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I. Introduction

The assumption of convex production sets plays an extremely important
role in general equilibrium analysis. Its replacement by weaker and
more plausible assumptions seems to me to be one of the major challenges
of mathematical economics. One way of approaching this problem is by
means of n person game theory, since this conceptual apparatus is
considerably broader than the neo-classical model of equilibrium. There
is, of course, no difficulty in constructing a variety of special models
in which production exhibits increasing returns to scale, and for which
the associated n person game has a non-empty core. But it seems to
be impossible to raise these special examples to the level of generality
that is customary in economic analysis. For this reason I am extremely
doubtful that game theory will provide an illuminating analysis of non-
convexities in production.

It is my belief that it is fruitful to study, for their own intrinsic
interest, production sets in which the customary convexity assumption
is relaxed. Of particular importance are those production sets in which
a discrete collection of activities is available.

The mode of analysis adopted in the present paper will make use,
in a rather surprising way, of techniques which were developed in the
solution of an apparently unrelated problem--the approximation of fixed
points of a continuous mapping. These techniques will be combined with
the study of lattice points and convex polyhedra in what might be called

the Geometry of Numbers without the customary symmetry assumption.



We shall associate with each discrete production set a canonical
simplicial complex which may, if the set is finite, be shown to be
homeomorphic to the unit simplex. A unique minimal collection of
neighborhoods for which a local maximum is global, will then be defined
for this production set. This will permit us to describe, in theory,

a monotone algorithm for the solution of the general discrete programming
problem. Prices and considerations of profitability, tied as they are

to the neo-classical formulation, will play no role in the development

of this algorithm.

The problem that arises in practice is that the system of neighborhoods
may be extremely complex and difficult to determine. We may be content
with heuristic neighborhoods which promise approximate solutions rather
than global optima. 1If, however, the correct neighborhood systems are
to be determined, some additional assumptions--such as the additivity
assumption which leads to integer programming problems--are required.

But even if we restrict our attention to integer programs we seem
to be faced with sophisticated and intriqueing mathematical problems
which are far from a general resolution. We shall illustrate these problems
in our description of a polynomial-time algorithm for integer programs
with two variables. The application to integer programs with three
variables is being examined by Sergiu Hart, Roger Howe and myself and

will be reported on in a subsequent publication.



Let us consider a discrete production set X consisting of a set
of vectors {x} 1in Rm+1 . Each gpecific vector in X represents a
technically feasible production plan with inputs denoted by negative
entries and outputs by positive entries. In subsequent sections of this

paper we shall assume that the vectors in X arise from an activity

analysis model with integral activity levels:

1.1 x = . . th,

where h = (hl, ceey hn) ranges over all integral points in R" . For
the moment, however, we take X to be completely general, aside from

the following two assumptions:

1.2 [Assumption of Local Finiteness]. We assume that for any vector

3 Rmnl”l the set of x € X satisfying x > ¢ 1is finite.

1.3. [Assumption of Non-Degeneracy]. No two vectors in X have

the same ith coordinate, for any 1 .

Figure 1 represents an example of a production set consisting of a
. 0 .1 6 3
Fi~ire list of vectors X, X', ...y X in R™ . I have drawn through

a~~h vaector the translate of the non-positive orthant having its vertex

at that particular vector. This provides us with an intuitive picture
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of what one might mean by the "upper surface” of a discrete production
set and also reveals a surprising amount of structure, which will form
the basis for much of our subsequent analysis.

We shall define, in a canonical fashion, a collection of m-simplices
whose vertices are selected from the vectors in X . We begin the con-
struction by translating the positive orthant of Rm+1 parallel to itself
until it contains none of the vectors in X . Then translate the orthant
downwards, passing through none of the vectors in X , until no further
reduction of any of the coordinates of its vertex is possible. The orthant
will typically be stopped by a set of mtl wvectors in X , say

j0 jm
X 4 seey X . From the non~degeneracy assumption each coordinate hyper-
plane of the translated orthant will contain precisely one of these vectors.
Moreover the vertex of the orthant will have its cocordinate given by

b h|
min[x 0; ceey X

I

the coordinate-wise minimum of the m+l vectors. These sets of mtl
vectors, which have elsewhere been given the name of primitive sets [Scarf,
Hansen, 1973], will be the m-simplices of our collection. This definition

may easily be seen to be equivalent to the following:

1o 3

1.4 [Definition}. A set of m+l wvectors in X, X , ..., X o

is said to be a primitive set if there is no vector x in X with

3

3
x > min[x 0, e X M)



In Figure 1 the vectors xO, xl, x2 form a primitive set with vertex
a , and xo, xl, x6 a primitive set with vertex R . 1In order to be
somewhat more concrete let us imagine that the vectors in Figure 1 form

a finite subset of a doubly infinite set of vectors given by

231 %02
X = all a12 h,
%21 ®22]

as h runs over all lattice points in the plane. The primitive set

xo, xl, x2 will then be generated by three lattice points, say ho, hl, h2 .

0 _ o 1 2 0 0 h| 3
Since Xq minIxO, Xgs xol we see that 301h1 + a02h2 < a01hl + a02h2

1, 2 ). Therefore the straight line 301h1 + aozh2 = const.
1

and h2 on its increasing

I

for 3
passing through h0 has both points h

side. Similarly the line allhl + a12h2 = const. passing through h1
0

and h2 on its increasing side, and the line

passing through h2 has h0 and hl on its increasing side. The fact

h, +a

a21 1 22h2 = const.

has h

FIGURE 2

that xo,‘xl, x2 form a primitive set may then be translated into activity
level space by the statement that this triangle, whose three sides cor-
respond to the three rows of A , contain no other lattice points.

1> 15 stronger than merely requiring that there be no other lattice

poinzs 1in the convex hull of ho, hl, h2 .



If the activity analysis model generating the set X 1s given by

a matrix
801 3p2
11 %12
231 %
%31 %32

with four, rather than three, rows, the vectors =x will lie in R4

and primitive sets will consist of sets of four vectors. The following
figure illustrates a set of four lattice points in R2 whose associated

X vectors form a primitive set. The figure describes a quadrilateral

FIGURE 3

each of whose sides is associated with a given row of the matrix, and
which contains no lattice points other than the four which define the
primitive set.

It will be argued, later in this paper, that primitive sets contain
no more than 2% vectors if the set X 1s generated by an activity
analysis model with n activities. 1If, for example n = 2 , primitive
sets will consist of either three or four lattice points in the plane.
This leads to an apparent inconsistency in the definition of primitive

sets as sets of (m+l) wvectors in Rm+1 s 1if m 1is sufficiently large.



From a geometric point of view this arises because the set X does not
have sufficiently high dimension to resist the downward movement of the
positive orthant. Tigure 4 illustrates this point with a set of points
X which can be thought of as arising from an activity analysis matrix

with three rows and one column. As we see, either the first or second

. 1
2
X s
. _.____-_____-_______J,/"'
3
X
FIGURE 4

coordinate of the vertex of the translated positive orthant can always
be reduced without passing through any of the points in X .
This difficulty may be overcome by the formal introduction of (mtl)
"i{deal" vectors 50, gl, .e.s ET, which are called slack vectors,
because of an analogy with linear programming. As we shall see they
simply indicate which coordinates of the vectors in X are being neglected

at a given moment.

1.5 [Definition of the slack vectors]. The slack vector Ei is

defined by saying that its ith coordinate is less than the ith co-

th

ordinate of any of the vectors in X , and its j coordinate (for

j#1) 1is larger than the jth coordinate of any of the vectors in X .



The definition of primitive sets given in 1.4 is now extended to

include primitive sets, some of whose members are slack vectors, and

the remainder vectors In X . 1In Figure &4 the vectors xo and xl ,

in conjunction with the slack vector 51 form a primitive set, as do

1 3

the triples (xo, X, 52) and (x2, x~, El) .

If the set X , described in Figure 1, is assumed to be finite

and consist of the seven points xo, cees x6 , there will be a number

of primitive sets which involve slack vectors. Examples are (xl, x6, El)

5

and (x6, X7, El) as well as (xl, El, 52) .

