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l. Introduction

In this paper we study the existence of equilibria in a local public
goods economy which has the following structure. There are a finite number
of geographical regions. Each region has a government which provides
public goods locally by buying private goods inputs on competitive markets
and transforming these inputs into outputs of public goods by using a con-
vex technelogy. The local public goods are pure in the sense that all
the local residents consume the total produced, with no spillovers to other
regions. Each regional government raises revenue from the residents of
its region to cover the cests of the public goods it provides. The local
governments are assumed to be weakly democratic in the sense that no public
sector proposal (that is, a vector of public good provisions and a tax
scheme to pay for it) will be enacted for which there exists an alternative
proposal which is unanimously preferred by the local residents. {Note
that it is not being assumed that unanimity is a necessary condition for
a public sector proposal to be enacted.)

Private goods are produced by price-taking, profit maximizing pre-
ducers using convex technolegies, and are traded across regions. A

continuum of price-taking, utility maximizing consumers, who are perfectly

*This paper was written while the author was visiting the Cowles Foundation
at Yale University from September through December 1979. We wish to thank
the Cowles Foundation staff for providing a most congenial and stimulating
enviromment.



mobile across regions, treat parametrically the public sector proposals
of the varicus local governments in deciding where to live. There are
a finite number of different types of consumers, with type defined by a
consumer's preferences, initial endowments, and share of private sector
profits.

A feasible allocation is a specification of a partition of the
consumers among the regions, a vector of technically feasible public good
provisions (and an associated vector of private good inputs used in its
production) for each region, a technically feasible aggregate production
vector for the private sector, and a vector of private goods consumption
for each consumer such that excess demand for each private good is zero.
An equilibrium is defined by a vector of private good prices, a feasible
allocation, and a vector of regional tax rates (on wealth), which satisfy the
following conditions: (i) the private sector production vector is profit
maximizing at the given price vector; (ii) each consumer's private goods
bundle is utility maximizing subject to the after-tax budget constraint
faced in the region in which he lives, and taking as given the vector of
public good provisions in the region; (iii) no consumer desires to move
to another region; (iv) the local public sectors are in equilibrium in
the following sense: (a) each local government has a balanced budget
(i.e., the revenue raised equals the cost of the private goods used to
produce the region's public goods vector); (b) a regular tax scheme
{specifically a proportional wealth tax) is used in each region (with the
tax rate allowed to vary across regions); (c) in each region there is
no alternative public sector proposal (involving any scheme of taxation)
which the residents would unanimously prefer to the given public sector

proposal.



This characterization of public sector equilibrium dates back to
Foley [ 5], who dealt with a single region model in which mobility consider-
ations played no role. The basic idea 1s to avoid a detailed examination
of the (quite possibly very complex) political mechanisms of the local
governments while still requiring that the equilibrium public sector
proposals have certain realistic features. Whatever the local political
mechanism is, it seems reasonable to assume that it is weakly democratic
and that the tax scheme which is used to balance the budget reflects some
sort of regular incidence of taxation over the residents of the region.

We say an allocation is locally Pareto efficient if there 1s no

other feasible allocation involving the same partition as the given allo-

cation which can make everyone better off. The assumption that the local
governments are weakly democratic, along with the profit maximization
equilibrium condition, insure that an equilibrium allocation as defined
above is efficient in this restricted sense.

In light of this property, asking whether an equilibrium exists
amounts to asking the following question. Among the locally Pareto effi-
cient allocations corresponding to all possible partitions, are there any
which are decentralizable (in the sense described by conditiens (i)-(iii)
of equilibrium) for a given initial distribution of endowments, and corre-
spond to regular regional tax structures in which all regions have balanced
budgets?

An allocation is said to be globally Pareto efficient if there is
no other feasible allocation which can make everyone better off. Unlike
the definition of local Pareto efficiency, there is no requirement that
the partition inveolved in the alternative feasible allocation be the same

as the cne in the given allocation.



We have motivated interest in locally Pareto efficient allocations
on positive grounds. But normative considerations would seem to motivate
interest in the set of globally Pareto efficient allocations.l In particu-
lar we can ask the analogous decentralization question for them--will there
always be a globally Pareto efficient allocation which is decentralizable
and corresponds to a regular regional tax structure in which all regions
have balanced budgets. Under conventional economic assumptions in economies

where the local public goods are pure, the answer is no.2

1See, for example, Bewley [2] and Wooders [14]. The possibility of decen-

tralizing globally Pareto efficient allocations is generally referred to
as the Tiebout hypothesis.

Suppose we impose a very weak regularity requirement on the local tax sys-
tems, namely that any two individuals that are identical except for tastes
are taxed the same. Thus we rule out Lindahl taxation. Then consider an
economy having 2 regioms, 1 type of private good and 1 type of public good,
and a continuum of consumers represented by the interval {0,1] . Half
the consumers {(type 1) have the utility function (applicable to either

region) ul(g,y) =g + (y/8) , where g is the amount of the local public
good provided in the region in which the consumer lives, and y denotes
the consumption of the private good. The other half of the consumers

(type 2) have the utility function uz(g,y) = g+ 2y . There is an aggre-
gate endowment of 1 unit of the private good, divided evenly among all
consumers. Each local government uses a constant returns to scale technology
in producing the public good in its region, with 1 unit of input of the
private good yielding 1 unit of output of the public good. There is no
private good production.

Clearly we can confine our search for a decentralizable globally
Pareto efficient (GPE) allocation to GPE allocations which assign all con-
sumers of the same type the same positive utility level. Given a GPE
allocation with this property, at least half of the consumers living in
one of the regions must be of type 1 (where these type 1 consumers repre-
sent at least r > 1/4 of all the consumers in the economy), and each

consumer of type 1 must be consuming the same bundle (g, yl) . Suppose

yl >0 . Then by reducing to O the resulting ry1 units of the

Y
could be used to produce ryl additional units of the publig £009;
private good, raising the utglity 1e521 of type 1 consumers byplryia-(y /8) >0,

and increasing the utility level of any type 2 consumers living in this
region. Hence the given allocation could not have been GPE. Thus yl =0,
and hence g > 0 (since the given allocation yields a positive utility
level to each type). But since both utility functions are monotonic in

g, g >0 implies everyone must live in this region if the allocation is
GPE. (There are no congestion effects nor any characteristics specific



Richter [11] and Greenberg [ 6 ] have studied equilibria of the
type described earlier, with one important exception. They both assumed
that the partition of consumers was exogenous, thus ignoring probably the
most crucial aspect of local public goods economies--the mobility of con-
sumers. Another way of phrasing the question we are asking in this paper
is: as we sift through the proportional wealth tax equilibria of Richter
and Greenberg corresponding to all possible fixed partitions, will we always
be able to find a fixed partition equilibrium which satisfies one additional
condition--nobody wants to move?

In [12] an attempt was made to explicitly treat consumer mobility
in the context of a regional model with pure local public goods. That
model was only a partial success. While public goods were consumed locally,
it was assumed that a weakly democratic central government levied a pro-
portional wealth tax on all the consumers in the economy in order to raise
revenue to pay for all the local public goods provided in all the regions.
Furthermore, local govermments did not actually produce their public goods.
Instead it was assumed that public goods were produced by an aggregated,
profit maximizing production sector. Thus local governments played no
Teal role. In the present paper we have given the local governments a

real role to play, requiring them to produce their own public goods, making

to a particular region which affect utility or production in this example.)

But since yl = 0, all income of type 1 consumers must be taxed away

for the given allocation to qualify as a decentralized equilibrium. But
then from our regularity assumption on the tax system, all income of type

2 consumers must also be taxed away. Hence the economy's total endowment
of 1 unit of the private good must be used to produce 1 unit of the public
good, yielding a utility level of 1 for type 2 consumers. But by moving

to the empty region (where the tax rate would be zero), type 2 consumers
could achieve a utility level of 2 by consuming their endowments of the
private good. Thus no GPE allocations in this economy can be decentralized
if a regular tax system is used.



them fiscally autonomous, and permitting them to compete for residents
on the basis of tax rates as well as public goods menus. These changes
have led us to a radically different approach to the existence question
from that taken in [12].

The paper is organized as follows. In Section 2 the basic assump-
tions of the model are presented and the equilibrium notion is rigorously
defined. Section 3 contains a heuristic overview of the existence proof

and Section 4 contains the rigorous existence proof.

