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ON THE TENDENCY TOWARD CONVEXITY OF THE VECTOR SUM OF SETS™

by

Roger Howe

There are several instances ([Ni], p. 255, [H~K], p. 255) in
mathematical economics where one is interested in the following question:
Given sets {Xi}2=l in a vector space V , how close is the

vecltor sum

Lx =]
(1) X, =1{ ) x, : x, ¢ X/}
R H

to being convex?

The standard result on this topic is the Shapley-Folkman Theorem
[H-K], [A-H]. 1In this note we offer some observations regarding the
question, beginning with a proof of the Shapley-Folkman result and pro-
ceeding to various refinements.

As above, let {Xi} be sets in a vector space V of dimension

n
i=1

£ . We will assume that Xi are closed. (This is no loss of generality

for Shapley-Folkman, and is convenient for our arguments.) Also for

convenience and without loss of generality in what follows, we may assume
0

that O ¢ Xi for all i . This is because if X; € Xi , then
0 X, - xo nd
1~ % 2

*The research described in this paper was undertaken from grants from
the National Science Foundation and from the Ford Foundation.
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TR .
(X.-x.) = X, - X
=1+ 1 ST

i=1

So our assumption merely amounts to a translation of the whole situation.
Let co(Xi) denote the convex hull of Xi . It is well known
that co(Xi) is closed. Further, the extreme points of co(Xi) all

belong to X It is standard that

i
n n
(2) co( § X)) = ) co(Xi)
i=1 i=1
n
Thus any point z in cof{ z Xi) can be written in the form
i=1
n
(3 z = 'z X, Xy o€ co(X,)
i=1

Proposition 1 (Shapley-Folkman): In the representation (3) all but

2 =dim V of the X; may be taken to belong to Xi (instead of only

co(Xi) .

Proof. The proof proceeds by inductionmon n and £ . Put

1
7" = co( z Xi) . A point z ¢ Zn can be written
i=1

z=y+x , y¢e Zn-l s X E co(X )

Since 0 ¢ Xn , also vy ¢ 2" . Hence the whole line segment
y+etx , 0<t<l

belongs to z" . There are two possibilities: either (i) =z e Zn—1 .

or (ii) =z £ Zn—1 . In the first case, the result for z" follows



from the result for Zn_l

t for which ¥y + £x belongs to Zn_l

n-1 n-1

will be on the boundary 3Z of Z

y' e EZn_l

We come now to the crucial point.

n-1 1

hyperplane to 2 at y Thus, let

V such that

max{i(u) : u e Zn_l} = A(y")
Let

H{x,s) = {v e V: A(v) = s}

be the set of parallel hyperplanes defined by & .

e X,}

&8; T i i

max{A(xi) T X

Then by the way ) was chosen, we see that

H{A, si) M co(Xi) =

and

n-1
(4)
i=1

In the second case, there will be a largest

t

For this t, vy + txn =y

We may thus write

, %' & co(Xn)

We may choose a supperting

A be a linear functional on

Set

n-1
My = ) sy >
i=1

and

co(H(A, Si) f Xi)

2t nEO, A = ] @O, s) NeolX))

See Figure 1 for a geometric picture of this situation whem n = 2 .

Up to translation, we see that we are dealing with the situation of



co(Xy) = co(X,) = -0 cotiy) =

HQA, ;) | H(A, s))

HO, A (y'™)

FIGURE 1



the theorem, but in dimension only £-1 . Thus the result may be assumed
for y' with g-1 in place of 2 ; and then 2z ¢ y' + xé is the
desired representation for =z .

We note a couple of corollaries. First, suppose that the only
defect from convexity in the X is that they are hollow; precisely,

i
assume that aco(xi)(; Xi . Then inductively one sees that

n
az" c ] X; . Hence, from proof we conclude
i=1

Corollary 1.1: 1If aco(Xi)gg X, for all i, then an arbitrary

i

n
z ¢ 2% = co( Z Xi) can be written
i=1

Z=y+x
n

where y e X, and x¢ co(Xj) for some j .
i=1

Corollary 1.1 obviously involves rather a special situation.
However, the same basic aspect of Proposition 1 that it exploits can
also be used in other ways. For example given a linear functional
A on V, 1let e()) be the number of the sets Xi such that 2
assumes its maximum on X, at more than one point of Xi . For a

i

given Xi s+ 1t can be shown that the typical A (i.e., for A in

a set of full measure in V* , the dual of V ) assumes its maximum

only once on X Thus if the Xi are imagined to be chosen "at

1
random," it is plausible that e()) might be <1 for all A . 1In
any case, let us set

€({X{}; ) = {max e() : A € V¥, A # 0} .

