophistication are possible in the practical application
of this method. 1In fact, as we will demonstrate in the application of section
8 even crude adjustments which preserve only contact of order one at the
points of local expansion seem to work remarkably well. After we have
adjusted the coefficients in the Padé approximant so that Pn(x)>0 and
Qn(x)>0 throughout the real axis we simply numerically integrate and rescale
sc that the area under the curve is unity.

Some of the principles involved in the method ﬁutlined in the last
paragraph can be illustrated in the case of an approximant with n =4 . Let
the [h/n] Padé approximant extracted by the procedure 6f section 6 with

points of local expansion at x = 0 and x_l = 0 bde given by

4 .

z aixl -

i=0 aA(X-Yl)(X-YZ)(X“Y)(X-Y)
(44)  [a/4](x) =5 - = -

N bixl ba(x-ﬁl)(x—éz)(x—ﬁ)(x-ﬁ)

1=0

vhere Y] s Yy denote real zeros of the numerator and 61 s 62 denote
real zeros of the denominator. (v,y) and (8,8) are complex conjugate palrs.
We start by rewriting (44) in the form

aa{xz - (rPrdx + Yle}(x-Y)(X‘;)

(45) [a/4](x) = - —
b4{x - (61+62)x + 6162}(x-6)(x-6)

We now propose to modify the coefficients of the quadratics in braces so that

[@/4](x)>0 for all real x while retaining the same behavior as (45) in the
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neighborhood of x =0 and x—1 =0 . We, therefore, define the family of

functions

a4{cx2+dx+e}(x-Y)(x‘§)

ba{fx2+gx+h}(x—6)(x-3)

(46)  [4/4] (x;€) =

where @' = (c,d,e,f,g,h) 1is a vector of real parameters to be chosen. To
ensure equivalent local behavior in (45) and (46) we restrict our choice of

© so that

(1) «c/f

1; and
(ii) e/h = 7172/6162

Now (i) will ensure that [4/41(x;(—))->a&/b4 as x+*z= and (ii) that
[4/4] (X;G)+az‘¥1v2|¥l2/b46162|<5|2 as x>0

In most cases we find that the zeros (YI,YZ) and (61,62) occur with
the same sign patterns. This is because the zeros and singularities lie in
the intervals between the points (here 0 and 2#=) of local expansion. If
we take the case where both Y1Y2>0 and 6162>0 , our task is then to raise
f and h from their original values in (45) so that the discriminant
gz-ﬁfh<0 . This will require proportional changes in ¢ and e so that
(1) and (ii) remain valid. Often these automatic changes in ¢ and e will
be sufficient to ensure that there are no zeros in (46). 1f they are not,
some small'adjustment in the value of d will normally suffice. There is an
added advantage to adjusting the value of d in that simple hand calculations
will show what adjustments in this parameter will improve the order of contact
of (46) at the points of local expansion while preserving the desired global
behavior of [4/4](x;@)>0 for all x . Various other scenarios of parameter

changes are possible but those we have illustrated should indicate some of the
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relevant considerations and the ease with which they may be performed.

The family of rational fractions (46) based on Padé approximants have
introduced extra flexibility in the approximating procedure. The idea is
essentially to partially reparameterize a first stage Pad€ approximant so
that we can achieve good global behavior By sacrificing some degree of contact
at the points of local expansion. But with the new family of approximating
rational fractions (46) we have the opportunity to adjust the parameters to
take account of any additional information about the distribution.that has
not already been used in the equations (43) that define the original coefficients;
perhaps less precise information based on, for example, Moﬁte Carlo work with
the same distribution.

An obvious alternative procedure for modifying the Pad¢ approximant (45),
but which I have not yet tried in application, is to use splines to bridge the
intervals in which singularities and zeros occur. This method may be
particularly useful in cases where zeros and singularities occur together in

close proximity.

8. AN APPLICATION TO A SIMULTANEOUS EQUATIONS ESTIMATOR

We consider the single structural egquation

(47)  y; =By, +Z;y; +u
where Yq and y, are vectors of T observations on two endogenous variables,
Z1 isa Tx K1 matrix of observations on K1 exogenous variables

and u is a vector of random disturbances. The reduced form equations for

Y1 and y, are
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@y [yyivpl = [2i2,] [myy mpp] + 0 Dvyivy]

L n

21 22

where 22 isa Tx K2 matrix of observations of K2 exogenous variables

excluded from (47). We assume that the usual standardizing transformations

have been carried out so that (i) T"IZIZ = IK where [Z = 21322] .

k =k + k2 and (ii) the rows of Evlivz] are independent and identically
distributed normal vectors with zero mean and covariance matrix equal to the

identity matrix. We also assume that (47) is identified so that Kzz}

The two stage least squares estimator 2SLS of B in (47) is given by

~

the ratio B = yZ'Ryl/yz'Ryz where R = 2222' . The exact density function

of B is known to be the doubly infinite series [35]

: ]
= 12]_ (1+E’2) [I_(i-_lj 9 2 j K.-1
(49)  pdf(x) = 1 e ® . 2 %_ (1+Bx) 1F1[ %
1 % ®,+1)/2 3=0 (2} 4, 1+x2
8l7rg-| (14x2) 2 j37° !