2. The Model

i (RS) denotes the nonnegative (nonpositive) orthant of n-dimensional

R
Fuclidean space R" . The inequality convention used for vectors is >> ,
L

Superscripts are primarily used to refer to consumer type, while
subscripts are generally reserved for regions or goods. The index 1 ot
£ will mainly be used to refer to consumer type, and the index j for
; ¢ R" . where i¢ {1, ..., m} and j e {1, ..., ¥},
then the vector y = (yi, yi,..., yT, y;, yg, ...,y?, ...,yi, yi, ...,y?) e ROV

regions. If y

m
will be denoted by (y%) . {yi denotes the summation Z f y% .
J i3 gm1 =1 9

A. Regions, Public Goods, and Private Goods

a

e R J

There are Y > 2 non-overlapping geographical regioms. gj +

denotes the vector of local public goods provided im region J .
There are n private goods. Some of these goods, such as land,
may be associated with a particular region. The total endowment of private

goods in the economy is denoted by the n-vecter w .



B. Production

The government of region Jj produces public goods for its residents

o
using the production set Yj(: R+j x RE , Wwhere (gj, xj) £ Yj means

the vector of public goods gj is produced from the vector of private
' U
good inputs xj. The aggregate public goods production set YG E)(ﬁa

We write (g,x) ¢ YG when g = (gl, vees gy) s, X = (xl, eeny xY) , and
(gj,xj) € Yj ¥j

For simplicity of exposition we treat only an aggregated private
production sector. Y € K" summarizes the production possibilities for the
private sector, with outputs measured positively and inputs negatively.
No public goods are used as inputs or produced as outputs by the private

sector.

(B.1) Y and Y, ¥j are closed and convex.

3

g,
(B.2) Y0R2={0} and ij'\R+j = {0} ¥j.

" n n, LY
(B.3) 1If (gj, xj) £ Yj and Xy <xy 3 By > By 2 (gj, xj) £ ¥,

C. Consumption
There are a continuum of consumers of m different types. All

consumers of the same type have the same tastes and initial endowments,

and receive the same share of total profits. ri e (0,1] denotes the

m
fraction of all consumers who are of type 1, with Z ri =1 . The
1

preferences of a consumer of type 1 (i =1, ..., m) , if he resides

3(B.3) is a very strong assumption. We will assume later that preferences
are monotonic in public goods, but for technical reasons we cannot assume

monotonicity in private goods over all of Ri . (B.3) essentially substi-

tutes for the latter assumption, because it says that each private good
can be used to increase the output of some public good.



in region 3 (J =1, ..., Y) , are summarized by a utility function

1 1 9ytm i
uj(gj, yj) » defined on the consumption set R, » Wwhere yj represents
the private goods consumption bundle. We summarize all these bundles with

the nmy-dimensional vector vy

i
(vy) -

Each consumer of type 1 has a semi-positive initial endowment

. m
n-vector w- of private goods, with w = Eriwi . There are no initial
1

endowments of public goods. Each consumer of type i receives a non-
i i
negative share 6~ of the profits of the private sector, where Zr 87 =1 .
1

A partition of the consumers among the Y regions is denoted by

i

a my-vector T = (r}) , where rj e [0, ri] denotes the fraction of all

consumers who are of type 1 and live in region j . The set of all

possible partitions is P {r ¢ R$Y| E r§ =riyi= 1, ..., m} .
j=1

i o,
(C.1) uj is continuous on R
1 g.+n
(C.2) u, 4is concave on R J .
J +
(C.3) ui is increasing in every component of g.
3 Y 3

(C.4) There exists a parameter ¢ > 0 such that u§ is non-increasing

in each private good coordinate above the level E'.A

(€.5) wi >0 and wo>> 0.

i
Let y= = (Yi. s yi) « For fixed i and 'j and any given
ol ¢ (0,1} , define ¢3L(pi) £ sup{uld (r;, cees r‘ir) > 0 with r;' >0
and Zr; = oiri » and (g, x, yi. §) ¢ Y. x RY x Y 3 u;(g*, y;) =u if
j 3 G + 3773 73

iﬁhis satiation assumption is motivated by technical convenience. Since
{ can be chosen arbitrarily large, it is not very restrictive.



i

ri >0 and Zriy. - )X, - 8=-w<0}. (Since (B.2) implies the set
3 § 33 3 -

i

j(pi) clearly exists.)

{{g,x,8) € YG X Y|s + ng + w > 0} is bounded, ¢

If all the resources in the economy are devoted to pleasing a fraction

pi of the type 1 consumers, @i(p%) is the largest common utility

3

level they could obtain, provided that some of them live in the given

region j . (Obviously ¢§ is non-increasing in pi )

(C.6) 2 et e (0,1) and Kj > 0 such that

(a) max u;(O, y%) > max ¢§(oi)

i_n
ijR+ J

i

(b) If (gj, xj) £ Yj with xj <0, and uj

i i, i
(gj’ Yj) id’j(ﬂ }

1Y) <95 - Kgxy 2 6500, ¥ > ujeys v
The left-hand side maximum in (a) exists because of (C.4). (C.6a) could
be satisfied if, for example, utilities were increasing over a sufficiently
large range in some private good whose marginal utility diminished suffi-
ciently slowly. 1If this good was & necessary inmput in the production
of public goods, (b) could also be satisfied. (The closer pi is chosen
to 1, the lower will be the values of ¢; ,» and hence the more likely

the conditions are to be satisfied.)

D. Allocations and the Equilibrium Concept

Definition 2.1. An allocation (r,g,x,y,s) is an element of the set

= moy
A P x YG x R+ x Y .

An allocation specifies a partition r , public good provisions

in all regions g = (gl, caey gY) , Pprivate good inputs to public goods



10

production x = (xl, veny xY) + Private good consumption bundles for all

i
consumer types in all regions y = (yj) » and the private sector production
vector s . (Implicit in this definition is the property that all con-

sumers of the same type living in the same region receive the same private

goods bundle.)

Definition 2.2. The excess demand function z : A + R® is defined by

z2(r,g,x,y,s) = ):r;y; - gx. - s - Ww.
ij 14

Definition 2.3. An allocation (r,g,%x,v,s) is feasible if z(r,g,x,v,s) = 0 .

Definition 2.4. A feasible allocation (r,g,x,v,s) 1s locally Pareto

efficient if there does not exist a feasible allocation (r,E}E}?}E} with

i— =i i i i
L (g., ¥.) > . . vi r, > 0.
uJ(gJ yJ) uy (gJ, yJ) ja 3

This efficiency notion was first introduced by Ellickson [4 ], who
called it Pareto efficiency with respect to a partition. As mentioned
in the Introduction, the important feature is that only alternative feasible

allocations involving the given partition r are considered.

Definitjon 2.5. A proportional wealth tax local public competitive

equilibrium is a price vector p* >> 0, a feasible allocation

Y
(r*, g*, x*, y*, s*) , and a vector of tax rates (ti, ceny t$) e X[0,1]
1

such that

(a) (private sector profit maximization) p*s* > p*s ¥s ¢ ¥ ;

(b) (utility maximization subject to after-tax budget constraint)

if rsi >0, y;i maximizes ui(gg, y;) on

{y;' £ R?_lp*yi < (p*wi + Bip*S*)(l 'ti‘)} ;
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(¢) (mobility equilibrium) if rgi >0, u%(g§, ygi) z_u;(g;, ;;)

¥i=1,..., v, where ;; maximizes ui(g;, y?) on

trh e K lpay] < (et + elpren -t

]
T xt
(d) (weak democracy) if | r* >0, (g., xj) 3 Yj and
g=1 J ]
i i i i . 1
uj(gj, yj) > “3(33’ y; ) Visr}" >0, then
-p*x, + p* | rgiyj > p*ngiwi + p*s*Zr*iBi ;
) is i 13
rfi>0
]
{(e) (balanced budgets) tgp*zrgi(wi+-eis*) = -p*xg and t; =0
i
1f Jr#l =0,
ij

Condition (c) requires that the equilibrium level of utility of
a consumer of type 1 who lives in region j is not less than the level
he could obtain by moving to another region and maximizing his utility,
given the public good provi;ions and the tax rate prevailing in that region.
Condition (d) states that no nonempty region can afford an alternative
ﬁublic sector proposal that would be unanimously preferred by its residents.
The right-hand side of the inequality in (d) represents the total before
tax income or wealth of region Jj , and the left-hand side represents
the total cost of the preferred alternative bundles. After subtracting
the total expenditure on the preferred bundles of private goods from before
tax wealth, there would not be enough wealth left to tax away (using any
tax scheme, including ones invelving subsidies to some consumers) to cover the
of the alternative bundle of public goods. (-p*x, ..is the cost of

b 3

the private good inputs purchased by the local government in order to produce Bj )

cost -p*x

Condition (e) requires that each local government set its tax rate
so that the revenue raised (i.e., the tax rate times the region's before

tax wealth) equals the cost of producing the public goods. If region |}
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is empty, then its before tax wealth is 0 and the balanced budget condition
implies x; = 0, and hence the region provides no public goods. However,
this still leaves tg indeterminate, and hence we explicitly require a
zero tax rate if a region is empty.