II. Maximization Problems and the Local Neighborhood Structure

s

We shall be concerned with the problem of finding that vector %7

J

in X which maximizes Xy

subject to the inequalities

b e

with by, ..., b preassigned numbers. In the event that the vectors
1 m
in X arise from an activity analysis model (1.1) with integral activity

levels our problem becomes the customary integer programming problem

max 301h1 + ...+ aOnhn » Ssubject to

a,by + ... +a;, b >b

a by + ... +a h >b

and h = (hl, ceey hn) a vector of integers.
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Our purpose in this section will be to discuss one of the relation-
ships between primitive sets and discrete maximization problems. A vector
x € X 1is said to be efficient if there is no vector in X all of whose
coordinates are strictly larger than those of x . The vectors in X
which are not efficient are, clearly, contained in no primitive sets,
since the downward movement of the positive orthant will be resisted before
reaching such a vector.

The concept of primitive sets permits us to define a finite set

of vectors which are neighbors of a given efficient vector in X .

2.1 [Definition]. Let x be an efficient vector in X . A vector

1

x' in X <(or one of the slack vectors) is defined to be a neighbor of

x 1if they are both members of a common primitive set.

In Figure 1 the vector xo has six neighhors: the vectors
xl, ey x6 . This will be seen to be the typical situation when the

set X 1s generated by an activity analysis matrix with three rows and

two columns.

2.2 [Theorem]. An efficient vector x in X has a non-empty set
of neighbors. In particular for any £ =0, 1, ..., m that vector x’
in X (or the slack vector 52 ) whose lth coordinate is maximal,

subject to xi >x; for all i # £ , 1is a neighbor of x .

We demonstrate this theorem for the case & = 0, by the following
geometrical argument. Translate the positive orthant so that its vertex
coincides with x . Since x 18 efficient there will be no vectors

in X in this positive orthant. Then translate the orthant by lowering

the zeroth coordinate only until a vector x' ¢ X 1is reached. This



11

FIGURE 5

vector, whose zeroth coordinate is maximal, subject to xi > X for
i=1,2, ..., n, is the vector referred to in the statement of Theorem
2.2. (If no vector in X 1is ever reached by decreasing the zeroth
coordinate, we use the notation x' for the zeroth slack vector EO $)
We then continue by decreasing the first coordinate of the vertex until
a vector x" (or the first slack vector) is reached. This constructionm,
when continued through all of the coordinates, obviously leads to a pri-
mitive set containing x and x' .

The concept of the neighborhood of an efficient vector x in X
may be applied to the problem of finding that vector x 4in X which

maximizes X subject to the inequalities
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As the following theorem states an efficient vector which satisfies these
inequalities is a global maximum if it is a local maximum when compared

only with the finite set of its neighbors.

2.3. [Theorem]. Let x* be an efficient vector in X and satisfy

the inequalities x; ks bi for i=1, ..., m . Assume that for every
neighbor x' of =x*% either

1. xi < bi for some i1 =1, ..., m or

*
0"

Then x* is that vector in X which maximizes X, subject to Xy Z-bi

2. x6 < X

for i=1, ..., m.

The proof of Theorem 2.3 is by induction on m ; it is clearly
correct 1f m = 1 . Let us consider those points in X which satisfy
the inequality X 3_bm and project them into R" by disregarding the
last coordinate. If T is used to denote the projection operator
T : (xo, ...,xm_l,xm) > (xo, ceey xm_l) , we define Y to be the
discrete production set in RT obtained by considering all of the points
y=Tx with x din X and X 3_bm . The set Y , illustrated in
Figure 6 clearly satisfies Assumptions 1.1 and 1.2.

As Figure 6 indicates the image Tx of an efficient vector in X
need not be efficient in Y . There is one important case, however, in

which this is so.
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FIGURE 6

2.4 [Lemma]. Let x* be a local maximum for our programming prob-
lem, 1.e. satisfy the hypotheses of Theorem 2.3. Then y* = Tx* is

efficient in Y .

If this were not so there would be a vector x' in X satisfying
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x; z_bm and xi >x; for 1=0, ..., m-1 . 1In fact we may take x'
to be that vector in X which maximizes xé subject to xi > X for
i=20, ..., m-1 . But then by Theorem 2.2, x' is a neighbor of x* ,

which satisfies

M

v

el
oO*

contradicting the assumption that x* is a local maximum.
Having demonstrated that y* = Tx* is efficient in Y , we are
now prepared to apply Theorem 2.3 by induction to sets of points in

R" . This is facilitated by the following lemma.

2.5 [Lemma]. Let y = Tx be a neighbor of y* = Tx* in Y .

Then x 1is a neighbor of =x% in X .

The fact that y = Tx is a neighbor of y% = Tx* in Y will be
revealed by their membership in a common primitive set in Y , composed,

say, of the vectors

-1

(y*, ¥s st Ty Ym ) .

Each of these vectors is the image, under T of a vector in X , whose

mth coordinate is 3-bm . Let the vectors in X be denoted, using

an obvious notation, by x*, x, xz, sany xm—l . In order to demonstrate

our Lemma it is sufficient to exhibit a vector x° in X (with xﬁ < bm )
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so that x*, x, xz, . aey xm 1s a primitive set in X . But this vector
may simply be defined to be the vector in X whose mth coordinate is
maximal subject to

m * 2 m=1
xo > min[yo, yo, yo, s Yy ]

m

X > min[y* 2 m-1

m-1 m-1° m-1* Yp-1° ym-ll

Io complete the proof of Theorem 2.3 we observe that if =x* is a

local maximum for the problem

tv
o

in X, then y* = Tx* will be a local maximum for the problem

m-1 3-bm—l

in Y . For if there were a neighbor y = Tx for which
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then by Lemma 2.5, x would be a neighbor of =x* in X . But x would

then satisfy %, 2 by in addition to

m-1 — "m-1

contradicting the assumption that x* is a local maximum.

Having established that y* 1is a local maximum in Y , our induc-
tion assumption permits us to conclude that y* is a global maximum in
Y . It is then immediate that =x* is a global maximum in X , for

if x d1dn X satisfies

it follows that y = Tx is in Y and satisfies

Yp-1 2 Ppg -

This demonstrates Theorem 2.3. A converse to this Theorem will be given
in Section V. We demonstrate there that any neighborhood system, for

which a local maximum is global, must include the neighborhoods given
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by primitive sets.

Theorem 2.3 suggests an obvious algorithm for the solution of dis-
crete programming problems. Begin with an efficient vector which satisfies
the inequalities Xy z_bi for i=1, ..., m . Examine the neighbors
of x . 1If each of them either violates one of the ilnequalities or gives
a lesser value to the Oth coordinate, we terminate with the global
optimum. Otherwise replace x by one of its neighbors which satisfies
the inequalities, and yields a higher value of the 0th coordinate, and
continue.

The ease with which this idea can be implemented depends on the ease
with which the neighborhood structure associated with the technology X
can be determined. It should not be surprising, therefore, if no struc-
ture whatsoever is imposed omn X , that the determination of the neigh-
borhood structure is as complex as solving the original programming problem
itself. With complete generality the above algorithm will be at best a
systematic way of organizing what 1s inevitably a search through the
entire set X .

On the other hand if the set X has a sufficiently rich structure,
the associated primitive sets and neighborhood structure may be quite
easy to determine. I will illustrate this by anticipating a subsequent
theorem which forms the basis for an extremely rapid algorithm (an algorithm
which solves the problem in polynomial time--using the terminology of
complexity theory) for the general integer programming problem with two
variables.

Assume that the set X 1is generated by an activity analysis matrix

with 3 rows and 2 columns whose entries have the following sign pattern
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In addition let ay + 2, >0 for i=1, 2 . Then it may be shown

that the primitive sets correspond, in activity analysis space, to one

of the two triangles illustrated in Figure 7, translated to an arbitrary

FIGURE 7

latcice point. Each lattice point will have, therefore, the six neighbors

shown in Figure 8.

FIGURE 8

In order to solve the programming problem

max a01hl + a02h2

8190y + agohy 2 by

ayhy +azh, 2 b,
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and h = (hl, h2) integral it is therefore sufficient to find a vector

(hl’ h2) which satisfies the two inequalities, and such that (hl-l, h2)

violates the first inequality and (h

1-1, h2-1) violates the second

(or alternatively (hl, hz-l) violates the second and (h, -1, h,-1)

1 2

the first). For if (hl-l, h, -1) wviolates inequality 2, then so does

2

FIGURE 9

(hl, hz-l) s, whereas the three other neighbors of (hl’ h2)
( (h1-+l, h2) R (hl, h2-+1) . (hl-+l, h2-+1) ) all produce lower values

of the objective function.