Then a repetition with slight changes of the proof of Proposition 1



above gives

Corollary 1.2: In the expansion (3), all but g({xi}2=l) + 1 of the

x;'s may be chosen to belong to Xi , rather than co(Xi) .
To refine Proposition 1 we introduce quantitative considerations.
Suppose || || is a norm on V . Define the diameter G(Xi) of the

sets Xi by

(5) §(X;) = sup{||x-x"|| : x, x" ¢ X}

Thus Xi is contained in the intersection of the balls of radius

5(Xi) centered at the points of Xi . It follows that

(6) G(CO(Xi)) = ‘S(Xi)

If veV, and XCV is a set, define the distance d(v,X) from

v to X by
(7) d(v,X) = inf{||v-x|| : x £ X}

In terms of these definitions we immediately have the following "metrical"
version of Proposition 1.
n

Corocllary 1.3: For any =z ¢ cof z Xi) ., Wwe have
i=1

n
d(z, } xi)_i (dim V) (max §(X.))
i=1 *

To see that this estimate is of the correct order of magnitude, let

V = IRE and let each of the Xi consist of the standard basis vectors

together with 0 . Let I| H be the 1-norm:



L
oo o xplly = 1l

Then for very large n , precisely n > /2, the vector

v = 1/2(1,1,1, ..., 1)

n

will be in 2z7 , but the points of z Xi all have integer coordinates.
" i=1

Thus for any x in z Xi y all the coordinates of v-x are at least
i=1 n

1/2 in absolute value, whence d(v, 2 Xi) > 2/2 . On the other hand,

n i=1
§(X,) = 2, so d(v, z X.,) > 1/4 &(max 6(X.,)) .
i {=1 i’ — i

To get better results, we must make some further assumptions on

the Xi . One obvious possibility is that some of the Xi have non-

n
empty interiors. If this holds then Z Xi will tend to £ill up the
i=1

inside of its convex hull., Let v(Xi) be the radius of the largest

ball contained in Xi . Clearly

oY n
(8) VT X > ] ()
i=1 i=1

This fact lies at the base of our second result, which 1s also quite

simple.

Proposition 2: Set

max 6(Xi) = §

i 0

Suppose we can find certain of the X say Xl’ XZ’ cavy Xm ,» with

i ]
m n
m < n such that E v(Xi) > (dim V)do . Then Z Xi contains all

i=1 i=1



points sufficiently far inside Z° = co( Z Xi) . Precisely, suppose

z e z" and

d(z, 3z™) > sy -

n
Then 2z ¢ z Xi .
i=1

Proof. We may write

g Xy o= ( g

n
X)+ (] X)) =Y +Y, .
i=1 i=1 1=m+l

1 2

Thus Y contains

By our assumptions and (8), we have v(Yl) 3_160 . 1

a ball of radius 260 . By a translation of Yl , an operation which

will not affect our argument, we may assume Yl contains the ball of

radius £68, around the origin. Then also G(Yl) < mé

0 so Y is

0 1

contained in the ball of radius méo around the origin.
By Corollary 1.3, no point of co(YZ) is at distance greater

than 260 from Y2 . Hemnce

co(Yz) CY +¥Y,.

Further,

n

AR co(Yl+Y2) = co(¥,) + co(¥;) Ceo ¥, + B s (0)

0
where Br(v) denotes the ball of radius r around v . It is intui-
tively clear from this that any point of z® at distance more than
mGO from 9z" must be in co(Yz) , hence in Yl + Y2 . Here is

the argument. Suppose 2z ¢ co(Yz) . Then we can find a linear functional



A in V* _  the dual of V , separating z from co(Yz) . We may

assume (recalling that co(Yz) contains the origin)

2(2z) > max{A(y) : y ¢ co(Yz)} > 0.