The definition of an equilibrium allocation allows for a trivial

1 Af

level of non-uniqueness in the sense that if rg = 0, then yj can

be chosen arbitrarily.

Theorem 2.1, If (r*, g*, x*, y*, s%) is an equilibrium allocation as

described in Definition 2.5, then it is locally Pareto efficient.

Proof. Suppose not. Then E| a feasible allocation (r#*,g,x,vy,s) with

u?(gj, y?) > u;(gﬁ, ygi) ¥ij 3 rgi >0 . Then (d) of Definition 2.5 implies

-p* ] x, + p* Z r?ly; > p*}jrgiwi + pks* Ir*lel . (We have taken
is ijs i) 1]
zr?2>0 e+l
¢ 3 b
the summations on the right-hand side over all 1j , since terms involving
rgl = 0 obviously do not affect the sum.) Since X, £0 ¥) and p* >0,

we can let the first summation on the left-hand side of the inequality
run over all ] and maintain the inequality. The second summation can
trivially be extended to run over all 1ij . Incorporating these changes,

Zr;iwi = w and Zr;iei = 1 on the right-hand side, and rearrang-
ij ]

ing yields p*( ): 1.';;1)73L
ij

the term in parentheses equals s , and hence we obtain p*s > pks*

using

- ij - w) > p*s* , Since (r%,g,x,y,s) is feasible,
3

contradicting condition (a) of equilibrium.

Q.E.D.
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Since our equilibrium allocations are efficient in the restricted
sense of Theorem 2.1, perhaps they can be found by maximizing some sort
of social welfare function. This i1s the motivation for the following

definition. Let m {(k ) e R Yi Zk

Definition 2.6. The social welfare function U : SmY o RE“Y x Y +R

is defined by U(k,a) = ijuj(gj, y ) , Wwhere a = (g,X,y,5)

Even though U is independent of x and s , we use the larger domain

for notational convenience.

3. Existence Proof-~Heuristic Discussion

In the next section we rigorously demonstrate the existence of a
proportional wealth tax local public competitive equilibrium. In this
section an overview of the underlying strategy of the existence proof is
provided.

The proof is a generalization of an idea of Negishi's [10]. In
proving the existence of an equilibrium in a competitive economy with only
private goods, Negishi confines his attention to the set of feasible allo-
cations which maximize nonnegative linear combinations of the individual
utilities, and hence are Pareto efficient. For any given vector of utility
weights for this social welfare function a maximizing allocation, and a
vector of shadow prices having many of the properties of an equilibrium
price vector, are generated. In particular, profits will be maximized at
these prices, and any bundle of goods preferred by a consumer to the one
he receives in the maximizing allocation will cost more at these prices.

However, for an arbitrary vector of weights, there is no guarantee that
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at these prices, the value of the consumer's assigned bundle will be less
than or equal to his endowment plus profit income.

In order to find a vector of weights such that all consumers will
satisfy their budget constraints when the dual prices are used, Negishi
constructs a "penalty"” mapping. Given a vector of weights and a correspond-
ing efficient allocation, the basic idea 1s to lower the weights of consumers
whose budget constraints are vioclated when evaluated at the efficient
allocation and corresponding dual prices, and raise the weights of those
whose budget constraints are not binding. At a fixed point of such a
mapping, the weights will not be adjusted, implying everyone's budget con-

straint is just satisfied.

Foley's [ 5] proof of existence in the context of a single region
public goods model embodied such a welfare maximization approach, and
Matsuda [ 8 ] suggested a similar approach for demonstrating existence of
equilibrium in the local public goods model studied by Richter [11] and
Greenberg [¢ ], in which consumer mobility was explicitly prohibited.

In the next section we present a proof which is very much in the
spirit of Negishi's original work. By Theorem 2.1, we can confine our
search for an equilibrium to the set of locally efficient allocations cor-
responding to all the various partitions. For given vectors k (the social
welfare function weights) and r (a partition), a feasible allocation
which maximizes the social welfare function of Definition 2.6 will (in
most cases) be locally Pareto efficient. (Unlike Negishi, our sccial
welfare maximization process is parameterized by two vectors rather than
just the vector of utility weights, because r enters the characterization
of feasible allocations.) Furthermore, we can find a vector of dual prices

which, together with the efficient allocation, will satisfy all the require-
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ments of the equilibrium of Definiiton 2.5 except possibly two--the budget
constraint in condition (b) may be violated (where the tax rates are defined
by (e)), and the mobility requirement (condition (c)}) may also not hold.
Then we construct two penalty mappings. Ome of these mappings is very
similar to Negishi's penalty mapping, with the welfare weights being
adjusted with reference to the after-tax budget constraints evaluated at
the dual prices. The other penalty mapping adjusts the partition in order
to fix up the mobility condition. For each type of consumer, it penalizes
a region which doesn't '"measure up" in utility terms to the "best" regions
for that type by assigning the region zero consumers of that type. We

then show that at a fixed point of a correspondence involving these penalty
mappings, both the budget constraints and the mobility condition will be
satisfied. Having built all the other requirements of Definition 2.5 into

the maximization process, an equilibrium will have been determined.

4. The Existence Proof

As noted above, assumption (B.2) implies the set

{(g,x,8) € Y x Y|s + }“j + w > 0} 1s bounded. Hence there exist positive

vectors bg . bx s E; such that for all (g,x,s) in this set, g << Eé .

x >>-b and B << 5 <<, . Wedefime ¥ = {(8,x) ¢ Yglg < B, x > -b)
and Y = {s ¢ Y|-
Let ¢z = (g, +».5 ) , where T is the satiation parameter of
assumption (C.4). (The dimensionality of ¢ will be implied by its context.)
Then we define W = YG x {y ¢ R:ny|y <z}l xY and W= QG x {y ¢ R:FYIY <glx Y.

If aeW and 2(r,a) <0 for some r e P, then ac¢ W

The set P x W 418 a convex, compact subset of the set of allocations
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A (see Definition 2.1), and includes all allocations (r,g,x,y,s) in which

y <t and z(r,g,x,y,s) < 0 . We will confine our search for an equilib-
. 5
rium allocation to the set P x W .

Given (k,r) ¢ Sm x P

¥ , consider the problem

{1) max U(k,a) subject to z(r,a) <0
acW

where U is defined in Definition 2.6. Since W dis compact and U is

continuous in a (by (C.1)), (1) has a non-empty solution set for each

(k,r) ¢ SmY x P .

Definition 4.1. N : SmY x P> W is defined by N(k,r) = {a ¢ ﬁia is an

optimal solution to (1) for the given (k,r)} .

Given (k,r) ¢ Suw x P, let a e N(k,r) . Let

ckr(E) {z € Rn]z = z(r,a) for some a ¢ W with U(k,a) E_U(k,E)} and
D= {z ¢ Rniz << 0} . Since a e N(k,r) , Ckr(;) N D= ¢ . For suppose
not. Then =|a e W3 2(r,a) << 0 (hence a ¢ W) and U(k,a) > U(k,a)
Hence from (C.3) and (B.3) EI; e W with z(r,g) <0 and U(k,g) > U(k,a) ,6

contradicting a e N(k,r) .

5Even though all allocations (r,g,x,y,s) with z(r,g,x,y,s) < 0 have

the property that zr§y§ <s + Ixj + w << S; + w , this inequality is
i3 ]

not sufficient to bound the y; because the r§ do not have a positive

lower bound. Hence we have invoked (C.4) in order to confine our search
to a compact subset of the consumption set.

6 -
Since k ¢ Spy Z i3 2 k; >0 . Let a= (g,x,y,8) . Form ¥ by chang~

ing only the components 8j and xj of a, in the following manner.

Since z(r,a) << 0, we can choose ;J < xj so that z(r,:) <0 and

obtain (by (B.3)) Ej > g, . Then & cW, and by (C.3),

i i

uj(gj, Y;) > uj(sj' y%) and hence U(k,8) > U(k,a) > U(k,a) .
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i
W 1is convex, and U 1s concave in a because the “j are concave.

