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AN EXTENSION OF THE NASH BARGAINING PROZLEM:

INTRODUCING TIME-RELATED BARGAINING CCSTS

By Zvi A, Livne]

The Nash Bargaining Problem is reformulated by introducing
time-related costs into the vonNeumann-Morgenstern utility
functions of the parties. A set of mathematical requirements
on the solution is satisfied uniquely by a function called
the Extended Raiffa Selution. The properties of this func-
tion are investigated. It is shown to coincide with the
Nash Cooperative Solution (of a related Bargaining Problem)
when the parties have identical discount rates. An inter-
pretation of the solution and of the formal requirements
is detailed. In this model the 'bargaining power' of the
parties is determined by the bargaining costs related
to the duration of the negotiations.

1. INTRODUCTION

In this paper we reformulate the Hash Bargaining Problem (Nash [11]) by
introducing time-related costs into the utility functions of the parties. This
extension of the problem yields a new solution function, called here the
Extended Raiffa Solution. It also sheds some new light on the controversy
regarding the significance of the Nash Cooperative Solution (cf. Harsanyi [ 7 1,
Luce and Raiffa [10 ], Nydegger and Owen [13] and Roth [15 1.)

Hash's formulation can be viewed as a specialized model of the problem of

coordination of activities by two or more agents whose rewards depend on their
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own as well as on the others' acts. The methods of coordination availatle t¢ the
agents vary. They may involve face-to-face negotiations over a set of binding
agreemcrnts (or, more generally, over a set of non-cooperative games.) They

may involve procedures of conflict resolution like compulsory arbitration and
mediation. They may invclve any procedure that the parties may

choose to design in order to coordinate their activities. It is not entirely
clear what is the method of coordination being modeled by the original Nash
Bargaining Problem, but what we wish to emphasize here is that almost ali
realistic methods of coordination consume a non-negligible amount of time
during which costs are usually incurred. Thus the duration of the coordination
effort seems to be an important factor that was abstracted out in Nash's
formulation., It is the effect of the duration on the outcome that we try to
capture in our new formulation of the problem.

The importance of time related costs in conflict and bargaining situations
has been mentioned but ravely studied by economists and game theorists. Excep-
tions include the vork of Bishop [ 1 ], Foldes [ 6 ], Cross [ 5§ ], Coddington
[ 4 ] and Cleshout et. al. [ 3 1. This lack of interest is somewhat surprising
since differences in bargaining costs and in discount factors have important
effects on the 'bargaining power' of negotiators, as is well known to students
of such diverse fields as collective bargaining, mergers and acquisitions,
international relations, etc. It might be possible to reformulate existing
models to take account of this missing factorand ours is one such attempt. (For
further discussions of the role of time in negotiation see section 5).

The approach taken here follows an established tradition in works on the
Nash Bargaining Problem, i.e., finding a function, defined on the set of sets
of outcomes in the utility plane, which satisfies uniquely a set of mathemati-

cal requirements (cf. Kalai and Smorodinsky [ 9 ], Kalai [ 8 1, Myerson [12 1,

1

Games of timing - like "duels", which were studied extensibly in the early

days of game theory, address a related but still quite different problem. _They
deal with the timing of moves in a game rather than the costs associated with the



Roth [ 15 ] and Thomson and Myerson [ 16 J.) The requirements we chose to im-

pose were motivated by a set of arbitration principles postulated in section 4.

Although other interpretations are possibie, this model should

be viewed as an arbitration scheme. We basically attempt to establish a solu-
tion function for an arbitrator whose perception of "fairness” in arbitration
coincides with our arbitration principles.

We begin with notations, definitions and the statement of the mathematical
requirements. We then state the main results and give some examples. HNext we
Jist and discuss the arbitration principlies which motivated our requirements.
We end with a discussion of the effects of time in negotiation. Ail the proofs

in this paper are relegated to the Appendix.

2. THE MODEL AND DEFINITIONS
We call a subset B of the two dimensional Euclidean space a bargaining
domain if it satisfies the following conditions:
1. B is convex and compact.
2. There exists a unique point w(B)eB such that:
(i) every xeB satisfies x>w(B), and
(ii) for all y>w(B), if there exists an xeB such that y=<x, then yeB.
(B is comprehensive)}

If there exists no point xeB for which ﬁ »wI(B) and x2>w2(B) then B is a
degenerate bargaining domain. A degenerate domain can be vertical (if there
exists xeB such that x2>w2(B)), horizontal (if there exists xeB such that
x]>w](B) or trivial (if B = w(B)}). Degenerate domains have traditionally been
excluded from consideration, but they have an important role here.

For each bargaining domain B the point w{(B) is called the conflict point

of B. Each point in B represents utility levels corresponding to a particular



feasible agreement. The point w(B) corresponds to the 'failure in negotiation'
situation, in which the parties carry out their uncoordinated activities {some-
times called 'optimal threats').