I1I. The Number of Binding Constraints for an Integer Program

We shall further illustrate the relationship between primitive sets
and discrete programming problems by demonstrating a theorem on the maxi-
mal number of binding constraints in an integer programming problem with

n variables. Consider the problem

max a01h1 + ... + aOnhn » subject to

a,.h, + ... +a, h >»>b
3.1 1171 inn 1

amlhl + ...+ amnhn >b
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and with h = (hl, vens hn) integral. Non-negativity requirements on
the variables, if any, will be incorporated in the constraints, whose
number m will typically be larger than n . Assumptions 1.1 and 1.2
will be assumed to apply to the discrete production set gemerated by
this model.

We assume that the inequalities have a feasible integral solution.
Assumption 1.1 implies that there is a finite maximum and 1.2 that the

optimal integral solution is unique.

3.2 [Definition]}. A subset S of the inequalities is said to
be binding, if the integer programming problem obtained by discarding

the inequalities not in S5 has the same optimal solution.

The question to be raised is whether there is a function ¢f n ,
say f(n) , such that an integer program with n wvariables always has
a set of binding constraints of cardinality f(n) or less. It is one
of the major theorems of linear programming--in which the variables are
not restricted to he integral--that a set of binding constraints of
cardinality n can always be found. This result is, imn fact, the basis
for the simplex method for linear programming, which proceeds by sys-
tematically analyzing appropriate subsets of n inequalities. The result
also leads to the pricing theorems of linear programming, with their
important implications for the decentralization of economic activity.

0f course, it is conceivable that no function of n will suffice
for integer programming, and that problems may be found with a fixed
number of variabhles and an arbitrarily high number of comstraints, none
of which can be discarded without modifying the answer. The following

theorem, first demonstrated by David Bell [Bell, 1977) and independently
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(though somewhat belatedly) by myself [Scarf, 1977]. states that the

function f(n) = 2" -1 is the correct one for integer programming.

3.3 [Theorem]. An integer programming problem with n variables

has a set of binding constraints of cardinality 2%-1 or less.

At this point I will give Bell's argument for Theorem 3.3, rather
than mine. Both arguments, however, make use of the following geometrical

lemma, which seems to me to be at the heart of integer programming problems.

3.4 [Lemma). Let P be a convex polyhedron in R® y» Wwhose vertices
are lattice points, and which contains no lattice points other than its

vertices. Then the number of vertices is mo larger than 2",

The unit cube In n space is an example of the type of convex poly~
bedion referred to in the lemma with a maximal number of vertices. It
may be shown that whem n = 2 any such polyhedron with 4 vertices is
equivalent, under a unimodular transformation to the unit square, a fact
that accounts for a good deal of the simplicity of programming problems
with 2 variables. This simple characterization of the maximal polyhedra
of Lemma 3.4 is, however, no longer correct when n > 3 . The detailed
etndy of these polyhedra 1s just being initiated.

The proof of Lemma 3.4 1s quite simple. Let the vertices be
vl, vz, veas vk . If k > 2% then there must be at least one pair of
vertices, say vl and v2 » all of whose coordinates have the same
£~ 17y, in terms of being even or odd. But then (vl-+v2)/2 is integral,

" ined in the polyhedron, and not a vertex. This completes the argument.

Let us return to the programming problem 3.1, which we assume to

have an pptimal solution h0 . Let € be small and consider the polyhedron
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defined by

Zaojh

3 J

3.5
Zaijhj-z bi for i=1, ..., m .

By the definition of h0 » this polyhedron is free of lattice points.
We wish to show that there is a subset of 2" or less of these inequalities
(including the inequality derived from the objective function) so that
the larger polyhedron obtained by deleting the remaining inequalities
is also free of lattice points.

Every lattice point in R" is, by construction, eliminated by at
least one of these inequalities, and, of course, each inequality eliminates
many lattice points. Bell's argument begins with the following classi-

fication of the (m+l) inequalities 3.5.

3.6 [Definition]. The inequality Zaijhj > b, 1is said to be
of type I if it eliminates a lattice point which is not eliminated by
any cther inequality. It is said to be of type II if every lattice point

which it eliminates is also eliminated by some other inequality.

This definition is illustrated by the top drawing in Figure 10 which
represents an integer program with 2 variables and 4 inequalities. The
feasible set has been shaded and the objective function moved inwards
slightly from the optimal solution. 1Inequality O is of course of
type 1. Of the remaining inequalities 1 and 2 are of type I, and 3 and

4 are of type II.
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FIGURE 10

If an arbitrary inequality of type Il is eliminated the convex poly-
hedron defined by the remaining inequalities will be enlarged, but it
will still contain no lattice points. The resulting integer program
will have a larger constraint set but the optimal solution will be un-

changed. This 1s illustrated by the second drawing in Figure 10.
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After an inequality of type II is eliminated, an inequality of type
I will still be of type I, but inequalities of type II may change their
character. If inequality 3 is eliminated in Figure 10, inequality 4
changes from an inequality of type II to an inequality of type I.

We may therefore continue the process of eliminating inequalities
of type II, one at a time, until only type I inequalities remain. Theorem
3.3 will be demonstrated by showing that there can be no more than 2°
inequalities 1f they are all of type I. Consider the inequalities in
the order of their subscripts, beginning with inequality 0. Relax
inequality O until it hits the optimal solution of the programming problem.
Relax each inequality, in turn, until it first hits a lattice point which
it previously eliminated but which is not eliminated by any other inequality.
When this relaxation is applied to any particular inequality in the sequence
the convex polyhedron is enlarged but no lattice points are introduced
into its interior. Moreover the inequalities remain as type I. When
the process is completed each relaxed inequality will be associated with
a specific lattice point which satisfies the remaining relaxed inequalities.
This process is illustrated by the third drawing in Figure 10.

The process results in a set of lattice points {hi} for i¢ 58,
where S5 1is the set of indices referring to inequalities of type I.
By the construction, the convex polyhedron formed by the relaxed inequalities
contains no lattice points other than {hi} » each of which is supported
by its own translated inequality. H , the convex hull of the hi is
rhorefore a convex polyhedron, whose vertices are the hi themselves,
and which contains no other lattice points. It follows from Lemma 3.4

that the number of vertices (and therefore the number of inequalities

ot type 1) is no larger than 2" . This demonstrates Theorem 3.3.
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It is a trivial matter to verify that the bound provided by 3.3
is sharp; i.e. that there are integer programs with 1n wvariables and
y | inequalities, whose optimal solution changes when any of the
inequalities are discarded. Figure 11 illustrates this possibility for

n =23 a similar comstruction, based on the unit cube in n-space will

-l

FIGURE 11

work in general.

This observation casts some doubt on those methods for solving integer
programs which examine subsets of n inequalities, solve the resulting
programming problem and check to see whether the remaining inequalities
are also satisfied. There may simply be no subset of n 1inequalities
whose sclution satisfles all of the constraints. The observation also
reinforces our intuition that there are no useful pricing theorems for
discrete programming problems.

Theorem 3.3 has been generalized by Alan Hoffman [Hoffman, 1978],
who demonstrated that the maximum number of binding constraints in a
programming problem with n integral variables and k real variables
is no larger than (k+].)2n -1.

Bell's construction may be seen, quite easily, in terms of primitive
gets. We define the set X to consist of the mtl slack vectors

0 m

E7, +ves £ and the vectors x = Ah as h ranges over all lattice
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points in R . By assumption the translate of the positive orthant
in Rm+1 with vertex at

g 0

Za b

1 0373

by

b

m

contains no vectors in X other than xo = Aho . We tramslate this

vertex downward, lowering each coordinate in turn, until a primitive

set is reached. The slack vectors in this primitive set will correspond

to inequalities which are not binding and which may be discarded without
changing the solution to the original programming problem. The existence
of a set of binding constraints of cardinality 2"-1 or less follows
directly from the following theorem whose proof is an immediate consequence

of Lemma 3.4.

3.5 [Theorem]). Let X consist of the slack vectors 50, A
and the points x = Ah as h ranges over the lattice peints in R" .
Then the number of non-slack vectors in a primitive set is less than

or equal to 2" .
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IV. The Combinatorial Theorem Known as Sperner's Lemma

In this section we assume that X 1s a finite set, The following
theorem is the analogue of Sperner's Lemma for primitive sets rather

than simplicial subdivisions.