Hence Ckr(;) is convex, and by the separating hyperplane theorem =|p # 0,

n
with sz =135pz>0 ¥z¢C (a). Since D contains points with
1

kr
arbitrarily large (in absolute valug) negative coordinates, it follows that
p > 0 . Furthermore, (C.3) and (B.3) imply p >> 0 .7

Summarizing, we have shown that if a ¢ N(k,r) , =/ p >> 0 with
%pﬂ = 1 such that pz(r,a) >0 ¥a ¢ W with U(k,a) 3_U(k,§) .  Hence

[}
the following correspondence is well-defined, where Sn denotes the

7 _ — _
Since z(r,a) e Ckr(a) » and z{(r,a) <0 and p > 0, it follows that
pz(r,a) = 0 . Thus if Py > 0 it follows that the kth coordinate of

z(r,a) equals 0, i.e., the k™ coordinate of Zr y 2_3 -8 -w

is 0. Since w >> 0, it follows that if Py > 0 R then either
(a) Elij_a r§ >0 and (;?) {the kth coordinate of yJ ) is positive
k
or (b) j j 2 (xj) <0 or (c) Ek < 0 . (0f course these cases are not
k
mutually exclusive.) Suppose P, = 0 for some & and (a) holds for some
k with Py > 0 . Then by decreasing (yj) slightly and increasing some
k
component of E5 by (algebraically) decreasing (x (we appeal here
R
to (B.3)), we can obtain an allocation a ¢ W3 U(k, a) > U(k, a) (by (C.1)

and (C.3)) and pz(r, a) < 0 . This contradiction rules out case (a) hold-
ing for any k for which Py > 0 under the assumption that P, = 0.

Thus suppose P, = 0 and (b) holds for some k with Py > 0 . Then by
(algebraically) increasing (§5) slightly and decreasing (algebraically)
k

(;5) sufficiently (and hence by (B.3) increasing some component of E& )
£
", -
we can (bym(C.l) and (C.3)) obtain an allocation 3 e W with U(k,a) > U(k,a)
and pz(r,a) < 0 . This contradiction rules out (b) holding for any k
with Py > 0 . Thus neither (a) nor (b) can hold for any k with 1 0

under the assumption that P, = 0 . Thus (c) must hold for all k with
P, > 0. But then ps < 0, and by changing s to O and leaving the

other components of_':' the same, e would obtain an allocation a e W
with U(k,&) = U(k,a) and pz(r,a8) < 0 . Thus the supposition that p, =0

has led to a centradiction in all peossible cases. Hence p >> 0 ,
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interior of the (n-1)-dimensional simplex s, = {pe Ri|Zp2 =1} .
L

Definition 4.2, M : SmY X P+ W x gn is defined by
—_— - -] —_ —_—
M(k,r) = {(a,p) ¢ W x Sn|a e N(k,r) and pz(r,a) >0 ¥a ¢ W 2 U(k,a)

> Utk,a)} .

(Note that a ¢ W, but that the a need only belong to W .)

As we vary (k,r) over SmY x P, most allocations (r,a) , where
a € N(k,r) , will be locally Pareto efficient, and hence M essentially
represents the locus of locally Pareto efficient allocations together with

the associated dual price vectors. We formalize these remarks in the

following lemma.

Lemma 4.1. If (a,p) & M(k,r) and r; > 0 whenever k; >0, the alle-

cation (r,a) 1s locally Pareto efficient.

Remark. The hypothesis of Lemma 4.1 rules out the placing of any positive
weight in the social welfare function on nobody. The correspondence M

will be part of the mapping whose fixed points will correspond to equilibria.
We will show that the vectors k and r determined by such a fixed point

will satisfy the property that rj > 0 whenever k§ >0 .

Proof. For (r,a) to be locally Pareto efficient, we must first show
it is feasible in the sense of Definition 2.3. Since a ¢ N(k,r) ,
z(r,a) <0 . But p > 0 and pz(r,a) >0, and hence 2(r,a) =0.
Suppose (r,a) 1s not locally Pareto efficient. Let a = (g,x,y,s)

Then 3 an allocation (r,E,%,?,E) with z(r,g,;,y,g) = 0 such that

i

N i i i
(2) uj(gj. yj) > uj(gj, yj) ¥ij > ¥ >0 .
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If Y4z, form y by lowering all coordinates of ; which exceed T
to the level ¢ . Then z(r,g,;,ﬁ,g) < 0 and hence a = (},%,9,3) e W .
By (C.4), u;<gj, §;) 3_u§<gj, ?;) Vij and hence (2) holds with ;;
replaced by 91 . Then U(k,a) - U(k,a) = z ki(ui(g ’ §i)"ui(8 , Yi))
3 , R Rt b MRS LA R FHRE
k>0
J
Since ri >0 4if ki >0 each term of this summation is positive.

] | ’
Hence U(k,a) > U(k,a) . Since a € W with z(r,a) <0, this contra-

dicts a ¢ N(k,r) .
Q.E.D.

Lemma 4.2. M is upper semicontinuous on SmY x P, and for each

(k,r) ¢ SmY x P, the image set M(k,r) is convex.

Proof. See the Appendix.

The next task is to construct a mapping which penalizes consumers
who violate their budget constraints. Let ¢ be an arbitrary positive

number, and let

(3) I={te=(t5,..., :Y)ltj e {0, 148] ¥3} .

Definition 4.3. The budgetary deficits function n : W ox Sn x T + R°Y

where n(a,p,t) = (n;(a,p,t)) and a = (g,x,y¥,8) , 1s defined by

n}(a,p.t) = (pwi'Feips)(l-tj) - PY§ .

Interpreting tj as a tax rate (even though for technical reasons we allow
it to exceed 1) applied to wealth (which equals endowment income plus profit
income), n;(a,p,t) represents after-tax income minus private goods expen-

diture by a type 1 consumer residing in region Jj .
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n 1is a continuous function defined on a compact set. Hence
i ~
H e >03 Zrh(a,p,t) > - %- ¥(a,p,t) e Wx 8 x I . Weuse £ in the
ij n

following definition.

Definition 4.4. The budget penmalty mapping K : S xWx§ x I + §
n m

my Y

is defined by K(k,a,p,t) = k where

~q
kj = [max(0, k;+€n;(a,1=,t))]/[ ] max (0, k;'i'en;'(a,p,t))]

ij

Let DEJBEX(O, k;'+snj(a,p,t)) for arbitrary (a,p,t) e Wwx S *I. Then
h|

D> Zk; + E}:n;(a,p,t) =1+ EZn;(a,p,t) . Since a{n?(a,p,t) > -1
13 1] 13 1j J

from the definition of € , we have D > 0 . Hence the mapping K is
well-defined, and obviously maps into SmY . Since n 1is continuous, so
is K.

The numerator of this mapping raises a consumer's weight in the
social welfare function if his after-tax budget constraint is not binding
for the given vector (a,p,t) , and lowers his weight {if his budget con-
straint is violated. (Note that violation of the budget constraint can
result even if private expenditure is zero, either because the tax rate
exceeds 1 or because ps 4is sufficiently negative.)

The next task is to define a regional penalty mapping, which dis-
tributes consumers among the regions so that they will have no incentive
to move. The following two definitions will be used in constructing this

regional penalty mapping. Recall the definitions of pi and Ki from (C.6).

h}
pd . — 1 1
Definition 4.5. A : Sn + R, is defined by A(p) = A min(r'pw’) where
i
- - i, 4
% > 0 ie any constant satisfying A < min(1/[max K;I, ain[(1-p ) ]1/Y)
ij i

-]
Stnce w' >0 ¥i, A(p) >0 ¥peS_ .
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Definition 4.6. v : P x W x §n + Y » Wwhere v(r,a,p) = (V;(r,a,p)) and

a = (g,x,y,8) , 1s defined by v;(r,a,p) = u;(gj, ;j) where ;j is an

optimal solution to the problem:

i A1
4 ma .
(4) max uj(gJ yj)
>0
yj_
. px,
subject to py? < max|0, (pwi-+sips) 1+ J

max(pEr}(wn-kels), A(p))
£

Suppose that péri(w£-+625) > A(p) and -pxj/[PIri(w£-+Bls)] <1.
L

Then v?(r,a,p) 1s the maximum utility level a type 1 consumer could
achieve by moving to region j , taking the region's public goods vector

g5 and tax rate —pxj/[pzri(wz-ﬁezs)] as given. This tax rate would
£

balance the budget in region 3 for the given allocation (r,a) . The
max operator in the denominator of the tax rate rules out undefined tax
rates stemming, for example, from empty regions. (The specific choice
of the function A 1is motivated by technical reasons.) The other max
operator insures "after-tax income'" is nonnegative.