By the Hahn-Banach Theorem, we can find v ¢ Bmé (z} such that
0

Av) = A(z) + ||)\H*m60

where ]lAH* indicates the norm of A in the norm on V* dual to
our given norm || H on V . Thus clearly v z" . Hence the distance

from z to BZn is less than m§ as desgired.

0 L

o
Thus, existence of interior points in the Xi causes E Xi
i=1

to £ill up its convex hull. However, even if each Xi is the closure

n
of its interior, there may be points in cof E Xi) which stay a fixed
n i=1
distance away from E Xi , as the example in Figure 2 shows. Evidently
i=1

the problem there is the angularity of X . Thus if we put some sort

of smoothness condition on the Xi s We might expect to improve on

Proposition 2, This is the case; here is one formulation of such a
result.

We take V = 'R* with the usual Euclidean norm.

Proposition 3: Suppose X is a union of balls of some fixed radius

i
n
r, 2 0. Put s = 1§1ri , and put 60 = m?x{G(Xi)-2ri} . Assume

n
5 > 260 . Then for any point =z ¢ " = col( Z Xi) we have
i=1
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2 2
n 3 5 (160) (260)
(9) d(z, ) X)) < Js"+ (@6)° - 8 = <
g=1 1 0 V2 + (1507 + s 25

Remarks

a) Typically, it will take an infinite union of balls to fill
out Xi . Thus, for example, if Xi is the interior of a smooth {twice
continuously differentiable) hypersurface, then Xi will be the union
of balls of some sufficiently small radius. What is important is that
the radii be bounded away from zero.

b) By (9) we see that if a large number of the X, are relatively

i

n
rotund, so that s 1s large, then Z xi £111 most of Z° s, in the
i=l

sense that all points of 2" are fairly close to it.

Proef. Let ki be the set of centers of balls of radius ri contained

in X, . Then
i

xi=3¥i+ar (0)

i

and

8(X,) = 5(?{1) +2r, .
Hence

g e 7%

] X, = ) (X, +B_(0) = +B_ .

=1 % im0 % ge1 ¥ 8
Furthermore,

2= 4B

s '
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Since we assume s 3_160 , Wwe see by Corollary 1.3 that

™)
szi-
i=1
n
Thus if z e 2" - X Xi » then in particular =z ¢ 28 - ™ Let Z
i=1

be the point of 7™ closest to z . Note 2 is unique, since m

is convex and Euclidean balls are strictly convex. The hyperplane H
. v " |

passing through 2z and perpendicular to z - z will support m

As we saw in the proof of Lemma 1, specifically, if we combine Lemma 1

with the set equality {(4), we can find y in HAPA ii , such that
i=1

lly-%” < a6y . (Actually, (2—1)60 .} Since y € H, we have that

y-% is perpendicular to z-7 . Hence
2 2 2 2
lz=yli? = z=2[1* + [ly-2}i% < 6% + (250%

n
Since B_(y) C ) X, » the inequality (9) follows.
i=1

To summarize, we have in Propositions 1, 2, and 3 the following
progression. First if you take the vector sum of small sets, no point
of the convex hull of the sum is far away from a point of the sum.
Second, if an appreciable number of the summands have interior, then
the sum tends to completely fill the inside of itsfconvex hull. Third,
if an appreciable number of the summands are relatively rotund, then
the sum tends to f£ill almost all of its convex hull. To finish the
discussion it seems appropriate to show that in some cases, even if

the original Xi do not have interior, summing certain of them may

create sets with interior, so that, after a partitioning of the sum
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n
Z Xi into certain subsums, Proposition 2 or 3 may be applicable.
i=1

First we remind the reader of the folklore fact that summing sets of
positive measure creates sets with interior., Then we show that summing
sets which are small, but still positive dimensional (e.g., sets con-
taining continuous arcs) creates sets of positive measure. Finer results
of this nature clearly exist, but these seem to exemplify fairly clearly
our theme, the tendency to convexity of vector sums.