4.1 [Theorem]. Let each vector in X be given an integer label
2(x) selected from the set (0, 1, ..., m) . Let the ith slack vector
El be given the label E(gi) =i for 1i=0,1, ..., m . Then there

exists at least one primitive set all of whose members have distinct

labels.

Theorem 4.1 can be given a constructive argument based on the existence
of a replacement operation for primitive sets. We consider an arbitrary
Jo 1 In
primitive set x , x 7, ..., X » and ask whether there is a replace-~
ment for a given vector so that the new collection of (m+l) ~vectors
also forms a primitive set.

Before dealing with the general problem, let us examine geometrically

the case in which the vectors in X 1lie in R3 . Figure 12 jllustrates

. 2 .
a primitive set composed of three vectors x , ¥ ', X . Without loss

FIGURE 12
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of generality I have selected the vectors so that

min[xjO le sz] %1
i 7171 i

In other words xJi lies on the ith coordinate hyperplane of the trans-
lated orthant.
31

In order to remove, say, the vector x , we increase the first
coordinate of the vertex of this orthant until we reach another vector
in the primitive set, in this case sz . We then decrease the second
coordinate of the vertex until another vector x* (or possibly the second
slack vector) is reached. The unique replacement for =x i is x* .

In order to discuss the replacement operation for general values

of m let us introduce a matrix whose columns are the mt+l vectors of

a given primitive set

BRI g ]

X XO . XQ
o X ip

b4 Xl xl

4.2 . : ..

3o 1 in

X X X
m m m

The vertex of the translated orthant associated with this primitive set
is the vector of row minima. These must lie in differemnt columns, since
otherwise one of the columns themselves would be greater than the vector
of row minima. I have assumed, without loss of genmerality, that the

row minima--which are underlined--lie on the main diagonal.

]
In order to replace x 0 we look at the second smallest entry in
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3
row 0; assumed in this case to be xol . We then look through the set
X to find that vector x which maximizes X subject to
4
Xq > X
32
X, > X,
4.3 .
m
X »Xx .
m m
Jo
The replacement for x =~ is x and the new primitive set may be displayed
as
X le xjm
0 0 """ 70
x j1 jm
gt X X
4.4 . . . .
j1 jm
X X .
m m m

This construction clearly generates a new primitive set if there
is a vector which satisfies 4.3. There certainly will be such a vector
--the first slack vector gl will do--if the second smallest entry in
row 0, is the zeroth coordinate of one of the vectors in X . And this
will be the case unless the m vectors in the primitive set, other than
the vector we are attempting to remove, are all slack vectors. In this
case no replacement is possible.

For example, in Figure 1 the vector xl forms a primitive set in

conjunction with the two slack vectors El and 52 , but it cannot be
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replaced. We shall take advantage of this type of exceptional primitive
set by initiating our algorithm for a completely labeled set at one like

this. Before examining this algorithm it is useful to verify that the

3

replacement for x 0 which has just been described is the unique replace-

ment.
In order to see this let us consider the matrix 4.4 without assuming

that we know the location of the row minima in the new primitive set.
jm
Aside from X all of the entries in the last column are strictly larger

than the corresponding entry in some other column. Since one of the
row minima must appear in the last column we see that it must be

3
xwm which is the smallest entry in row m . Using precisely the same

h|

argument we see that xii is the smallest entry in row i for i =2, ..., m.

j1
1 °f xl . If it is the

latter the vector x must be that vector in X which maximizes x0

b h|
subject to xg > xii for 1 =1, ..., m . But this is the vector x

The smallest entry in row 1 is either x

and we are back at the original primitive set. It follows that the dis-
position of row minima is that given by 4.4, an observation which determines
the replacement uniquely. We summarize these observations in the following

theorem.

4.5 [Theorem]. The replacement for a given vector in a primitive
set exists and is unique, except for the case in which the primitive set
«-.2.5ts of m slack vectors, and a single non-slack vector which we

«-- -lLtempting to remove. In this latter case no replacement exists.

the algorithm for finding a completely labeled primitive set begins

with the primitiye set consisting of the m slack vectors El, ey gm s
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and that particular vector x in the finite set X whose zeroth coor-
dinate is maximal. If £(x) = 0 we have found a completely labeled
primitive set since the slack vectors bear all of the remaining labels.
If on the other hand #(x) = i we remove the ith slack vector and
reach a new primitive set.

The algorithm will move through primitive sets whose (mtl) vectors
will bear all of the labels 1, 2, ..., m . The algorithm terminates
when the lakel 0 appears, and prior to termination each primitive set
will contain precisely two vectors which have the same label. One of
these vectors has Just heen introduced into the primitive set. We con-
tinue by removing the other vector with the doubled label.

A familiar graph theoretic argument demonstrates that we never return
to a primitive set previously encountered. Consider a graph whose nodes
represent the primitive sets through which the algorithm passes. Two
nodes will be adjacent, and connected by an edge, if one of the primitive
sets 1s obtained from the other by removing one of the vectors with a
doubled label. Since this relationship is symmetric the edges need not
be ordered.

The initial and terminal primitive sets have nodes which are adjacent
to a single other node. Each intermediary node is adjacent to precisely
two other nodes., If the algorithm were to return to a node previously
visited, the first node which is encountered twice--if it is not the
initial position--would necessarily be adijacent to at least three other
nodes, which is impossible. 1If the first primitive set which is revisited
were the initial position it would necessarily be adjacent to at least

two other nodes--again impossible.
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o

FIGURE 13

One final remark to complete the proof. Every replacement operation

called for in the course of the algorithm can actually be carried out.

If not we would be at a primitive set containing m slack vectors.

The label zero would have already been brought in and the algerithm would
have previously terminated unless the slack vectors are El, cees " .
But in this case we would have returned to our original primitive set,

a possibility we have already ruled out. This completes our algorithm
for Sperner's Lemma.

Let us enlarge our graph by considering all primitive sets whose
(m+l) wvectors bear the labels 1, 2, ..., m , rather than only those
encountered in the course of the algorithm. As before, two nodes are
adjacent if one 1s obtained from the other by removing one of the two
columns with the doubled label.

Agide from the initial primitive set and the completely labeled
primitive sets, each node is adjacent to two other nodes. The initial
primitive set and the completely labeled primitive sets are adjacent
to precisely one other node. Such a graph must have the form illustrated

in Figure 14. This observation leads immediately to the following
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[T
FIGURE 14

refinement of Sperner's Lemma.

4.6 [Theorem]. The number of completely labeled primitive sets

is odd.

V. The Application of Sperner's Lemma to Discrete Programming Problems

Sperner's Lemma has become quite familiar, during the last decade,
because of its use in the approximation of fixed poinﬁs of a continuous
mapping. It may be somewhat surprising, however, that it has an immediate
application to discrete programming problems, as well.

Let us return to the problem of finding that vector in X which

uanimizes Xq subject to the inequalities

We shall assume that X 1is finite. If this is not so, then we restrict

. 1. aitention to that finite subset satisfying x, > -M (with M a large

i

pcsitive number) for i =0, 1, ..., m . We adopt the following labeling rule.
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5.1 [Labeling Rule]. We label x in X with the label 2(x) = i

if i 4is the largest index for which X, < bi . If Xy 2 bi for all

i=1,2, ..., m, then &(x)=20.

8]
———— e

FIGURE 15

Figure 15 is a redrawing of Figure 1 with two additional lines

x, = bl and X, = b2 . The labels for the seven vectors are given by

5.1. We see that there is only one completely labeled primitive set

and that the vector in this primitive set with the label 0 , xo ’
is the optimal solution to the programming problem. The general argu-

ment is given in the following theorem.




35

5.2 |[Theorem]. Let x be that vector in a completely labeled
primitive set--labeled according to 5.1--with the label 0 . If x
is not a slack vector then it maximizes X, among all vectors in X
which satisfy X, Z-bi for i=1, ..., m. 1If x 1is a slack vector,

then it is the zeroth slack vector, and the constraints are infeasible.