For each (r,a,p) in the domain of v , the constraint set in
(4) is compact (since p >> 0 ), and hence an optimal solution always
exists. Furthermore p »> 0 rules out the "exceptional case’ and hence

v 1s continucus on its domain.

Definition 4.7. The regional penalty mapping R : P «x W x §n + P, where

a = (g,x,y,8) , dis defined by R(r,a,p) = {f ¢ P[Vij, E§ -0 if
max(v;(r,a,p), u;(gj, y;)) < je{;ffﬁ"T}[mﬂx(v§(!,8.P), ui(gj- Y%))]} .
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This mapping is well-defined because for some value of j , the
left-hand side of the inequality equals the right-hand side, thus insuring
that f; is not restricted to zero for all j . To make transparent the
intuition underlying this mapping, suppose for the moment that v% > u% Vﬁ .
Then the mapping penalizes a region ' j by assigning it no type i con-
sumers if the region does not measure up, in the budget constrained utility

sense underlying the definition of the v% , to some of the other regions

(i.e., v; < max v? J for this consumer type. Thus it should be clear

i

that this mapping is designed to insure satisfaction of the wmobility
condition of equilibrium. The presence of the additional terms u§ will
insure, as we shall see later, that some type i consumers are assigned

to region j if the social welfare function assigns a positive weight

to type i consumers residing in region j .

n °
Lemma 4.3. R 1is upper semicontinuous on P x W x Sn , and for each

(r,a,p) ¢ P x W x §n s, R{(r,a,p) 1is a convex set.

Proof. Convexity is obvious, and upper semicontinuity follows straight-

forwardly from the continuity of v and the u%

In order to insure continuity of v , we restricted our attention
to positive price vectors in Definition 4.6. Hence R , which inherits
its domain from v , is not defined on a compact set. However, we need
a correspondence defined on a compact set for our fixed point arguments.
Hence we extend R to an upper semicontinuous correspondence on the closure

{(r,a,p,T) £ P x W x §n x P|t ¢ R(r,a,p)} , the

of its domain. Let GR

graph of R . Let Ek denote the closure of Gp in P x Wxs xP.
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We then extend R to an upper semicontinuous correspondence & on the

domain P x W x Sn as follows.

nu -~
Definition 4.8. R : P x W x Sn + P 1s defined by

v N “ —
R(r,a,p) = {r ¢ P|(r,a,p,T) ¢ Gp}

-~ %]
Of course on the set P x W x § R agrees with R .

n »

We have now defined 3 mappings-- M, K, and & —-which will be

components of our fixed peoint mapping. The final component mapping is

y
the content of the next definition. Recall that I = X[0, 1+5&]
1

Definition 4.9. The tax mapping T : P x W x Sn -+ ; » Wwhere

T(r,a,p) = (Tj(r,a,p)) and a = (g,x,v¥,5) , 1is defined by

-px,

(5) Tj(r,a,p) = min|146, E;T;::%ET if Ej(r,a,p) = %r?(pw£.+ei max(0,ps)) >
(6) Tj(r,a,p) = 1+8 if -pxj >0 and Ej(r,a,p) = (

(7) Tj(r,a,p) = [0, 1+48] A4if pxj = J and Ej(r,a,p) =

Suppose profits ps are nonnegative. Then Ej(r,a,p) is region
j's before tax income, and if this income is positive and region j's
expenditure on public goods does not exceed it, then Tj(r,a,p) equals
the proportional wealth tax rate which will balance the region's budget.

Technical reasons motivate the other complications in the definition.

Lemma 4.4. T 1s upper semicontinuous, and for each (r,a,p) € P x W ox Sn .

Tj(r,a,p) is a convex set.
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Proof. Convexity is obvious. T, 1s obviously upper semicontinuous at

]
any point (r,a,p) with Ej(r,a,p) > 0 . Thus suppose Ej(r,a,p) = (

v v
and -pxj >0 . Let {(r', a, pv) + (r,a,p) (where a’ = (gv, xv, yv, sv)),

v v VvV v
tj € Tj(r 8, P ) ¥, and t; - tj . According to (6), we must show
= hy N v
tj 1+8 . Clearly :|v0 3 Vv 3_v0 » =P x; > 0 and either Ej(rv, av, pv) = 0

or Ej(rv, av, pv) >0 and (-pvxg/Ej(rv, av, pv)) > 148 . If

Ej(r“', a’, p’) = 0, then by (6), t‘j’ = 146 . 1If Ej(r", a’, p’) >0,
then by (5), t; = min(1+3, [~pvx;/Ej(rv, av, pv)]) = 145 . Thus ¥v 3_v0 .
t; = 145 , and hence tj = ]+5 . Thus Tj is upper semicontinuous at

all points (r,a,p) with Ej(r,a,p) = (3 and -pxj >0 . Finally it is
obvious that Tj is upper semicontinuous at the remaining points (r,a,p)
where pxj = 0 and Ej(r,a,p) = 0 . Thus Tj is upper senmicontinuous

everywhere, and hence so is T .

Q.E.D.

Definitions 4.2, 4.4, 4.8, and 4.9 define 4 upper semicontinuous
mappings M, K, ﬁ , and T. M, K, and T have convex image
sets at all points of their respective domains, and ﬁ has convex image
sets (at least) at all points in the relative interior of its domain.
Hence the mapping M x K x E x T 3 SmY x P x W x Sn x I+ SmY x P x W x Sn x 1
is upper semicontinuous, and has convex image sets on the relative interior

of its domain. Thus by a slight extension of Kakutani's Fixed Point T‘neorem,8

g (k*, r*, a*, p*, t*) ¢ Spy X P X W x S, * 1 such that

(8) (a*, p*) e M(k*, r¥%)

8The only change from the standard version that we are exploiting is that
the image sets need not be convex at boundary points of the domain. See
[ 9] for a proof.
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(9 k* ¢ K(k*, a*, p*, t¥)
(10) r* ¢ ?f(r*, a*, p¥*)
(11) t* ¢ T(r*, a*, p*)

where a#* = (g*, x¥*, y*, sg¥%)

The price vector p*, theallocation (r*, a*), and avector of tax
rates 7%, where T? = t;s if region j 4is nonempty and TJ# =0 1if region j
is empty in the partition r*, correspond to anequilibrium (see Theorem 4.1 below).
Essentially (B) insures (r#*, a*) isfeasible and that the profit maximization
condition of Definition 2.5 is satisfied. (8) also does the 1ion's share of the
work in guaranteeing the weak democracy condition is satisfied. (8) and
(9) insure satisfaction of the utility maximization condition, (10) bears
most of the burden in guaranteeing the mobility conditien, and (11) aims
primarily at balancing the regional budgets. However, there are some
subtle interactions among the mappings. Thus before stating and proving
the major theorem, we will prove a series of lemmas.

We first derive some implications which stem primarily from

property (8).

Lemma 4.5.

(12) z(r*, a*) = 0

(13) P*s* > p*s ¥s ¢ Y

(14) £ x> 0, ui(el, yp) > ullel, y3D) = pryl > payy
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L ~ - i,. ~1 i i i
£ *
(15) 1 %rj >0, @By Fp) e Yy, wi@y, § > ugley, vi) ¥idry >0,

and Wi r;i > 0 whenever kji >0, then

X i 1.1
_P*x + p* Z Tk ¥, _>“ _p*x* + p* I r* y*
g TRE L TRV 2 RRp et Lothyy
§ 1
r*=>0 *7x0
j T3
(16) rxini@ax, p*, %) > 0
ij
(17) If kgi « 0 and rgi >0, then ygi = 0
(18) 1f Tkt = 0, then x¥=0.
5 3

Proof. Since (a*, p*) e M{(k*, r*) it follows from Definition 4.2 that

(19) p*z{(r*, a) >0 ¥a e W= YG x {y e R:PY|y <t} x Y such that

U(k*, &) > U(k*, a*)
Since z(r*, a*) <0, p* >> 0, and & = a* sgatisfies (19), we have
(20) p*z(r*, a*) = 0
and hence z(r*, a*) = 0, verifying (12). Combining (19) and (20) yields
(21) p*z(r*, a) > prz(r*, a*) ¥a ¢ W3 U(k*, a) > U(k*, a*)

let s be any element of Y . Then a = (g%, x*, y*, 5) ¢ W and
it follows from (21) that -p*s > -p*s* , verifying (13).
Next suppose a = (g*, x*, y, s*) where y 15 identical to y*

except possibly in the component vector §; corresponding to some fixed
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i
air i} for which %" > 0 ., If *,
U(k*, a) > U(k*, a*) . 1If §§*i z , then a € W and (21) implies