Let the set of all bargaining domains be denoted by B. It is a subset of
2
ZR - the set of all non-empty closed subsets of Rz, which is alsc a metric space

with the Hausdorff metric pH. Thus with the metric induced by rH,'E is a me*ric
space. By definition, for all B],Bzeg, cﬁ(B1,Bz)= max{max{d(x,ﬁz){er,}, Max

A

{d(y,Bﬂj;ysBZ?l,where d is the usual tuclidean distance between a point and a

set in RZ.

Let us define another useful metric . For all BeB let SP(B) denote the
strong Paretn frontier of B. For all B,Ble‘g, jet pp be defined by pp(B,Bl):
MHispB), SP(6')), and Tet " be defined by o"(B.E )= d(w(B), w(B )). Those
are semi-metrics on B. Le* - be defined by (B, B])= max{p" (B, Bl), op(B,B.)}.

This is a metric on B. The spaces (E,pH) and (B,7) are not isometric. Bargaining

. - . . H .
domains b, which converge to a bargaining domain B in p might not converge 1in .
This difference is especially noticeable when decenerate bargaining domains are

involved. (See for example, Figure 1. The dots derote the points hR(Bn) and hR(B)
where hR i5 the Raiffa Solution discussed in Section 3).

V, A

B,\B.\ B,

v,

Figure 1. Bn converge to B in pH but not in 1.



We now define z binary orde:, called dominaticn, on E. Let %, and B, be

1 2

two bargaining domains. Then B1dB2 (in words, B, dominates B,) if : {1) The

2)
conflict points w(B]) and w(BZ) satisfy W(B])EW(BZ)- (2) For every yeB, there
exists an xeBy such that x»y. Alternatively, B,dB, if there exists a continuous
function f defined on B] onto 82 such that f(w(B}))=w(82), and for all XCE],
f(x)>x. It's easy to check that these two definitions are equivalent and that
d is a transitive, refiexive and antisymmetric relation, hence it is a partial
(or proper) ordering. (For these and related definitions, and for other results
concerning binary relations, see Chipman [ 2 1]).

We now turn to examining special suvsets of B. A subset C of B is called

a chain if it is totally ordered by d, i.e., if for every pair B], 82 eC, either

B]dB2 or BZdB]. It is called a bargaining chain if it is a closed set with

respect to oH, having both maximal and minimal elements, and if its minimal

element is a trivial bargaining domain (i.e. it consists of one point).
Another condition on every barn~inina chain C is that for all Bel there

exist Bé C, B} B, such that B}IB#¢. The reason for this condition will become

clear in our discussion of the arbitration principles, in Section 4.

It can be shown that the cardinality of a bargaining chain is necessarily
smaller or equal to that of the continuum. It can therefore be represented
as {B(t)|J<t<T} where B(tl)dB(tP) iff ty<i,, for some T>0. (This representation
is not unique.} Denote the set_of all baryaining chains by C. It is a metric
space with the metric ¢ defined herein. Let C={B(t)[o<t<T} and Clﬁf?'{n)}fjsgﬁ}
be two bargaining chains 1n-E. Llet § be the set of all order preserving

functions ¢ from [0,T] onto [0,5]. Then G(C,C')= Iné Sup T(B{t), B'(a(t))).
pel T

To understand the motivation for these definitions, let us denote by B(t)

the bargaining domain corresponding to the set cn the utility nlane of



possible outcomes after negotiations of length t, and let C be the set {B{t) o<t = .

If both parties have non-negative bargaining costs, then B(t)dB(s) for every t,s

such that t<s. The bargaining domain at the beginning of the negotiations, BID)

is evidently a maximal element. A minimal element exists if for some reason
negotiations cannot continue past a certain duration 7 (T is then called a
'deadline'). Another reason for the existence of @ minimal element could be
the disappearance of all duration effects from a certain time on, although
we do not think it is a realistic possibility. In both cases B(T) is mini-
mal in C and C is indeed a bargaining chain. Note that since the represent-
ation of the bargaining chain is not unique, the time T is not necessarily
the calendar time of the deadline.

Our solution function is defined only on bargaining chains, so a minimal
element must exist. However, in many negotation situations there is no clear
deadline. This problem is overcome by the continuity property of the so-
lution. By truncating the chain at various times T, computing the solutions
for the truncated problems and then sending T to = we might get convergence
to a unique solution. (See Remark 2 in Section 3.)

A pictorial representation of a bargaining chain is shown in Fig. 2.

Note that only several representative bargaining domains are drawn.

V(B(ﬁl))-n—..’__"_ _ o _._\
w(Blt))s BT = V(B(T))——u.'--..i___\ Y,

Figure 2: A Bargaining Chain



Let us Mmake a few more definitions. For ng the degenevate chain BgE is

the chain consisting of B and the trivial bargaining domain {w(B):. It
corresponds to negotiations in which the utility functions and the threat point
are not affected by the duration but in which the parties must execute their
threats before a certain deadline.