Without loss of generality let us assume that the vectors in a com-

pletely labeled primitive set are given by xo, xl, cenes X0, arranged

in such a way that the row minima of

FXO xl m
_0 0 "o XO
xO 1 m
1 1 *1
XO X
m X P

lie on the main diagonal. The particular form of the labeling rule 5.1
permits us to argue that !L(xi) =i for i=0,...,m. To seethis, we observe
first of all, that E(xi) > 1 for all i . This is clearly correct

for 4 =0 . On the other hand if 2(xi) <1 for some 1 > 1 then

xi 2 b, and therefore no vector receives the vector i . These obser-

vations imply immediately that E(Xi) =i for all i .

We see that xi < hi for i =1, ..., m and that xo » 1f 1t is

not the zeroth slack vector, satisfies all of the constraints of the
programming problem. But then it must be the global maximum, for if

there were another vector x in X with xi.Z bi for 1i=1, ..., m

and X >.x8 , Wwe would have x, > xi for all i , which violates

i i
the definition of a primitive set. If, on the other hand, xO is the
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zeroth slack vector, then an identical argument implies that there is no
x in X with X 3-b1 for i=1, ..., m . This demonstrates Theorem
5.2.

We see that Sperner's Lemma can be used to provide an algorithm
for discrete programming problems. The difficulty in its implementation
is the replacement operation, which requires a knowledge of all of the
primitive sets associated with a given technology X . If this approach
is to be made useful, research must focus on methods for determining
these primitive sets when sufficient structure is placed on X . In
subsequent sections we shall illustrate how this may be done when the
technology is based on an activity analysis model with 2 integral activities.
The ~ace of 3 activities is much more difficult and will be presented in
a separate paper.

We should remark that the completely labeled primitive set is identical
with the one obtained by Bell in his proof that the maximum number of

n

binding constraints in a integer program with n variables is 2" -1 .

As a final topic let us return to a general production set X .
In Section II we defined two vectors to be neighbors if they were contained
in a common primitive set. The major conclusion was that an efficient
vertor in X which was a local maximum when compared with its neighbors

was, in fact, a global maximum. The following definition provides a

generalization of this concept of neighborhoods.

5.3 [Definition]. A neighborhood structure is defined by associating
with pach efficient vector x i1in X a non-empty subset of neighbors
N(x) C X . The assignment is arbitrary aside from the requirement that

+ - ~(x) implies that x & N(y) .
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A neighborhood structure permits us to define a local maximum for
the programming problem: find x in X so as to maximize X, subject
to x > bi for i =1, ..., m . We say that an efficient vector x
in X is a local maximum if it satisfies the constraints and if every
vector in N(x) either violates one of the constraints or has a smaller
zeroth coordinate.

Let us assume that we are given a neighborhood structure with the
property that for each vector b, a local maximum is a global maximum.
We shall demonstrate that for every x , the neighborhood N(x) must
contain all vectors which are in a common primitive set with =x . This
implies that primitive sets provide the unique, minimal neighborhood
system for which a local maximum is global.

Suppose that x and y are in some common primitive set, but that
y dis not in N(x) , mor x din N(y) . Without loss of generality

we can assume that Xg < Yo * Consider a primitive set which contains

both x and y , and whose columns are given by

i ]

A ] XO = v yo
-}f‘i .
. on

with the row minima assumed to lie on the main diagonal. By repeated
applications of the replacement operation, removing those vectors with

smaller zeroth coordinate then that of x , we will obtain a primitive
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set—-containing x and y --with x having the smallest zeroth coor-
dinate. By a change of notation, 1f necessary, we shall assume that

y has the smallest mth coordinate, so that our matrix takes the form

— 1 -
fg X] +-. Y
x xl
1 f "1
X Xl
A
{_ -
Now let Xl =X-{y} If x" 1is that vector in Xl whose mth

coordinate is maximal, subject to

then (x, xl, ey x%) will be a primitive set in Xl , displayed by

the matrix

1l m
Xg  Xp ee- Xy
1 m
X X Xg
1 m
X, X X .

The relationship between these two primitive sets 1s illustrated by the
following figure. Of course, y will be contained in the positive orthant

whose vertex is minfx, xl, ey ]
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. *x

Let us define a particular programming problem by selecting the

vector b as

R 1
mln[xl, yl] 3_b1 > %]

, m
mln[xm, ym] 3_bm > % -

Then it follows from the definition of primitive sets that x dis that
vector in X' which maximizes X, subject to x,; 2 b, for

i=1, ..., m. Since y is not im N(x) , Xx must be a local maximum
in X wusing the neighborhood N(x) . But x is not a global maximum

in X since y also satisfies the constraints and Yo > % - This

demonstrates the following theorem.

5.4 [Theorem]. A neighborhood system for which a local maximum
is global, for all vectors b , must contain the neighborhood system

defined by primitive sets.
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VI. Index Theory and Monotonicity

In this section we shall use the concepts of index theory, applied
to primitive sets, to analyze the graph of almost completely labeled
primitive sets displayed in Figure 1l4. Our major conclusion will be
that when the labeling rule is given by 5.1, the graph contains no cycles
and is composed of a single chain connecting the initial primitive set
with the unique completely labeled primitive set.

This result seems important to me for two reasons. First it implies
that we need not start the algorithm with the primitive set consisting

of the m slack vectors El, cany gm

Any primitrive set whose mwtl
members bear the labels 1, 2, ..., m will lie on the unique chain lead-
ing to the required answer. As we shall see this flexibility will be
quite useful in discussing programming problems with two integral activities.
This result also suggests that our algorithm for discrete programming
has captured one of the significant properties which differentiate algorithms
for convex programming from the more subtle techniques required for fixed
point computations.
Let us return to the general problem studied in Section IV. The
set X is taken-to be finite and the labels A&(x) are arbitrary members

of the set (0, 1, ..., m) . As before the ith

slack vector will
receive the label z(gi) = 1 ., We introduce the following definition

of the index of a completely labeled primitive set.

J h
6.1 [Definition]. Let =x 0, ceey X % pe a completely labeled

primitive set arranged sc that the row minima of the matrix
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xjo le xjm
0 o " %o
o 91 In
xl x Xl
6.2
j0 jl jm
xm xm xm J

lie on the main diagonal. Then

] I

index (x 0, cery X )

h| J
is defined to be +1 if the permutation A&(x 0),..., g(x ™ is even,

and -1 if the permutation is odd.
We shall demonstrate the following jimportant generalization of
Theorem 4.6 which states that the number of completely labeled primitive

sets is odd.

6.3 [Theorem]. The number of completely labeled primitive sets

with index +1 exceeds the number with index -1 by unity.

The proof of Theorém 6.3 is based on our ability to orient the graph
of almost completely labeled primitive sets by a calculation which depends
solely on the data involved in the particular primitive set being studied.

An orientation is a designation of the direction in which the vertices

of each component of the graph are to be traversed. Consider a primitive
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FIGURE 16

v
X

W ———rtarm

k| b
set (x O, R By  whose members bear the labels 1, 2, ..., m ,

and which is arranged so that the row minima of the matrix 6.2 lie on

3

h|
the main diagonal. Two of the vectors, say x ® and x B have the
same labels; aside from the initial primitive set one or the other of
them will be removed.
The string of symbols
3o 3 i ]
R D), e, XY, o, 2 D), e, XD
will not be a permutation of (0, 1, ..., m) , since the label 0 is
missing. But both

h 3

h|
B 0Y, veey 0y veey BX D), wer, 2x ™), and

6.4
3o 3 i,
LXK )y veey 2Ty weny 0y veny £(x )
will be permutations. In fact the two permutations will have opposite
>+ 'ty since they are obtained, one from the other, by a single trans-

macdtdng,

In order to orient the graph we must select one of the two vector

to be removed.

42

s
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6.5 [Prescription of an Orientation]. Let us orient the graph of
almost completely labeled primitive sets by removing that vector with
the property that when we replace its label by 0, the resulting per-

mutation is odd.

Several remarks are in order. We must, first of all, verify that
this orientation is consistent in the sense that if we move from one
vertex to an adjacent one, the next step does not require us to return

to the original vertex. Consider a primitive set whose columns form

the matrix
j0 ja jm
Xg e xo e xo
j0 ja jm
X X X
o o o
j0 a jm
X X X
L m m m

arranged as usual so that the row minima lie on the main diagonal. Assume

J 3
that L(x O), eaey 0y wee, R(x m) is odd, where 2(x *) has been replaced
ja
by 0; x is to be removed, and replaced by a vector x .