~1 i i . A
P*YJ R p*Ya‘ .  Suppose ‘I.lj (83" y;) > u;(gg’ ygi) and p*yj‘ = p*yg

i
Then by reducing some positive component of §; a little (since y;i >0
clearly §; >0 ), we could obtain a vector ;; < ¢ for which
i Al i 1 -
uj(gg, yj) 3_uj(g§, yg ) (by continuity of u; ) and p*?i < p*yi‘i {since

p* >> 0 ), leading to a contradiction of (21). Thus p*§i > p*yj if

Loow oly 5 wlon wad 4 1
(g%, ¥y A . If s .
uJ(gJ yJ) uj(gJ b ) an yj £t ¥j £t then by (C.4)
i ~1 i i i
t . <y, . X, *,
a vector yj < ¥j with y; £t and uj(gj yj) > uj(g Yj) Thus

i i i L
uj(gg, yj) > j(g*, y* ) and since Y3 25 P*y;
i ~1 i ~1 i ~1

> p*y_?i‘i . Since

i i
Yy <Yy s p*yj > P*Yj » and hence P*Yj > p*y§ + Thus uj(gg, yj) > uj(gﬁ, yg )

implies p*§; > p*ygl even if §; £z, verifying (14).

Next suppose ngz > 0 for some fixed 3 and define a = (g,x,y,5%) ,

where (g,x) is identical to (g%, x*) except possibly for the component

vectors éj and ij (where (éj, ﬁj) £ Yj ), and y > 0 4is identical

to y* , except possibly in the component vectors §j for 13 rgi > 0.
Then U(k*, &) - UGk*, a%) = J kiicg., 35 i(g , y*1)) . Ssuppose
L R D M L 3
Kxso
J

the hypotheses of (15) hold. Then either this summation is vacuous (i.e.,
kgi = 0 ¥i ) or each of its terms 1s positive. (The latter assertion
follows from the fact that 1if kgi >0, then r;i > 0 and hence

wI@., 55 > uler, yal) L) Thus UK*, &) > UGk, a*) and if § < g,
373 73 17737 7] - -

(21) directly implies the conclusion of (15). The argument can easily be
extended to allow for y £ ¢ , as we did in proving (14), and hence (15}
is verified.

It follows from (13) and 0 £ ¥ that

i
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(22) p*s* > 0 ,

Hence Ej(r*, a*, p*) (see Definition 4.9) equals before-tax wealth in

region j , and we have

(23) Eg = Ej(r*, a*, pkx) = Zr?i(p*wﬂi-elp*s*) >0 ¥j
L

If E; > 0, then since t* ¢ T(r*, a*, p*) , (5) implies

24 t¥E% < phx* |
(24) ity = TP

1f E¥ = 0, then since x¥ < 0, (24) also holds. Thus (24) holds ¥j ,
implying

25 t*EX < —pkixk |

(23) EJJ-pgj

i i
Using Definition 4.3, Zr#ln%(a*, p*, t*) = Zr?i(p*wi-+8 p*s*) (1 - t¥)-
. d ] 3 J
ij ij

T i i i .1 i i
p* z r¥ y; = p*w + pkg* - Zt?E* - p* ng yg > p*w + p*s* 4+ p*ix# - p* Er; y; s

13 it CER &
the inequality following from (25). But the right-hand side of the inequality
equals -p*2(r*, a*) , which equals 0 by (12). Thus (16) is verified.

With respect to (17), suppose k;i =0, r;i

3 5 (possibly J = 3§ )3 Zkgl > 0 . Reduce ygi to 0 (which doesn't alter
£

>0 and ygi >0 .

the value of U since k* = ( ) and let x; = x¥ - r*iy*i . This oper-
3 p

b 3 ] b

ation leaves the excess demand vector z(r#*, a*) unchanged. But by (B.3),

as a result we obtain a vector gj > 8§ s Wwhich raises the value of U
(by (C.3) and the fact that Zk§ﬂ'>0 ), contradicting the maximality of
R

a* , Thus (17) is verified.



29

Finally, with respect to (18), suppose {kgi =0 and x5 <O .
3 5 33 Zk§i > 0 . Then by reducing xg to é (and consequently reducing
33 to 0, ihich does not alter the value of U since Ekgi =0) and
algebraically decreasing ig 50 a5 to maintain a nonpositive excess
demand vector (and hence by (B.3) in?reasing g§ }, we can increase the

value of U (by (C.3) and Zk;i >0 ), thus contradicting the maximality
1

of a* . Thus (18) is verified.

Q.E.D.

Lemma 4.6. If r*" > 0 s (p*wi

i i
4+ 0 pks*) (1= t*) - pky*x = 0 ,
i p*s*) ( 3) P*y}

Proof. Since k* ¢ K(k*, a*, p*, t*) , it follows from Definition 4.4

that

(26) D*kgi = max(0, k§i+sn3‘i)

where D* = Zmax(O, k;l

+en§i) > 0 and n*i = n;(a*, p*, t*) . It follows
13

3

directly from (26) that:

(27) ¥ij 3 kgi >0, all the corresponding ngi have the same sign;
i i
(28) if kg = 0, then n§ <0.

Furthermore, we can refine (28) so that

(29) 1f kgi «~ 0 and rsi >0, then ngi -0 .
To establish (29), suppeose for some fixed pair 35 , k;i =0, r§1 >0,

and n i # 0 . Then by (28), n;i <0 . By (17), ygi = 0 . Since

%
3
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= 0, Definition 4.3 implies t¥ > 1. Hence

* <0 and
"3 ne 3 i
%

tj 3 Tj(r*, a*, p*) and (5) imply x§ <0 . ( Eg > 0 because rgi >0 .)
But xg < 0 implies, by (18), that Zk§i >0 . Hence 3 is kgi >0 .
i
But since t¥ > 1 . ni* < 0 . Hence by (27), Z r*in*i < 0 . Then
i
k**>0
. h
by (16), 0 < rging = 7 rgingi + ) rgin*i . The first summation
i3 133 15 3 3
keiso k#ieo
J J
i
x>0
]

is nonpositive, and hence the second summation is nonnegative. But using

(28), every term in this second summation is nonpositive, and by assump-

~

tion rﬁingl < 0 . This contradiction establishes (29).9
Given (29), if k*r*x = 0 , the proof is complete, since if r?i >0,
J

then kgi = 0 and hence ngi = 0 . Thus suppose k*r* > 0 . We first

need to show that (16) holds with equality.

0 < {:gingi ) r*ingi + 7 rgin*i .
13 ij3 4 133 J
i 1
k* >0 k* BO
h| h|
r§i>0 r§i>0

9Since the logic underlying the verification of (29) is somewhat intricate,
it may be useful to review what has been done. The key is to show there
exists some consumer type in region ] which receives positive weight

in the social welfare function (SWF) and violates its budget constraint.
(For then (27) and the weak form of the Walras law (16) can be used
straightforwardly to establish a contradiction.) Essentially we assumed
there were consumers in region j who receive no weight in the SWF who

violate thedr.budget constraints. Since they receive no weight, they are
assigned 0 private goods, and hence violation of their budget constraints
must stem from a tax rate larger than 1. But a tax rate larger than 1
implies public goods are being provided in their region, and hence some
consumer type in the region must be receiving positive weight in the SWF
(even though none of this type may be living in the region). But then
this type would be violating its budget constraint, since the tax rate
exceeds 1.
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Either the last summation is vacuous, or (29) implies it is O, and hence

(30) )} rginﬁi >0.
15>
k§i>0
r§i>o

This summation is not vacuous, since we are assuming k*r* > 0 . (27)

and (30) imply

(31) ngi >0 wij > k;i > 0.
1f ”;i.i 0 , then Definition 4.3 implies tg <1 . Thus (31) implies
2
(32) t* <1 4if )k* >0
J - ﬂj

We also claim
(33) ex <1 it Jrats>o0 .
J - .