A bargaining chain € is the extensicn of a bargaining chain C if they can
be represented by C° = {Be(t):05¢;7], C={B(t)lo<t<T}, with BE(t)=ix x>wiT); there
is a y:B{t) such that y>xi. We will later show that our solution function is
invariant under extension.

A bargaining chain C={B{t)17<t<T} is discrete if the set of Pareto frontiers
{SP(B(t))!0<t<T} consists of isolated points in (E,). Equivalently, the extended
chain C® consists of isolated points in (B,t}. It is continuous at t, 0<t<T, if
88(t) is a left and right convergence point of ce.

For all Q< <T, the s-tail of C, denoted by CS, is the set {B(t)| B{t)<C,
t>s}. The s-truncation, denoted by €°, is the set B{t)] B(t)eC, ot=siUiw(B(s)].
Both are bargaining chains.

2

Now we turn to the solution function. A function g, defined on € into RS, is

a solution function if it satisfies the set of requirements listed below. (We

attach brief explanations to some of these requirements. They will be discussed
further in section 4. Note that some of the names we use are borrowed from
similar requirements found in the literature on the traditional Bargaining
Problem).

1. Strong Pareto Optimality. The solution g{C) belongs to the Strong

Pareto frontier of the maximal element in C, B(0).

2. Independence of Affine Transformaticns. For every d,reR2 such that

120, 0, let F .RZ,R2

(dqvi¥rys d,votr,). Let F(O)= {F(B{t))|n<t<T}. Then g{F(c))=F(g(C))

d be the affine transformation F(v],v2)=



3. Symmetry. If B(t) is symmetric for all t (i.e., u=(u],u2)aB(t) implies
(UZ’U])EB(t})u then 91(C)=92(C) .
These three requirements are generalizations of three of Nash's original
requirements, cormented upon in Luce and Raiffa [10 ] and Roth [15 1.

[
4. Independence of Irrelevant Changes of Tails. Let {B (s) 0550

be ¢ hargainin~ chain such that there exist M<s<S, N<t-T, for which
¢ "®=ct and g(CS')=g(Ct). Then ¢(C)=g(Z ).

This requirement guarantees that changes in the utility functions (or in
the sets of possible agreements) which occur after t=s but which do not affect
the 'strategic position' of the parties in time t (in the sense that g(Cb')=g(it))
do nct affect the solution.

To state the next requirement we need a new definition. For each bargaining
domain Béé and for each point yeRz, let the bargaining domain induced by B and vy,
denoted by B[y], be the set{:|«>y, and there is reB such that r>x}(it may be an emp-
ty set.) A bargaining chain C‘ is induced by a bargaining chain C and a point
y (notation-C[y]) if ¢ can be represented as the union of {B{t)[y]| B(t)eC,0<t<T}

and the trivial bargaining domain {y!.

5. Independence of Irrelevant Changes of Truncated Portions. Let CI={B'(5)|

0<s &S} be a bargaining chain such that there exist 0<S, 0<t<T for which
¢'4=C, and ¢'S[g(C )I=C*[g(C,)]. Then g(c')=g(C).

This requirement will be discussed in the context of the arbitration
principles in Section 4. Briefly, it says that for every t the only relevant
portion of ¢t is the part which dominates g(C,).

The next requirement deals with degenerate bargaining chains. It is similar
(but not identical) to Kalai and Smorodinshy's [ 9 ] Monotonicity Axiom. To state
it we use the foltowing definition. A bargaining domain B' is an i-change of a

] t
bargaining domain B (i may be 1 or 2) if w(k )=w(B), B €B, and if the levels of
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highest possible utilities (denoted E}.(B) and ;1(8'), i=1,2) satisfy 321. (B')«Zi(B)

and gj(B')=§j(B) (for j#i).

6. Strong Individual Monntonicity. Let B and B' be two degenerate bargaining

chains, derived from B,B'c¢B. If B' is an i-change of B, then ;i(B')<91(B).
7. Continuity. Let {Cn} be a sequence of bargaining chains such that 6(Cn,Cf*“
as n -+ «. Then g{Cn)+g(C) as n-e.
Requirement 7 guarantees that small changes in the utility functions have

little effect on the sclution. We are now ready to state the main results of this

paper.

3. RESULTS

The requirements listedabove are satisfied by a unique function g, to be
called here the Extended Raiffa Solution (Theorem 1). This function is a generali-
zation of one solution to the Nash Bargaining Problem attributed to Raiffa (al-
though it is only an approximation to the solution originally proposed in Raiffa
[14 ]). Thisgeneralization should te distinguishad from other extensions of the Raiffa
solution, for example one that was offered by Kalai and Smorodinsky [ 9 ] and
kalai [ 8 ] under the name 'proportional solution.'. It applies to bargaining domains
and not to bargaining chains. Before proving the main results we remind the reader
of the Raiffa Solution and we state several useful Temmas.