We must demonstrate that 6.5 does not require us to remove x from

Jo

the new primitive set. The permutation £(X "), evey 0, +oe, L(x )
obtained by replacing £(x) by O in the new primitive set is identical
with the previous permutation and is therefore odd. But a simple trans-—
position (see, for example, 4.4) of two columns is required to bring the

new primitive set to the form in which the row minima of the corresponding
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matrix lie on the main diagonal. This transposition will change the
sign of the permutation so that the other vector with the doubled label

is removed.

6.6 [Lemma]. A completely labeled primitive set which is reached
by traversing the graph in the direction given by 6.5 has an index of
+l. 1If such a set is obtained by moving in the opposite direction, the

index is -1.

In order to demonstrate this lemma, return to the notation we have
just used, and assume that the incoming vector x has the label 0

L]

so that we have reached a completely labeled primitive set. The permu-

tation of labels E(XJO), cery B(X), eee, 2(x ™ is, of course, odd,
but the single transposition required to bring the row minima of the
final matrix to the main diagonal will convert the permutation to an
even one. A virtvally identical argument will demonstrate that a com-
pletely labeled primitive set obtained by moving in the opposite direction
has index -1. This demonstrates 6.6.

A single completely labeled primitive set is obtained by initiating
the algorithm at the primitive set composed of the slack vectors
gl, ceey gm and the vector x in X whose zeroth coordinate is maximal.
Since the permutation 0, 2(51), ceay R(Em) is the identity permutation,
the orientation rule is consistent with removing that slack vector whose
label duplicates that of x . Our arguments therefore imply that the
primitive set obtained by our algorithm has an index of +1.

The remaining completely labeled primitive sets may be grouped in

pairs. The two members of each pair will lie at opposite ends of a



45

connected chain in the graph of almost completely labeled primitive sets,
and will therefore--by Lemma 6.6--have opposite indices. This demonstrates
Theorem 6.3.

This important result is all that can be said about the indices of
completely labeled primitive sets when the labels £(x) are arbitrary.
But a considerable sharpening is available when the labeling rule 5.1
is used to solve the discrete programming problem: find that vector x

in X whose zeroth coordinate is maximal, subject to the inequalities

>b

Let us now assume that labeling rule 5.1 is being used and let

xo, xl, ceay x° be a completely labeled primitive set, arranged in our

customary way:

— _
x 1 m
*o Xq <o Xy
x0 1 m
1% *1
6.8 . .
x0 xl xm
m m " m

Then, by the argument previously given, we must have R(Xi) =i for all
i . We see therefore that the index associated with every completely

labeled primitive set is +1. This demonstrates the following theorem.

6.9 [Theorem]. The labeling rule 5.1 results in a unique completely

labeled primitive set.
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The graph of the almost completely labeled primitive sets is seen

therefore to consist of a single chain, connecting the initial primitive

set to the unique completely labeled primitive set, and possibly a number

of cycles. 1In the remainder of this section we shall demonstrate that
there are, in fact, no such cycles.

The argument will be based on a detailed examination of the labels
associated with the almost completely labeled primitive sets which are
assumed to appear in such a cycle. Consider such a primitive set,

xo, ces X , again arranged in such a way that the row minima of

_xo xl xmd

0 o’ 0
x0 x1 <

1 71 1

6.10 .

0 1 m
X X %

m m m

lie on the main diagonal. As before, it is easy to verify that the
labeling rule 5.1 implies that R(xi) > 1.
Let us define for each such primitive set an increasing sequence

of indices 0 =i, < i, < ,.. < ik by

0 1
R(xo) = il >0
4
x ) = 12 > il
6.11
i
k-1
2 (x ) =4 >4,
i
k
[} =i .
(x ™) "

We have the following lemma:
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6.12 [Lemma). 2(x') = i for all columns 1 # 0, i o1

1’ k-1 °
The argument is immediate. We let S be the set of indices i
in (0,1, ...,m) with 1 # 0, il, ""ik-l . For each such i in §

there must be some xj with 2(x%) = 1 . But j # 0, il’ ""ik—l
i i
0

since the labels of x, x 1, ceey X k-1 are not in S . We see that

the set of indices {2(x1)} for i din S 1is precisely S itself.
Lemma 6.12 follows from the observation that R(xi) > 1 for all 1 .
i i

The two columns X k-1 and x k have the doubled label and one

of them will be removed as we proceed around a cycle following the orien-

tation given by 6.5. The permutation

2, ey 0y ae, 2D,

i
where L(x k) has been replaced by 0 may be brought to the identity

permutation by precisely k transpositions. It follows that this per-

mutation is odd if the number k is odd; otherwise it is even.

6.13 [Lemma]. If the orientation given by 6.5 is followed, we

T Tg-1
remove X when k 1s odd, and x when k 1is even.

In order to obtain a contradiction to the existence of a cycle using

these arguments, it is convenient to define

a = min[xo, veesy x7] ,

for each primitive set in a cycle, and to study the way in which the
coordinates of a change as we follow the orientation 6.5. For example,
oq will increase only if the vector xO is removed, and will decrease

if _xi is removed and xo is that vector in the primitive set with the
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second smallest ith coordinate.
Can ag be increased when the labeling rule 5.1 is followed? This

can only occur when xO has one of the doubled labels, so that

i i
2(x 1) = il . But Lemma 6.13 then tells us that the vector x 1 will

be removed as we traverse the cycle with the orientation 6.5, and ay

is not increased. If, however, @ is not increased throughout a cycle,
it can never decrease, and must remain constant. It follows that the
vector x0 is contained in every primitive set in the cycle, and in
fact retains its role as the vector with smallest zeroth coordinate.

The index E(xo) = i1 will therefore be unchanged throughout the

cycle. By Lemma 6.13 none of the vectors xi for 0 < i < il which appear

in any primitive set in the cycle will ever be removed. Therefore the

th

i coordinate of a , for 0 < i < il will never be increased. This

implies that every one of these coordinates will remain constant through-

i.-1
out the cycle and therefore all of the vectors xo, xl, cery X 1 will

be contained in every primitive set in the cycle. Moreover they will

retain their roles in bearing the row minima for rows 0, 1, ..., il—l .
4
In order to argue that x 1s never removed, let us avail ourselves
of the opportunity of moving around the cycle in the reverse orientation.
S 1,
If x bears the doubled label then we must have &{x “) = 1

i
follows from 6.13 that x 2 will be removed in the reverse orientation.

2.It

The coordinate ay is never increased in the reverse orientation.
1

It must therefore stay constant regardless of the orientation.
The proof then verifies .that oy for il < i« iz » never changes

and continues with ag - In discussing ay we use the orientation
2 &
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6.5 1if £ 4is odd, and the reverse orientation if £ is even. The final
contradiction, of course, is that none of the vectors xo, seey X  are

removed throughout the cycle.

6.14 [Theorem]. When labeling rule 5.1 is used, the graph of the

almost completely labeled primitive sets contains no cycles.

VII. General Remarks on Polynomial Algorithms

It is appropriate at this point to make an excursion into a topic
studied in computer science, that of polynomial algorithms for discrete
programming problems. This topic will be of considerable interest in
our study of integer programming problems with two variables.

The general integer program

n
max gaojhj

n
§a1jhj > by

n
{amjhj 2b

1
with hl’ eeny hn integral is specified by an (m+l)xn matrix A and
a right hand side b . Let us imagine that they are all integral and
stored in the computer in terms of their binary representation. Each
of these (mt+l)ntm numbers requires a certain number of binary bits
for its representation., The total number of bits required to represent
all of the numbers is an integer, say I , which measures the complexity

of the problem.
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Let us consider an algorithm which solves a given set of integer
programs in a finite number of basic steps, each of which consists of
a single addition, subtraction, multiplication, division, or elementary
logical operation. The algorithm is said to be polynomial if there
is a polynomial function £(I) of the complexity of the problem so that
the algorithm terminates in no more than f(I) steps, for all instances
of the class of integer programs being studied whose complexity is no
more than T .

Let us discuss an example which illustrates the difference between
polynomial and non-polynomial algorithms. Consider the discrete analogue
of finding a zero of a function of a single variable. We are given a
function g(j) defined on the integers 0, 1, 2, ..., ntl and which
takes on the values +1 . We are told that f£(0) = -1, f£(n+l) = +1 ,
and asked to find a pair of adjacent integers where the function has

different values.