K
_2, uig?

T2 2 ]

which depends on the three parameters B8, KZ and p? = Twzz'nzz .

The extensive tahulations in Anderson and Sawa [? ] show that (495 mav
be adequately approximated by the asymptotic normal only when p2 is very
large {(the size of u?2 required for the asymptotic distribution to provide
an adequate approximation is itself contingent on the size of B and K2 .
Even for moderate values of g and K, , the computations in [2] show
that extremely large values of uZ (well over 1,000) are required to
secure a satisfactory approximation).

As discussed in the introduction, other approximations to (49) which
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perform satisfactorily for a range of parameter values are the Edgeworth
([1], [2]) and saddlepoint [19] approximations. But, when w2 is small
both these approximations become inadequate.

In Figures 1, 2 and 3 we illustrate the inadequacy of these three
different methods of approximation in the case where B = 0.6, u2 = 4.0 and

K=4, 10 . This is rather

- e mm e mr e s e Em e Em e e e o

an extreme case where p? is very low (around the lower limit of u?  values
found by Anderson et. al. [3] in their numerical computations of key parameters
for actual econometric models). It has been chosen to test the adequacy of
the new method of approximation discussed in the earlier sections of this
paper specifically in a case where the existing methods break down.

Figures 4-8 detail the approximants obtained at each stage of the
procedure outlined in the previous sections of the paper.1 In the first stége

of the procedure we need to select the coefficient function s(x) as in (29)

K, +1 -1
above. A crude choice would be s(x) = [1+|x| 2 ] since this has the same
~(K.+1)
asymptotic behavior of !xl 2 , which is in this case the coefficient

function in the tail expansion (16), and since this function is also well
behaved elsewhere on the real line. An alternative and better choice is the

leading term in the density expansion (49) viz

K (K,+1)/2-1
(500 s(x) = [B[% 2—2] (1) 2 ]

This is, in fact, the pdf of B under the null hypothesis that B = 0

2

and w,, =0 . As mentioned previously in the introduction, leading terms

22

such as (50) in multiple series representations of density functions can

usually be derived without much difficulty and will often be available even

1. We deal specifically with the case w2 =4, k=4, 8 = 0.6 . A later

paper will detail more fully some numerical experience with modified
Pade approximants.

2. c¢.f. Basmann [?].
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in cases where an analytic form for the exact density has not been obtained.
In the present case, a few elementary manipulations show that é takes the
form of a standard normal variate divided by the square root of a chi square
with 'K2 degrees of freedom, with the numerator aﬁd denominator independent.
The statistic é is, therefore, proportional to a t-variate with K2
degrees of freedom, leading to a pdf of the form given by (50).

Writing pdf(x) = s(x)pdfs(x) as in (29) we then extract the local
expansions (30) and (31) for pdfs(x) . The expansions we use are for the
tails (xn1 = 0) and the origin (x = 0) . The coefficients that appear

in (30) and (31) are given by

5,

)
- 2 ), 281, j
oy =f me (z) PED
j=1 5} (3-1)!
WE
L<+_1]
o L 2 2 b
o= Il — [1‘2—] [(21-1>32-1]wa<,j)
=1 5] (3-1!
WE
KLl]
e M205 28 1203 7051y (25-2) o
ay = — 5 [ 37 B -j]W(K,j)
=1 5] G-1!
3
3 |
. Tz_j__ [;_Z]j PEDEDEID g _yope 4 ],
3
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where we have
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)
e L2 ]
By = & . [”B]w(x,u)
0~ % _ K 2
i=0 [* j!
21,
J
3
N 2 . 23.234-1
g, = § —— {3
j=1 [5 (-1 2
]
)
. 2 24.2§-2
g, = & —— [“ 8. ](I—BZ)W(K,j)
j=1 [5‘ (3-1)! 27
)3
(K+1)., -2 .
Ly Lz)% [u232]3wa<,j>
(K 2
j=2 -5] (3-2)!
.
53
- 2 . (-1 { 2j,23-1
g, = F T LLLIE)
3=1 5] G-ut | 2]
Wh
2 ], 5 P 2i-2
e AT 25 |8+ _ BT
By =L X v [ . lW(K,j)
j=1 5] (4-1)! 2 2
Wk
)
0 2 i 2 j = 1=
+ ] [—‘-2‘—] [323 25(341) + 35873 “]W(K,j)
j=2 [5] (3-2)!1
3

dropped the subscript on K2 for convenience and where
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3,2 (1482 ; 242
W(K,5) = e 2 (1*8 )1F1[-K——1 % 2262)