Let B be a bargaining domain with a conflict point w(B). The Raiffa Solution,
denoted here by hR(B), is the unique point on the strong Pareto frontier of B
which lies on the line connecting w(B) and the point (?ﬁ(B),?é(B)). As noted in
the literature, the use of this solution function corresponds to an ad-hoc comparison
(B)-w

of utilities, equating the differences I'(B)—wl(B) and X B) {when B is not

1 2 2(
degenerate). The Raiffa Solution is the unique function satisfying a set of

requirements listed in Lemma 1.
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The Raiffa Solution h=hR is the onty function h:EFRz satisfying these
four requirements:

(i) Strong Paretc Optimality: For all BcB, h{B) is on the Strong
Pareto frontier of B.

{ii) Independence of Utility Scales: Let F:RZ»R2 be an affine trans-
formation. Then h(F(B)) = F(h(E)), for all B:B.

(i¥1) Symmetry: If B is symmetric then h1(B)=h?(B).

(iv) Strong Individual Monotonicity: Let BJgzB. If B' is an i-change

of B then hi(B )<m1(8) (i=1 or 2).

Two useful properties of the Raiffa Solution are the following:

Lemma 2.

With respect to the metric -, hR is continuocus.

As the example in Figure 1 shows, hR is not continuous with respect toc p.

Lemna 3.

(a) For all BeB and y, yneRZ, if B[y],B[yn] are not empty and y is

not a weak Pareto point in B ther ify »y then hR(B[yn]) h (BLy1).

2

{b) For all B,an§ and yeR, if Bly], Bn[y] are not empty and y is not

a weak Pareto point in B then if Bnis then B_ [y1+B[y].

We now move to the set C of bargaining chains. We first deal with degenerate

bargaining chains, then with finite ones, and finally with continuous ones.

Lemma 4.

Lemma 5.

Let Cd be the set of all degenerate bargaining chains. There exists a
unique function 9q° defined on fh into R2, which satisfies reguirements

1-7. For all éefﬁ (derived from BeB) it is given by gd(§)=hR(B).

Letff be the set of all finite bargaining chains. There exists a unique
function g, defined on E% into R2, which satisfies 1-7. For C={B(0},

B{t;)s ...s B(t )}, g¢ is given recursively by:
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o €)=y (B(O) s (c, )T,

and

gf(Ctk):hR(B(tk)[gf(ctk+1

with the boundary condition

In Figure 3 we show how to compute the Extended Raiffa Solution of

a finite bargaining domain.

VA

NS,

Ba)

Figure 3: The Extended Raiffa Solution g(C).



For ail C:C let us define an c-net C{c) to be a finite subset of
€ which includes the maximal and the minimal elements o (, and which satisfies
#(C{e),C-CleNe c. For all e>0sucha set exists, since C (if viewed as a

metric subspace of B) is totally bounded with respect to the metric = (it

is compact with respect to the metric pH). We can prove:

Theorem 1. There exist a unique function g:L»RZ satisfying requirements

1-7. It is given by g(C)=Tin gf(C(a)).

[

We now 1list a few properties of the Extended Raiffa Solution. First,
note that the solution does not depend directly on the threat points w(B(t))

for 0< t< T. HMore precisely; from requirement 5 it is imniediate to show:
Lemma 6. For every CeC,g(C)=g(C®).

Let us turn to continuous bargaining chains C for which the Pareto
frontiers of the domains B(t) are differentiable. For escht, 0<t<T we dencte
1(t)=[w1(B(t)), EH(B(t))]. For each u e I{t) we define p(t,u)=max{v|{u,v)eB(t)]).
The curve {(u,p{t,u))jucl(t)} is the Pareto frontier of B(t). The bargaining

chain € is locally-continuous at t if there exists a closed neighborhood

V=[t't"] of t such that the set {B(s){s<t'}[g(C )]U{g(Ct,,)} is a continuous

ltll
bargaining chain. A bargaining chain which is locally continuous for all tis

continuous. We can prove:

Theorem 2 If C = {B(t) | O<t<T} 1is continuous, and if p{t,u} is differentiable.
then g(C) is the end point k(0) of a differentiable curve k(t),

0<t<T, whose derivative satisfies:

>

d _ 1 3
g7 550 | 1) @



and

ko(t) = plt,k, (1)),

—
LM
—

with the initial point k{7) satisfying
k(T) = w{B(T)). (6)

Let us examine the special case in which the only effect of duration
is discounting. When the discount factors are identical the Extended
Raiffa Solution converges to the Nash Cooperative solution of B(Q) as T-=.

More precisely:
Theorem 3. Let the utility functions be of the multiplicative form:

Uy(a,t) =a(t)f,(a)

Uz(a,t) =a(t)f2(a) 0-_<_t<m, ac[0,1], {7}

where 0 5 a(t) £ 1 is differentiable -and is non-ihcreasing,_fi (a) are

differentiable {§ = 1,2) and f = fzf]'] is decreasinag and concave. Theve

. * * : . . * Ty
exists an o , 0 < o < 1 such that for all T satisfying a {(T)<a , g(C') is

the Nash Cooperative Solution of B(0).