There are 2 subcases. If Zk?l >0, (33) follows from (32). 1If
£

Zk;l =0, then Jia k;i =0 and ri’ > 0, and hence by (29),
2

j )
ngi = 0 , which in turn implies tg X1 . Thus (33) is verified.
It follows from (33), t* ¢ T(r*, a*, p*) and (5) that
—pkx¥
(34) th = —d yi3 Tt s 0,
] E; % 3

¥ >0 .) Then using Definition 4.3,

{Note that Zr*2 > () €= FE
LY} 3
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i i
Ir* nk" = pky 4+ phgk - Zt*E* - p*‘Zr#iy*i » Which equals, since (34) helds
1j ] 373 j-3

3 i3
¥j with Eg > 0 (or equivalently Zr;2 >0),
£

(35) p*w + p*s* - z (-p*x;) -~ p* ):r*iy*i .

Zr$£>0

¢ J
Furthermore,
(36) x% =0 if Jrxt=0.

3 ¥

If Zkgi = 0, (36) follows directly from (18). Thus suppose Xrgﬂ =0,
£ L

£
ék; >0 and x} < 0. (32) dmplies t% <1 . But t*c T(r*, a*, p¥) ,

xg <0, Zr}z = 0 and (6) imply t; = 1+6 . This contradiction establishes
L

{36). Thus we can add Z p*xg to (35) without altering its value.
hE)
Zr§£=0
)
But then (35) becomes -p*z(r*, a*) , which equals 0 since 2z{(r*, a*) = 0 .

Thus we have established that (16} holds with equality and hence

(37) 0= rgingi - 3 rgingi + 7 rjinﬁi .
ij & [P ij>
g kgi-o
r*i>0 r*i>0
]
(29) dimplies the second summation is 0, and then (31) implies n;i =0
if r;i >0 and k;i > 0 . This result, coupled with (29), proves the

lemma for the case where k¥*r* > 0 . Since (29) proves the lemma by itself
10
if k¥r* = 0 , the proof is complete.

Q.E.D.
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Next we state and prove the final lemma before getting to the main
theorem of the paper. Recall the definition of v (Definition 4.6).
Lemma 4.7.

(38) If r;i >0, y;i maximizes ui(g?, y;) on

{y; E R:[p*y; :_(p*wi-+eip*s*)(l-t3)} i

(39) rgi > 0 whenever k;i >0 ;
(40) 1f rgi >0, then u;'(g:‘].‘, yji) 3v§(r*, a%*, px) ¥j .

Remark. Since p* >> 0, v§ in (40) is defined at the point (r*, a*, p%*)

In the proof we shall use the notation vgi z vi(r*, a*, p*)

Proof. Suppose r;i >0 . Then (l4), Lemma 4.6, and p* >> 0 directly

imply (38). Since p*ygi - (p*w1+81p*s*)(l-t3‘) , t§<1. Then

t; £ Tj(r*, a*, p*) and (5) imply tg = -p*xglES A ¢ E} > 0 since
rgi >0 .) Thus ygi maximizes u;(gg, y?) subject to the budget constraint
p*y; :_(p*wi-+eip*s*)(l-+[p*xﬁ/Eg]) . If we now add the assumption that

E* > Xx(p*) (where X 1is defined in Definition 4.5), inspection reveals
that this budget constraint is identical to the one underlying the defini-

tion of v; (Bee (4)). Hence

1%1 may be useful to review the overall logic of the proof. Starting from
(29), the penalty mapping K together with the weak form of the Walras

law (16), tell wus that if rsi >0, then ngi >0 . (This is the con-

tent of (29) and (31).) The fact that these budget constraints are not
violated tells us that we are on the part of the tax mapping (see (34))
where the strong Walras law holds. Then the strong Walras law allows us

to strengthen the claim that r31> 0 = n;i > 0 to the claim that
i

n* = (0 .,

]
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(41) ui(gg. y;i) e vl g il

3 3 >0 and Eg > x(p*) .

Y ")
Since r* ¢ R(r*, a*, p*) , p* >> 0, and R agrees with R on

n e
P xWx Sn , r* g R(r*, a*, p*}) . Hence by (41) and Definition 4.7,

1
3

*i) = mgx[max(vfi, u i

(42) u;(gg, yj : 5 (g?, ygiXﬂ if r; > 0 and Eg > a(p*) .

To verify (39), suppose kgi >0 but r;i =0 . Then since

i
a* e M(k*, r%) , Uj(gf. ygi) = max ui(gg, y%) (i.e., since r?iy =0

J
i_n
yieR+

ey e

i
¥ys e Ri with y% <L, yfi must correspond to a maximum of ui(gf, yg)
3 . ) i 3 33 73
n
on yj € R+ 3 yj <t , and hence by (C.4) to a maximum on Ri as well),
Since Yi-i (1-~pi)ri (see Definition 4.5) and there are only Y regions,

at least oiri consumers of type i 1live in regions j in which

2 — —_
ng > X . Since Ergﬂ > A = Eg_i A(p*).llthese consumers must obtain
') L

the utility level, call it ©- , equal to the right-hand side of (42).
From z(r*,a*) = 0 and the definition of @?(pi) (see the paragraph fol-

lowing (C.5)), it follows that ;i < max ¢§(pi) . Thus

j
max ¢% > ;i 3_u;(35, yfi) = max ui(g*, yi) > max ui(O, yi) . The second
ax 8y 2w 2 vl v3) = mex uj(ef, vp) 2 max 00, )
y3ER+ ijR+

inequality follows trivially from the definition of Ei ( 3 is now fixed),

and the last inequality from (C.3). But this result contradicts (C.6a).

gi

This contradiction establishes that kj

> 0 > r§i >0, and thus (39)

is verified.

Ly {riz 2 A, then EY = {rgz(p*wg-felp*s*) 3_Xr§2p*w1

£ L £
3_(fr§£)(min p*wa) z_I min p*wl z_i'min rlp*w = 3x(p*) .
[} 2 L L

£
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Next we wish to show that the restriction that E;g;i(p*) can be

dropped from (42). 1If Zr;l > A , then E;.l A(p*) (see footnote 11),
£

and hence 1if rgi >0, (42) would be satisfied. Using (C.6b) it can be

shown that

(43) xk=0 if 0 < Jrxt <7 12
3 G 3
Hence if 0 < Ir§£ <% and r;i >0, tf= -prx#/EX =0 and the budget
L

12
Since z(rx,a*) = Q , it follows from the definition of ¢;(oi) that
Ei_i ¢§(p1) if r;i > 0 . Suppose 0 < Ergl < % . Hence 3 i3 rgi >0 .
£
Since the budget constraint underlying vgi 1s no more restrictive than

the budget constraint in (38), uj(g*, ygi) j_vgi . Hence from Definition

i i -1
4.7, uj(gg, yg ) fu ( < ¢ (pi) }. Suppose xg < 0 . Then the hypotheses

of (C.6b) are satisfied. By reducing g* to 0 we can redistribute the

vector of private goods -xg evenly among the Ir* consumers of the
)
region without altering the value of =z(r*,a*) . Let a = (g,?}?}s*) s

where (Eé, ;5) = (gg, x?) Vj $3, (gj, xj) =0, ;% = y?i ¥i and Vﬁ #

and for j and ¥i> rgi =0 . For Wi » r;i

(I) Y < Yj - (x*/Zr* ) . Then a e W and z(r*,a) < z(r*,a*) = 0 .

> 0, suppose

Since 0 < yr* <X < 1/(max Kj
ij -
tion 4.5), if we choose (II1) y; j_yj

} (the last inequality following from Defini-

L_ogklxx 1f e+l 5> 0, then (1) will

33 3

also be satisfied. Furthermore, (C 6b) tells us that we can choose the
-1
Yj X
that there exists a € W with z(r* a) <03 ua(gj, yj) = u%(g?, ygl) Vi
and ¥ # §, and (III) uj(gj, yj > uj(gj, v4 by if rgi >0 . Since

in (II) so that j(0, yj) >u (gj, yj ) . Summarizing, we have showm

we are assuming x; < 0, 1it follows from (18) that 2k§£ > (0 . Hence

by (39) J1: k* >0 and r;i >0, with k;i =0 if r31 =0 . Then

(I1I) implies U(k*,;) > U(k*,a*) , contradicting the maximality of a* .
This contradiction establishes that x? =0 .
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constraint underlying vgi also involves a zero tax rate, and thus by (38),
u?(gﬁ, ygi) - v§i . Thus (41) holds without the restriction that

E? > A(p*) , and hence (42) also holds without this restriction. Since
the right-hand side of (42) is trivially greater than or equal to v*i ¥,

(40) is verified.

Q.E.D.