Suppose XC V 1is a set of positive measure u(X) . A point

x € X 1is called a point of density of X if

u{X N B_(x})
r = 1
u(Br(X)) )

(10) lim
r+0
Here as before Br(x) is the ball of radius r around x in the given
norm on V . A classical result [S] of Euclidean harmonic analysis
guarantees that the set of points of X which are not points of density
is of measure zero. This fact immediately implies the fellowing known

result:

Proposition &4: If xl and X2 are sets of positive measure, then

X1 + X2 has non-empty interior. More precisely, if X, € Xi are
peints of density for i =1, 2, then Xl + X2 contains a neighbor-
hood of 3 + X -

Proof. By a translation, we may just as well assume that Xy = Xy = 0.

Then given € > 0, we can find a radius r > 0 such that

u(E; NB (0)) 2 U-e)u(B (0)) .
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Choose v € V, with HvH =0or , with 0 <a <1 . Then

HX; NB(0) NB (V) > u(X; NB.(0) - u(B, (0) -B_(v))

{v

(l—s)u(Br(O)) - (u(Br(O)) —u(Br(O) N Br(V)))

jv

-en(B_(0)) + u(B(l_a)r(O))
= (¥ - e)ue_(0)

{where & = dim V )}

v

((1-)* - )u(B_(0) N B_(v))

We see that if o and ¢ are small enough, then (l—u)l - & 1is
> 1/2 . By symmetry, the same reasoning applies to (Xi-+v) A Br(O) e Br(v)

Hence

Xl ﬁ (X2-+v) N Br(O) N Br(v)

is non-empty. Pick a point 2z in it. Then

¥

1 ! + v where x! € X

zEx 2 i i~

=X

Thus

Repeating the above reasoning with -X2 in place of X2 , which one

checks is all right, yields v e Xl + X2 . Since v was arbitrary

subject to being sufficiently close to 0, the proposition is proved.
Finally, we consider the situation when we have £ = dim V con-
tinuous arcs inside certain of our sets. For purposes of the propositionm,

ve may as well assume that the sets reduce to just the arcs.
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Proposition 5: Let c; s 0<i<?2=dimV be & continuous arcs

in V . That is,

[0,1] » V

are continuous maps. Assume for simplicity that ci(O) =0 . Then

the volume of the vector sum of the images of the ey is at least as

large as the volume of the parallopiped spanned by the points ci(l)

£

Proocf. With no loss of generality we may assume that V = IR™ and

Ci(l) is the ith standard basis vector. We will in fact show that,

for any point x in the unit cube I2 = [0,1]2 _C_]R2 , there is an

integral translate x+z of x , with z ¢ ZR such that

L

%x+z € z im ¢y = Y . Here im <y denotes the image of the map e s
i=1

that is, im €y is the ith arc. Then taking the intersections of

of Y with the translates IR + z of the unit cube, and translating
them by -z , we find they completely cover I2 , and so have altogether
measure at least 1, as desired.

Our assertion is equivalent to the statement that the translates

Ytz , =z E'ER s cover lRP' . Define a mapping C :lRp' —HRjz by

& L L
C(t+z) = z ci(ti) +z, tel , zeZ .
i=1
It is easy to see that C is well-defined and continuous, and our
assertion is seen to be equivalent to the statement that C is sur-

jective.

The map C satisfies
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C(x+z) = C(x) + z , xEIRg' , 2 E‘ZZR' .

In particular C 1is a mapping of bounded displacement, in the sense
that HC(x)—-xH <M, for some fixed number M . Mappings of bounded
displacement of R* to itself are known to be necessarily surjective.
Here is why. Let ¢ be a continuous non-negative function on IR such
that ¢(t) =0 for t <1 amd ¢(t) =1 for t > 2 . Pick a very

large number r and define a map Dr on IRSl by
D_(x) = 1-¢{-|-|%u-] c(x) + ¢[ﬂ-f-ﬂ-]x .

Then D (x) = C(x) for |[x{[ <r and D (x) =x for x> 2r . Also

Dr(x) -x = (1-4¢(||x}|/eN(C(x) -x) . Hence |IDr(x)-xH

| A

M . Thus
for r > M, Dr defines a map of B3r to itself, and this map is
the identity on the sphere BB3r . By a well-known variant of the

Brouwer fixed point theorem [Ni], Dr maps BSr onto itself. 1In the
limit as r >+ = , we see that C maps IRE onte itself, This concludes

Proposition 5.

Remark: The above proof combined with the Baire Category Theorem [Ry])

fact implies that the set Y has non-empty interior.
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