Remark 1. Note that if the discount factors are not identical the solution
generally does not converge to the Nash Cooperative Solution of B{0O). Theorem
3 therefore sheds a new 1ight on the Nash Cooperative Solution. It shows

that although this solution can be obtained from a set of requirements which
is quite different from that of Nash, it is so only when both parties

have identical discount rates. The Nash Cooperative Solution is therefore in-

sensitive (in the sense of Theorem 3) to differences in discount rates and to
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other duration effec*c., 1Its applicability as either a "fairness"” rule or as

a2 "normative solution” is therefore more questionable.

Remark 2. 1t should be noted that in general bargaining chains g(CT) does
not necessarily converge as T-=. Consider for example, the use of the

"oscillating" utility functions:

a - a{t-n)  2n t<2n+]

V1(a,t)

a- afntl)  2ntl<t<2n+2
ag[O,W], te[0,7].

T-a-z2(t-n) 2n+l<i-2n+2

V. (a,t) =

o
T-a-2n 2n<t<Zn+l (8)

It is easy to see that g(CT) oscillates between two values as T-=. However,
weak sufficient conditions for the convergence of g(CT) can be established. One

such condition is that B(t) be bounded from below by some bargaining domain B (=}.

Examples Let us now compute the Extended Raiffa Solution for two cases. Con-
sider first a distributive bargaining problem on [0,1], where one party (the

seller) wants the agreement to be as close as possible to 1, and the other (the

buyer) wants it close to 0. The parties are both risk neutral, have positive
discount rates but no other bargaining costs. If money is compounded instan-

taneously, the utility functions are of the multiplicative form:

”1 (a:t) = exp(—ﬁt)"‘ (9)

az[0,1], Ostee

expr-rt) {1-a)

Vz(a,t) 5
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Figure 3: The Extended Raiffa Solution g(CT)
for Several Truncation Points T.

Here p(t,u)= a@(—qt)—eﬂJﬂqfq)ﬂ,for us[O,exn(-thFrom (4),(5) and (6) we get

T . "
g{€') = (r]+r2 + K(T), o, K(T)), (10)
where
r,+r r
K(T) = exofm L2 Thig - ) (11)
12
Letting T-= we get
r r
2 1
g{C) = ( . ) (12)
r.|+r‘2 r]+r2

The solution of the infinite deadline case is therefore the point which divides
[0,1] by the ratio of the discount rates. This solution is identical to a
solution obtained by Bishop [1] and Foldes [g] using an entirely different
method.

Let us now introduce additive, linear bargaining costs, with no discounting.

The utility functions are of the form:

V'l(ast) a-OL-It
ac[0,1], O tee

V,(a,t) = 1-a-a,t (13)

2

For a2 0y (the other case can be treated analogously) we get:
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The deadline is obviously of great importance in this example. When it is

large enough, the party with Jower bargaining costs receives the whole pie.

4. ARBITRATION PRINCIPLES

The set of requirements listed in Section 2 is motivated by several
arbitration principles. Here we define an arbitrator as an intervenor whose
role is to take certain information concerning the bargaining process and
the bargainers and to translate it, through an "arbitration scheme®, into a
unique agreement which is then recommended as a "fair" solution. The word "fair®
relates both to the information which is deemed relevant and to the principles
underlying the arbitration scheme,

We will assume that the information the arbitrator has includes the set of
feasible agreements, the parties' utility functions (including the
time-related bargaining costs), their current demands (their optimal threats),
the deadline and the parties' likely activities in case of a break-off in ne-
gotiations. It does not include the details of the negotiating process before orafter
arbitration. The earlier demands and concessions of the parties affect the
arbitrated solution only through the current demands. As is customary in the
literature, we allow the arbitrator to suggest agreements based on randomized
procedures, so that the set of the feasible agreements at a particular moment
can be represented by a bargaining domain as defined in Section 2. Here we also
assume some regularity of the utility functions and of 12 break-off points,
namely those conditions that allow the representation of the game by a bargaining

chain, as defined in Section 2.
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Our arbitration scheme is based on seven principles. The first three
have been discussed extensively in the literature on the traditional

Bargaining Problem (Luce and Raiffa [J0], Roth [15]). They are:

1 The solution should not be dominated by arvother feasible
agreement,
I1 The solution should be invariant under linear transformations
of utility functions.
111 The solution should not depend on the identity of the bar-

gainers.

Thecze three principles are the basis for requirements 1, 2 and 3 of
Section 2.