We are now ready to prove the main theorem. (12) implies that
(r*, g*, x*, y*, s*) is a feasible allocation. Lemma 4.6 implies t; <1

if r;i > 0 and hence

(44) % ¢ [0,1] 1f Jr*' > 0 .
3 &3
Let
{43) % = (Ti, ey T¢) . Wwhere 13 = t; if Erﬁi >0 and

% = 0 if zr*l = .13
h| 1 b

Theorem 4.1. The price vector p* »>> 0 , the feasible allocaticn

Y
(r*, g*, x*, y*, s*) , and the vector of tax rates (1%, ...,T:) e X[0,1}
1

constitute an equilibrium as described by Definition 2.5.

Proof. Conditions {(a) and (b) have already been verified (see (13) and

since 2132 > 0.)
L

Since 2r3£ > 0 implies ti <1 (by (44)), (5) implies
L

(38)). (In (38), t} =«

13I£ ngz = 0, it is not necessarily true that t; = ( .,
)



37

_p*x* .
* = k= .—.—1 *
(46) Tj tj T if er > 0.
j £
Next note that
(47) xk =0 if 0 < Jr#t <%,
] — ¢

(1f ngl =0 , then (39) implies Zkgg = 0 , which in turn implies xg = 0
2 )

by {18). The rest of (47) has already been established in (43).) 1If

Trgg 3_?', then Eg > x(p*) (see footnote 11). Hence using (46) and the
£

fact that 15 = 0 if Xr?g = 0, dinspection reveals that for all ij ,
L

the budget constraints underlying v?i {(Definition 4.6) and the ;; of

condition (¢) are identical. Thus

i i i
3 o= X y.) ¥ij
(48) v} uj(gJ, yJ) ij

Then (40} and (48) directly imply condition (c).

Under the hypotheses of condition (d), (15} and (39) imply

ii i .1
(49) ~p*x, + p* ] r¥'y, > —pkx¥ + pk ] iyt |
3 o 473 3 5 373
i i
¥t %150
3 "3

Using (46) and Lemma 4.6, the right-hand side of (49) can be seen to equal

p* z r*iwi + p*s* z r;iei .  Thus under the hypotheses of (d),

iz ] i=
r§i>o r;i>0
(52) -p*x, + p* z r*iyi > p*):r*iwi + p*s*):r*iei
r i>0

*
]
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where we have trivially extended the summation indices on the right-hand
side to include all 1 . The right-hand side of (5C) is positive, since

p* >> 0, wi >0 ¥i, p*s* > 0, and by assumption, zrgi > 0 . Hence
i

some term on the left-hand side must be positive. Suppose equality held

in (30). Then by a straightforward érgument, appealing primarily to

p* >> 0 and the continuity of preferences, we can obtain a contradiction.14
Thus the strict inequality holds in (50), and hence condition (d) is verified.

1f ngl >0, condition (e) follows immediately from (4€). If
L
zrgﬂ = (0 , then (47) implies p*xg = {0 and T§ =0 by definition, and
£

hence (e} is also satisfied.

Q.E.D.

4If -p*x, > 0, then by convexity of Y, and continuity of the u; ,

51(33. ¥)ey, with %5 > x, and u;<g . yi) > u;(gs, ygi) vi 2 rgi >0 .
+ p* I r*iyj is less than the right-hand

But since p* >> 0, —p*g
3 LT
r#ls0

3 A -
side of (50)--contradiction. Thus suppose 3 i3 r;ip*yi >0 . Then by

1

reducing some positive component of y§ slightly we can obtain a vector
9§ 3 u;(gj, ?;) > uj(gg, y;i) . Then the left-hand side of (50), with

i

yj replaced by ;i , will be less than the right-hand side--contradiction.
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APPENDIX

In this appendix we prove Lemma 4.2 of the text. We first prove a

preliminary lemma. Recall the definition of N (Definition 4.1).

Lemma A.1. N is upper semicontinuous on SmY x P .

v

Proof. Let (k°, rv)-9 (k,r) , a’ +a » and a’ e N(kv, rv) ¥v . Since

Vew w » 1t follows that z(r,a) <0 and a e W

z(r’, a’) <0 and a
(since W is closed). Suppose a ¢ N(k,r) . Then for a e N(k,r) ,
(1) U(k,a) > U(k,a) . Given a , suppose we can exhibit a sequence
3V +a3a W and z(r’, av) <0 ¥ . Then U(x', a") 3_U(kv, a%y
(since a’ e N(kv, rv) ), and it would follow from the continuity of U
that U(k,a) > U(k,a) , contradicting (i). Thus the supposition that
a ¢ N(k,r) would be ruled out, and hence N would be upper semicontinuous
at the arbitrary point (k,r)

Thus it remains to define a sequence 8" with the desired properties.

If z(r,a) << 0, then Elvo > W z(x', ) < 0 . Hence define

0 L]

3V =0 if v < v, and a' =3 wy > vy » This sequence clearly has the

desired qualities.
Thus suppose z(r,a) < 0 but the equality holds for at least one
component. For any v one of the following two cases must hold:
(a) z(z¥, 3) <0; (b) z(r', 4) has at least one positive coordinate.
If (a) holds, define o’ =1 . If (b) holds, choose a’ ¢ (0,1)3 z(r', o'a) <0,
with equality holding in at least one coordinate. (Clearly this can be
done, since z(rv, 0) << 0 because w >> 0, and z is continuous.)

Then define & = o'a ¥v . Since Dand a4 ¢ W and W is convex, a’ ¢ W .
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By definition of & , 2(r', 4°) <O . Thus it remains to show &' - a .
Since the sequence av is bounded, it has a limit point. Let a* be any
such limit point. Then to show a’ +a it is sufficient to show o* = ] .

If case {a) holds for an infinite number of v , trivially such a subsequence
of the o' has a limit point of 1. Thus suppose (b) holds for an infinite
number of v and a* is a limit point of this subsequence. From the
continuity of 2z it follows that z(r, o*a) < 0 , with equality holding

in at least one coordinate. By assumption, 2(r,a) < 0 with equality

holding in at least one coordinate. If a* <1, then z(r, a*a) << 0

{since w >> 0 ). This contradiction establishes that o* = 1 , and hence

a’ »a.

Q.E.D.

Lemma 4.2. M 1is upper semicontinuous on SmY x P, and for each

(k,r) € SmY x P, the image set M(k,r) 1is convex.

Proof. Let (kv

, tV) > (k) , (a', P) (@), and (a', p) & MK, ')
¥ . To show (a,p) ¢ M(k,r) we must show (i) a e N(k,r) ; (i1) Pz(r,3d) >0
¥a e W3 Uk,a) z_U(k,E) « (1) follows immediately from the upper semi-
continuity of N . Given & ¢ W with U(k,a) > U(k,a) , for each v
either (I) U(k’, &) > U(k', a') or (II) U(k', &) > U(k', &) . For each
v satisfying (I), pvz(rv, a) > 0 since (av, pv) E M(kv, r’) . If there
are an infinite number of v satisfying (I), then in the limit of this
subsequence we obtain 'Eé(r,i) > 0, verifying (i1i) for this case.

By (C.3) and (BE.3) 3 ZeWa U(k,g) > U(k,a) , and hence
U(k.g) > U(k,a) . Since (kv, a’) -+ (k,a) , 1t follows from the continuity
of U that 3 Yo 5 ¥v 3_v0 s U(kv, 2) > U(kv, av) . Suppose (II) holds
for an infinite number of v . Then Wv 2V, satisfying (1I1),

u’, 8) > (', a¥) > U(k’, a) . For these v define
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a' zaa+ (1-uv)5 where a ¢ (0,1) 1is chosen so that uk’, aV) = kY, a¥)

v
Such a choice is possible because U is continuous. Then pvz(rv, ﬁv) >0
since &' ¢ W and (av, pv) € M(kv, r’) . The bounded sequence o has

8 convergent subsequence. Suppose @, * oy along such a subsequence of

v satisfying (II). 1I1f we can show: e, = 0, then it will follow that

a’ +a and hence pz(r,d) > 0, verifying (ii) for this case. Suppose

0y > 0. Then &' »a,a+ (1~a)d and U(k, 0,3+ (1-0,)8) > o,UCk,5)

+ (1 -0, )U(k,a) > U(k,a) , the first inequality following from the con-
cavity of U and the second from the definition of & . But

Uk, a,d+(1-a,)a) = 1m U(k", 3Y) = lim U(kY, &%) = U(k,3) < U(k,a) ,
the second equality following from the definition of a’ » the third from
continuity of U and (k', a') + (k,a) , and the inequality from the
definition of a . This contradiction establishes that a, = 0 .

The proof of convexity is straightforward.

Q.E.D.
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