OI ] ] ! ] | L ) | ln+1

FIGURE 17

Let a basic step in an algorithm be a question as to the sign of
g(3) for a given integer j . A measure of the complexity of the problem
(we are a bit loose here for illustrative purposes) is the integer n ,
which requires logzn bits for its binary representation.

One algorithm is to ask for the signs of g(l), g(2), ... in order,
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and terminate when the first sign change occurs. This may require a total
of n steps, and since n is not a polynomial function of logzn s
this will not be a polynomial algorithm.

Repeated bisection of the interval does, however, produce a poly~
nomial algorithm. We bisect [0, n+l] by asking for the sign of g(3)
where §=[(n+1)/2] (the greatest integer in (n+l)/2 ). If this sign
is positive there is a crossover in the interval [0,j]1 : 4if it is negative
there is a crossover in the interval [}, n+l] . We continue by bisecting
the interval in which a crossover is known to exist. Since each step
reduces the interval by roughly a factor of 2, the process converges in
essentially logzn steps--a linear function of the complexity of the
problem.

A more interesting example is the Euclidean algorithm for finding
the greatest common divisor (a,b) of two positive integers a and b .

Assume that a > b and define the sequence Tys Tps eees T by

k+1

a-= tlb + LA 0 < Ty <b
b = t2rl + T, 3 0 < r, < ry
Ty, = t3r2 + rqy 0 < Ty <r,
T

k = tk+2fk+l B

with tl’ ey tk+2 , and Tys =es Tpgq integral. It is a trivial
matter to verify that T4l is, in fact, the greatest common divisor
of a and b .

To illustrate the process consider the two integers 141 and 15.

We have
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141 = 9-15 + 6
15 = 2«6 + 3
6 = 2:3,

from which we conclude that (141, 15) = 3 .
The complexity of the problem is given by logza + logzb » the

number of bits required to store the two integers a and b . From

a relationship like

r with

3-1 T tyaTy Y Ty

r >r

j-1 § > rj+1 » Wwe conclude that tj+1 > 1, and therefore

+r > 2r

T§1 2T 341 I+

j-1 ]

It follows that

logzrj_1 + logzrj

2_10322rj+l + logzrj

= 1og2rj + 1ogzrj+1 +1.

Therefore the quantity logzrj_l + logzrj decreases by at least one
unit on every iteration of the Euclidean algorithm, from its initial
value of logza + logzb » Since, up to the last step, the rj are all
no less than one, the process must terminate in a number of steps no
larger than logza + logzb . The Euclidean algorithm is, indeed, a
polynomial algorithm.

We shall see that this observation is central in demonstrating that

our general methods lead to a polynomial algorithm for integer programming
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problems with two variables. An alternative polynomial algorithm for

this problem had previously been developed by Kannan [Kannan, 1977].

VIII. Some Remarks on Polygons in the Plane

In order to demonstrate how some of our rather abstract ideas can
be converted to practical algorithms we shall turn our attention to integer
programming problems involving two integral activity levels and m in-
equalities. It will be necessary to review some elementary material
on triangles and quadralaterials in the plane.

Let us begin by considering a triangle in the plane, whose three
vertices hO, hl, h2 are lattice points, and which contains no other
lattice points in its interior or on the boundary. The area of such

a triangle is given by 1/2 of the absolute value of either of the follow-

ing determinants

1 1 1
0 1 2
det hl hl h1 or
0 1 2
h, By by
1 .0 2 .0
hy-bhy  hy-hy
det
1 .0 2 .0
hy-h,  hy-h,
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FIGURE 18

We have the following classical theorem.

8.1 [Theorem]. A necessary and sufficient condition that a triangle
whose vertices are lattice points contain no other lattice points is

that its area equal 1/2.

Consider a triangle whose vertices are lattice points and such that

1 1 1
0 1 1
det|h) by hl| =41
0 1 2
h, B, b

If a lattice point <(h h2) is a convex combination of these three

vertices then

( 3 — = 3
1 1 1 1 o
: 0 1 2
h0 = h1 hl h1 oy .
0 1 2
h h h h a
| 1 B 2 2 2 ]y 72

with oy > 0 . But since the determinant is +1, the ui's are integral,
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They sum to 1 and therefore h must be one of the three vertices.

In order to argue the converse let us consider a triangle whose
vertices are lattice points and whose area is larger than 1/2. We shall
construct a fourth lattice point contained in the triangle.

Our argument will involve linear transformations h' = Uh+k of the
plane into itself, where k 1is an integral vector and U a unimodular
matrix, i.e. a matrix with integral entrjies and determinant of +l1. Such
a transformation carries the lattice points in the plane onto themselves

and preserves area.

a

By applying a translation we may assume that h- = (0,0) . But

then hi and hé must be relatively prime, since if they had a common

0

factor there would be a lattice point on the line connecting h~ and

hl . It follows that there are integers p and q such

that
1 1 _
phl - qh2 =1.
The linear transformation h' = Uh where

P =-q

U =
i 1
by my

is unimodular, so that it is sufficient to consider the triangle whose

three vertices are Uho, Uhl, th or
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FIGURE 19

There is no loss in generality in assuming that y > 0 , since
this can be brought about by a unimodular reflection. We may also assume
that 0 < x <y since this can be achieved by adding a suitable integral
multiple of the second coordinate to the first coordinate of each of these
vectors.

The area of this triangle is y/2 ; we therefore assume that y > 2 .

But the lattice point (1,1)' is contained in such a triangle since

(x-1)/y
1 0 1 x
= (yv-x)/y | .
1 Q 0 v
1/y

This demonstrates Theorem 8.1.
In the course of this arpgument we have also verified that if the

0, hl, h2) contains no other lattice point, then there is

triangle (h
a unimodular transformation (including a translation) which brings this

triangle to the form

0 17 1

0 0 1

If the an coordinate is subtracted from the 1St-again a unimodular
transformation--we see that such a triangle can be brought into the canonical

form
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Lemma 3.4 tells us that a convex polyhedron in the plane whose vertices
are lattice points and which contains no other lattice points has either
3 or 4 vertices. We have, in the above argument, characterized such
polyhedra with 3 vertices. Now let us consider one with 4 vertices

00, nl, w2, Bl .

Since the the triangle with vertices ho, hl, h2 contains no other

lattice points, there is a unimodular transformation which brings all

four points to the form

0 1 0 h

(0,1)

(0,0) 1,0

FIGURE 20

But the triangle formed by

contains no additional lattice points; therefore
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In a similar fashion h; = 1 , so that there are at most four possible

locations for the point h , as illustrated in Figure 20. Of course,

we cannot have (hl’ h2) (-1,-1) since (0,0) would not be a vertex
of such a quadrilateral. The three possible quadrilaterals appear in

Figure 21.

FIGURE 21

The first of these is the unit square, and the second, consisting of

by adding the 1%% row to the an. The third figure can be transformed

by a similar unimodular transformation into the unit square.

8.2 [Theorem]. A convex polyhedron whose four vertices are lattice
points, and which contains no other lattice points is equivalent to the

unit square under a unimodular transformation.
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Aside from translations the general example of such a quadrilateral

is a regular parallelogram of unit area whose four vertices are given by

0 P X-p X

0 g y-q y

with x,y,p,q integers satisfying py - qx = +1 .

(x,y)

FIGURE 22

IX. Primitive Sets Associated with an Integer Program

with Two Variables and Two Inequalities

In this section we shall give a complete description of the primitive

sets which arise when the set X consists of all vectors of the form

) 01 202 |,
hy
15| %11 212 ,
h,
*2 821 822 |\

where (hl, hz) ranges over the lattice points in the plane. To be specific
we shall let the entries in A be integers. This causes some difficulty

with the non-degeneracy assumption 1.3, since clearly two distinct vectors
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in X may have the same ith coordinate. Any number of devices are

available to resolve degeneracy; to be specific we adopt the following

rule.

9.1 JRule]. Let x = (xo, Xp5 xz)' be a vector in X with a
zero coordinate. That coordinate will be considered positive if the
vector x 1is lexicographically positive, negative if the vector is

lexicographically negative, and zere if x = 0 .,

We note that this tie breaking rule has the property that if X > ¥y
then ax, + (l—a)yi >yy for 0<a <1,
In order to begin our discussion of primitive sets let us assume

that the entries in A have the following sign pattern

and in addition that ail + a12

are to be Interpreted according to 9.1 if necessary.