In the framework of the traditional Bargaining Problem, where time
effects are abstracted away, the arbitrator's task is facilitated by the exist-
ence of a unique conflict point. It represents the parties' payoffs
when they refuse the arbitrated solution. As such it can be viewed as an
'alternative' to the arbitrated solution. Principles ], 11, III and VI, and
the requirementsderived from them, are then enough to generate a unique solu-
tion point (the Solution of Raiffa). When time effects do exist, the arbitrator
cannot be sure of what will happen when his solution is refused. Our fourth
principle, however, maintains that the solution must depend on some outcome
which is viewed as the alternative to the arbitrated solution. The arbi-
trator must therefore determine a unique point to serve as the representative

conflict: point. We will call this point the alternative point.

" IV The solution depends on an alternative point, determined bv
the arbitratoron the basisof the utility functions and the future

conflict points of the bargainers.
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How should thisalternative point be chosen? The arbitrator cannot use any
information regarding the negotiation behavior of the parties, but he can de-
cide whether the negotiation process continues or terminates after his solution
is refused. Here is the decision rule we suggest. If the conflict
point at the time of arbitration {w(B(0)) in our notations) is preferred, by
both parties, to any agreement that can be achieved in any later time t, then
the negotiations terminate after the arbitrated solution is refused. Cther-
wise, negotiations continue. In the first case the alternative point should
be (w(B{0)). In the second case it is chosen to be the point, on the utility
pian2, that would be assigned to the bargainers by the arbitrator (or by another
one) if called by the parties for another rounc of arbitration. In
our notations it is the point g(Ct]), vhere t, is the first next time in which an
agreement can be achieved (t1 might be infinitesimal). The reason for this
choice is the assumption that an arbitrated solution reflects the 'bargaining
power' of the parties at the time of arbitration. This 'bargainina power' may be
viewed as the alternative to the current arbitrated solution. The solution
is thus recursive in nature. It reflects the current 'bargaining power’
and depends on the future 'bargaining power', which in turn is reflected by the

future arbitrated solution. The fifth principle states:

V The alternative point is the future arbitration solution, unless
both parties are better off terminating the negotiations after

the current solution is refused.

To guarantee that the parties always prefer to continue negotiations
rather than terminate them, we imposed (in Section 2) the following condi-

]
tion. For all bargaining chains C and for all BeC, there exists B eC, B'#B,
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cuch that BAB#:.  This condition guarantees that if € = ‘B(t)) 0-t-T,, then
for all t, 0«<t~T, there exists s>t suchthat w{B(t)) e B{0). The condition could
be removed, and another requirement on the solution function be added, to take
care of bargaining chains which do not satisfy this condition. The Extended
Raiffa Sclution would be computed as before, except that the boundary con-
dition will be different.

Principles IV and V lead to requirements 4 and 5. When a tail of a bar-
gaining chain changes in such a way that the 'bargaining power' of the bar—l
gainers does not change, there should be no change in the ‘bargaining power',
hence in the arbitrated solution, for preceding tails (Requirement 4). Also,
to guarantee that the arbitrated solution serves as a threat point in the sense
of the traditional bargaining problem, we renuire that only aqreements {on the
utility plane) which dominate this point determine the solution (Requirement
5).

To state the sixth principle, let us define two new concepts. We say
that a bargainer is making a concession when he changes his current demand to
one that yields him strictly Tower utility and yields his opponent strictly

higher utility. We say that the terms of bargaining deteriorate for a particular

bargainer if the terms of some of the feasible agreements which dominate

his conflict point are tcthanged in such a fashion that they yield him Tower
utility, although not lower than his conflict payoff. Our arbitrator would like
to view concessions and deterioration of terms of bargaining as factors which con-
tribute to the erosion of bargaining power. However, the time element in the
utility functions might have a counter effect on the bargaining power. In

stating the next principle, the time element is therefore assumed away.
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VI Suppose that the conditions are such that if the arbitrated solution
is refused, negotiations are terminated. By making a concessicn prior
to arbitration, the bargainer’'s utility from the arbitrated solution
is strictly decreased When the terms of bargaining deteriorate for
a bargainer prior to arbitration, his utility from the arbitrated

solution is decreased.

This principle translates intc requirement 6. Every i-change of a bar-
gaining domain can be viewed as a combination of a concession by party i and
a deterioration in the terms of barcaining for party i. Note that arbitration
principle VI gives strong incentive to bargainers not to engage in unilateral
concessions and to prevent any deterioration in the terms ¢f bargaining
{through changes in the terms of feasible agreements) prior to arbitration. This
is the logical outcome of the assumption that current demands, not past demands,

matter in arbitration.

VII Small changes 1in utility functions affect the arbitrated solution

only sTightly.

This natural principle should be treated with caution. Changes in utility func-
tions may be small if one particular metric is used, and not so small if
another is used. Since the solution of each tail of a bargaining chain should
be on the Pareto frontier of the maximal element of the tail, we chose to use a
the Euclidean distance between the corresponding Pareto frontiers, a rather
strong metric, rather than the Hausdorff metric. Principle VII is then

translated into requirement 7.