=1+

1..,2 2n2
o oEM . . K, _uB
=e lFl[J"';ﬁs J+29 2 ]

by Kummer's transformation [42].
Figure 4 details the local density approximations to pdf(x) based on
(30) and (31) with the coefficient function s(x) as in (50). The
approximations are good in the locality of the points of expansion, the
origin and the tails, but start to deteriorate rapidly as we move out of the
immediate vicinity. The right hand tail expansion seems particularly gocd.
Figure 5 shows the [ﬁ/&] Pad€ approximant to the density (49). This

has the form (in the notation of (44))

a, (x-v;) (x-v,) (x-v) (x-v)

(51) R, ,(x:8) = s(x)[4/4] () = s(x) -
’ ba(x-Gl)(x-ﬁz)(x-d)(x-d)

where

a, = 4,533619 b& = 1.221628
Yy < - 1.158240 61 = - 3,.567599
Yo = - 0.537379 62 = — 0.485485
v,y = - 2.133352  0.7320531 6,8 = 0.310396 + 0.6131231

As a first step approximant R4’4(x) is rather good, with problems cccurring
only in the left tail at the singularity x = 62 (i.e. x-8 = §,-8 = -1,085845
for £ = 0.6) and at the two zeros x = YooYy (note that the second pole
occurs outside the region of immediate interest in the distribution).

The next stage in the procedure is to modify the Pad€ approximant (51)

along the lines suggested in section 7. We note that in the denominator the
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quadratic x? - (848)x + 8,8, = x2 + 4.05344x% + 1,7333 has discriminant
9.497176 . To remove the real zeros we propose to replace this quadratic
by

(52) 1.5x2 + 4x + 3

where we have raised the constant and the coefficient of x? and simply
rounded the coefficient of x . According to the ideas outlined in section
7, we now need to proportionately adjust the coefficient of x%2 and the
constant term in one of the quadratics in the numerator. We select the
quadrafic x2 - (Y1+72)x + Y)Yy = X + 1.695619x + 0.622414 which we need to
modify in any case to remove the unwanted zeros of R4,4

proportional adjustments recommended to this quadratic we get 1.5x2 +

(x) . Making the

1.695619x + 1.077276 . This gives us the following modified Padé approximant
after one change of coefficients

a4{1.5x2 + 1.695619x + 1.077276} (x-v) (x-7)

(53) BRI = s) -
’ b4{1,5x2 + 4x + 3}(x-6) (x-9)

This function is graphed in Figure & against the exact density. We see that
the singularity and zero problems have been eliminated and the performance of
the approximation is remarkably good. We note some reduction in the order
of contact at the points of local expansion, particularly the origin (or taking
into account the change of origin on the graph x-g = -0.6) .

As nggested in section 7, it is worthwhile to modify at least ome of
the remaining coefficients to improve the order of contact at the points of
local expansion. Note that the success of this procedure can be measured
against the original Pad€ approximant in the relevant localities so we do not
need a graph of the exact density to do so. Comparing the Pade and modified

Padé approximants in Figures 5 and 6 it is clear that the order of contact
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of the modified Pad€ at the origin will be improved if we raise the derivative
at this point (x =0 1i.e. x-8 =-0.6) . This will be achieved by

raising the coefficient of x in the quadratic in braces in the numerator

of (53). We make a change in this coefficient from 1.6%9 to 2.0 giving the
new modified Pad€ approximant |
a,{1.5x% + 2.0x + 1.077} (x-y) (x-Y)
ba{l.Sx2 + 4x + 3} (x=68) (x~6)

(56 ') = sx)

This function is graphed in Figure 7. Even with the rather crude
adjustments we have made (54) is really an exceptionally close approximation
to the true density and is well behaved over the whole real axis. A final
adjustment can be made by renormalizing so that the area under (54) is unity.

The adjusted curve is displayed in Figure 8.

9. CORCLUSION

This paper has introduced a new technique of approximating probability
density functions. The approximating functions belong to a family of rational
fractions and are sufficiently flexible to be capable of producing good
approximants to a very wide class of density functions. The theory developed
in sections 3 and 4 indicates that this family of raticnal fractions
contains approximants which are best in a well defined sense and which will
perform well in reproducing the form of the exact density functions over
the entire real axis. The practical procedure for finding good approximants
in this family that is discussed in the paper is based on the use of
multiple-point Padé approximants to construct global approximations from

purely local information about the density. These multiple-point Padé
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approximants are then modified to ensure that they have good global

behavior and to incorporate any additional information that may be available
concerning the density. The application in section 8 to an already well
established test area for density approximations illustrates that the
procedure can produce exceptionally good approximations even in cases where
existing methods break down. Further refinement of the ideas laid out in
section 7 on modifying the initial Pad€ approximant should lead to fine
approximations which are very close to the best uniform approximants

discussed in sections 2 and 3.
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FIGURE 6 Modified Pade approximant to pdf(x): first
change of coefficients
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FIGURE 7 Modified Pade approximant to pdf(x): second change
of coefficients
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