5. THE ROLE OF TIME IN NEGOTIATIONS

This paper is based on the assumption that time-related costs are of
great importance in conflict situations. Lengthy negotiations mignt incur
high bargaining costs (e.g., labor-manznement nenotiations, conducted dur-

ing a strike), and may decrease the valua of the final rewards due to

the time discount factor. Various events, sometimes exogenous and random

in nature, might lead to an abrupt termination of iengthy regotiations

(e.g., stock market developments or new government regulations during merger
negotiations). The duration of the negotiations miaht also have political ef-
fects. One important example is negotiations between a less developed
country and a multinational organization. The government may be accused of
"selling out the country" if they get a fast agreement, or be termed "inde-
cisive", and "weak", when negotiations extend too much. Lengthy negotiations
also tend to reveal internal differences bétween the members of a bargaining
party. In short, time related costs of negotiations are important, and

they do affect the outcomes. Negotiators should and do take time effects
into account when they design their strategies.

In many conflict situations there are no credible threats that bargain-
ers can make. If there exists no time effect, there is no reason for negotiations
to end. When time effects are present, the existence of a deadline and the
emergence of a new type of credible threats:(stallingnegotiations), might af-
fect the 'bargaining power' significantly and yield fast and perhaps pre-
viously unexpected agreements. The force that really moves negotiations and
1:akes them all terminate in a finite time is indeed those time-related

costs.
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When time-related effects are of great importance, and our point is that
this is almost always the case, they should not be abstracted away, but
rather be modeled explicitly. Time-related strategies have to be formalized
and be taken into consideration in the search for equilibrium strategies,

and "bounded-rationality" strategies.
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APPENDI X

Proof of Lemma 1. Tt is easy to check that he satisfies (i) - (iv). Kalai

and Sorcdinsky Tg1 showed that h, is the only function satisfying (i ) Weal

Pareto Qptimality, (i1}, (1i1) and (iv ) Weak Individual Monotonicity, i.e.,
if B s an i - change of B then h1(5),ih1(5) (i=1 or 2). Obviocusly, any

solution function which staisfies (i) and (iv) satisfies also {i )} and (iv ),

therefore it must be hR'

Proof of Lemma 2. Let B, B ¢ B. If both barcaining domains are de-

generate, then d(hR(B), hR(B ) = e, ) < 1(B,B ). IfB is degenerate and

I 1 }

3 is not, then d (hy(B), ho(B)) = d(SP(B), ho(B) < oP(B,B ) < t(B,&'). ar

R
the set of non-degenerate bargaining domains, hR is continuous with respect
to 1 because it is continuous with respectto oH. (It is not uniformly con-

tinuous, though.)

Proof of Lemma 3 {a): Based on Lemma 2, it is enouagh to show that Y Y

implies B[y J3B[y]. Clearly r(Blyl, Bly 1) = Max {d(y,y,), dl{yy.%,(BLy])),
0,15 %, (Bly, 1N, dl(x;(BLyD)s yo)s (%y(BLy, 1)y ¥ a)]. As y -y the first
term converges to zero. Due to the continuity of the Pareto frontiers

of B, the last two terms converge to zero too.

(b): From BniB we get pH(SP(B), SP(Bn))+O. From here it is easy to see that
oM(sP(B[1), SP(B [y]))~0. Since o™(By]), B [¥1)=0, we get B [y}B[y].
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Proof of Lemma 4. The spaces (E&,é) and (B,:) are isometric under the mapping

B-B. The reguirements (i), (ii), (ii1), (iv) (in B) are identical to require-
ments 1,2,3,6, (in Ed) respectively. Requirement?7 is staisfied by 9q (from Lemma

2), and so are 4 and 5 (trivial to show). Hence 94 satisfies 1-7 uniquely.

Proof of Lemma 5. The proof is by induction on the number of bargaininr do-

mains in the bargaining claim. Let Eﬁ be the setofall bargaining €h3a'ns with

n bargaining domains (n>2). For n = 2, szcd and 9¢=9y4» SO the claim is proved

exactly as in Lemma 4. Suppose the claim holds for Eé,..., C,. LetT ..3C-=

k* k+1
Bld),.. ., B(tk)}. By its definition g](C) = hp (B(0) [gf(Ct Y1), From Lemma
]

and the induction assumption, requirements 1, 2and 3 are satisfied. From the de-
finiticn of 9¢ it is clear that 4 and 5 are satisfied. Requirement 6 is not
applicable for n»2. To prove that requirement 7 is satisfied, denote (without

8
loss of generality) Cn = {Bn(O),... Bn(tk)}. If Cn+C, then the t]-tai1 of C, con-

verges to the tytail of C. From the induction assumption gf«tn)t )*gf(ct ).
1 1
also have Bn(O)lB(O). From Lemma 3 we get gf(CRagf(C). It is left to prove that

We

9¢ satisfies 1 -7 uniquely. Suppose 9¢ satisfies 1-7. From the induction as-
sumption g (Ct ) = gf(Ct ). From requirement 4 and the induction assumption
1

9 (C) = hR(Bm)[gf'(ctl)thR (B(0)I8¢(C, D) = 9¢()-

Proof of Theorem 1. First, g is well defined. The sequence{qf(c(e))[e>0} is

a Cauchy-sequence in the closed set SP(B{0}) and therefore converges to a unique
point there. Any other such sequence converges to the same point. It is im-

mediate to show that the function g satisfies 1 , 2 , and 3. Let C={B(t)|0<t<T},

C = {B (s)!0<s<S} such that there are s to for whichC “o = Cto, g(CS ) =
o

g(Ct ). To simplify notations, and without Joss of generality, assume T=S, So”

0,

[4) ] '
t.. Let C(c) and C (c) be e-netswhich coincide on cto(e) U C , (&),
o
where Cto(e), Cy (e) are the parts of the c-net which belong to the
o
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tU-truncation of C and to the t -tail of C, respectively (same for C').

Ther g{c) = Tim 1dm gf{Cto(f) vc, {-)). By Lemmz 5 this term is equal tc
£ 0 ¢

lin a,(tolc)[a(C, )1). Similarly g (C) is equal to the same term. There-

2 .

fore 4. is satisfied. The proof of 5. is similar. Now requirement 7 s a

direct result of its equivalent requirement in the finite chains.

Proof of Theorem 2. Equation (5} is an immediate result of recuirement

1. To prove (4 ) denote by C{t,c) the bargaining chain {B (0): 0<s<T} with

B (s) = Bls) for o<s<t-c and te<s<T, and B (s) = B(t) fort-:<s<t. For every

sequence ¢ +C we have g(C(t,en)t) = g(Ct) (for all n), and g(C(t,sn)t_En);

g(Ct). From the properties of the Raiffa Solution we get

a v -8 (C ) L“U ,
]'C(t’Ln)t—En) ) t

where 21 satisfies p(t—gn, g](Ct) + ;u) = plt 91(Ct))‘ from these equalities

we get
d
CRARUNCLY
d a4 |(t:g‘l(ct)).

Since gz(ct) = p(t,g](Ct)), we have

a; %2 (G =5t (n,0y(c) T AT R (tay(0y)

ar

Denote k(t) = g(Ct). From the last two equalities {4) is obtained immediately.

Proof of Theorem 3. It is easy to check that (7) (with 0<t<T instead of

D<t<=) defines a bargaining chain. Here p(t,u) = a(t)- f(a%%T)’ for u: fo, f1m)-a(t)l
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. 3 .
Using the notations of Theorem 2, and denoting gééﬁi by » {t}
k ()
and 7}{3-by Xys We get from (4):
a(t) (xt f (xt) + f(xt)) + 2xta(t) f (xt) =0, (A-1)

For each B B let hN(B) denote its Nash Cooperative Solution. Suppose

first that there exists to’ OgﬁoiT, and that k(t ) = hN(B(tO). We show that

J

this implies k(s) = hNB{s) for all Oggfto, and especially g(C) = k{(C) = hN(B(O)).

If k(to) = hN(B(tO)) then xtof (xto) + f(xto) = 0, and from equation (A-1)

it = 0. Equation {A-1) with the boundary condition ;t = 0, is then solived
0 ) o

for all Og;gto by x5=0, or k(s) = a(O)xS = a(s)xt = hN}(B(s)).

0
We now have to show that if o{t) is small enough then there exists tO for

which kt = 0. From (A-1) we get
0

¢) (A-2)

Since a(t) <0, £'(x,)<0 (the casea(t) = 0 can be excluded since then k{t) "freezes"

t
until a{t)<0; f(xt) = 0 would violate the strong Pareto optiamality) we get

)-xt) <0 iff x >x*

kt<o iff (f(x ¢

t
and
- X

. *
x, <0 1Ff (F(x . 0 iff xt<x* , where X" = hy. (B(0)).

t) t)
t *
*
ence occurs in a finite time. Assume x; = hR(B(O))<x . Since X <X <X for all

* * *
So if x <x* then XetX s and if Xq>X then XghX We have to prove that converg-

t, O<t<T, we have

. fx,)
. alt t
Xp °° 2a(3Y (xg + ?”T?Q)) -y 3t PP
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therefore
T ] f(XT) T;(t)
XO_XT'gxtdtle+§(xT+' ),[ztdt_
f (XT) (t)
1 | f(XT) |
Xy - 5 F1ns(T), where p=| xq + —
T 2 T
f(x7)
T
] * *
lna(T)>x , or a{T)<exp(2(xy-x )/2)

It is therefore encugh that Xp - %

for the Nash Cocperative Solution of B{0) to coincide with the Extended Raiffa

SoTution of C.
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