>0 for 1 =1, 2. The inequalities

I claim that the following triple of activity levels,

0 1] 1

0 0 1

generates three vectors in X which form a primitive set. Let the three

ventors be represented as columns in the following matrix,



0 301
9.2 0 ap;
¢

The sign pattern of

Is there a vector
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A permits us to identify the row minima as indicated.

a

o1 202
a a hl
1 fa2 g
2
81 22

all of whose coordinates are strictly larger than these three row minima?

Consider the convex hull C

The vector (hl, h

2)

of the four vectors

FIGURE 23

is clearly a vertex of the convex hull since it

cannot be written as a convex combination of the remaining three vectors.

But the first three vectors are also vertices of C .

If for example
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0 hl 1 1
= a + o + o R
0 1 h, 2 0 3 1
with aj >0, Zaj =1, then
0= ul(allhl-falzhz) + ayaq + a3(all-+a12)

But allhl + athZ s 849 and a;q + a;, are all greater than 0
(at least in the lexicographic sense), which is impossible.

If there is a lattice podnt in C other than one of those four
vertices it will also give rise to a vector in X which has all of its
coordinates larger than the row minima of 9.2. It is therefore suffi-
clent to assume that there are no lattice points in C other than the
four vertices. It follows that h must be one of the following three

vectors:

0 0| 2

-1 1 1

whose associated vectors in X are given by

“ago | |22 | | %201%202
~a19 819 Z2a;; +ay,
Y a9 Zay) ta,,

12 < 0 and 2a0l + a

that the three activity vectors

0} 1} 1
0 0 1

But —a22 < a21 s & + a

02 < %01 02 °

This demonstrates
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do indeed form a primitive set, and in precisely the same fashion so do

The translate of a primitive set by an integer vector is also a
primitive set. This argues that every triangle in the simplicial sub-

division of the plane illustrated in Figure 24 gives rise to a primitive

set.

FIGURE 24

It is also easy to argue that these are the only primitive sets
when the entries in the matrix A have the sign pattern we have assumed.
One argument, based on Figure 24, is that a replacement for a vector in
such a primitive set may obviously be found in such a way as to keep
us within this class of primitive sets. The replacement operation is
unique and therefore we never leave this class of primitive sets by an
arbitrary series of replacements. If there were, however, a primitive
set not in this class we would be in contradiction with the general
observation that any two primitive sets can be connected by a sequence

of replacement operations. We summarize our conclusions in the following

theorem.
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9.3 [Theorem]. Let the matrix A have the sign pattern

and assume that a + a

i1 12 >0 for 1=1, 2 . Then the collection of

primitive sets is given by the simplicial subdivision of Figure 24.

Now let us turn our attention to determining the primitive sets
associated with a general integral matrix A with 3 rows and 2 columns.
In order to avoid the case in which all of the associated vectors in X
lie on a single line in R3 we shall assume that A has rank 2. We
have the following Lemma which derives from Assumption 1.2: that for

3

any vector ¢ 1in R™ the set of x in X with x > ¢ 1is finite.

9.4 [Lemma]. Let A have rank 2 and make Assumption 1.2 about
the associated set of vectors =x = Ah . Then there exists a positive
vector 7w such that 7A = 0 . In other words all of the vectors im

X lie on a plane through the origin with positive normals.

Assumption 1.2 implies that there is no lattice point h for which
AR > 0, with at least one inequality strict. If this were so the infinite
set Ah, 2Ah, 3Ah, ... would violate Assumption 1.2 with ¢ =0 . One
consequence of this ohservation is that there is no real vector £ with
AE > 0, for if there were we could take a sufficiently high multiple
of £ and round to integers without disturbing the inequalities. But
then by a standard convexity argument there is a non-negative, non-zero
vector T such that @A = 0 . In order to demonstrate Lemma 9.4 we

must show that none of the coordinates of T are zero.
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Suppose that Ty = 0 . Then rows 1 and 2 of A are linearly depen-

dent, It follows that there are integers h, and h2 not both zero

1
such that

by +ajohy =0

aZlhl + a22h2 =0 .

Since columns 1 and 2 are not linearly dependent it follows that

ag by + agoh, # 0 . But then Ah {or -Ah )} has all three coordinates

non-negative, with at least one positive. This demonstrates Lemma 9.4.
The strategy in dealing with a general matrix A will be to show

that there is a unimodular matrix

such that AU = B where B has the sign pattern

+ = ’

-+
and bil + b12 >0 for 41 =1, 2 . Our previous result would then argue
that

[ 0] (1) (1)

B s B s B and

LOJ |0J li

r01 rOW flﬁ

B y B s B are

;OJ le LlJ

both primitive sets. In terms of the matrix A this implies that
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0 b ( 1 A ( 1 3
AU , AU , AU , and
0 F . 0 J \ l J
0 h! r 0 Yy s 1 3
AU , AU , AU
0 (1) L 1)

are primitive sets. Primitive sets therefore form a simplicial subdivision
of the plane based on the parallelogram

upp tuy

21 Uso uyy tuyy

cut into two triangles along the diagonal between (0,0)' and

[ ]
(up) +uyy, uyy +uyy)

FIGURE 25

0f course, multiplication of the matrix A on the right by a uni-
modular matrix is equivalent to a series of elementary column operations
--adding a multiple of one column to the other, and changing the sign

of a column.

Let us begin by assuming that a >0, and apply the

01 < %02

wucaidean algorithm for determining the greatest common divisor of these

two integers. We write a5, = tag, +r with 0<r < a5y » subtract

.-

¢t times the second column from the first, and continue until one of



67

the entries in the top row is zero and the other equal to g.c.d.(a01, 302)

The negative of the resulting matrix will have the sign pattern

and the two entries in the second column will be non-zero and of opposite
sign. By multiplying this second column by -1 if necessary we reach a

matrix B for which the following sign pattern prevails:

I1f b21 < 0 then since 1B =0, we have bll >0, and the sign pattern
of the first column i1s as desired. On the other hand if b21 >0, we

find a positive integer t such that

0 2By = thyy > ~byy -

If we then subtract ¢t times c¢olumn 2 from column 1 the matrix B will

have the sign pattern

0f course, it need not yet be true that bil + b12 >0 for i=1, 2.
In order to obtain this it may be necessary to continue with the Euclidean

algorithm on the last two rows of the matrix.
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For example if b11 + b12 <0, or bll < —b12 we initiate the

Euclidean algorithm for the two positive integers b11 and --b12 . We

write -b12 = tbll + r with 0 <r < b, - If we add t times column

one to column twoe we obtain the matrix

(The third entry in column two is, of course, positive from =B =0 .)

In this new matrix bll + b12 >0 ., If, however, b21 + b22 <0, or

b,, < -b we use the Euclidean algorithm for finding the greatest common

22 21
divisor of these two numbers. The operation of the Euclidean algorithm

for one of these two rows only facilitates the algorithm for the other

row. At the worst we complete the algorithm for both rows and obtain

9.5 |[Theorem]. Let A be a 3x2 matrix of integers of rank 2.
Assume that there exists a positive vector 7 with 7A = 0 . Then the

matrix can be transformed by a number of elementary column operations,

into the form

AU=B= |+ -|,

with b11 + b12 >0 for i=1, 2 . Primitive sets are given by
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translations of one of the two triangles

() Y[ *
11 uyp tugo

, and
0] Lty | v tuzg

“ F

( b b r “

Let us investigate the complexity of the matrix B by a careful
examination of the process which is used to obtain this final matrix.
The first part of the procedure carries out the Euclidean algorithm for
finding the greatest common divisor of a1 and 452 - In no more than

10g2a01 + logza02 steps we reach a matrix with sign pattern

[~ o

L -

At every intermediary step we will have a matrix

bor Doz
B=1Dby; B>
| P21 Pa2 |

with, say, bOl 3_b02 >0 . We then write b01 = tb02 +r with t>1,
0<rc« b02 and transform the above matrix to
bo1 " tPg2  Pp2
' - -
B = | byy-th;y Bypo
b,, = tb b
L 21 22 22 |
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There are a variety of equivalent measures that can be used to estimate
the complexity of the matrices encountered in this sequence. It will
be convenient in analyzing the first part of the procedure to adopt the

following expression

2
1
9.6 C(B) = log, max(|by [, [bg,!) + 3,1 1ogy max(fby 1 o,

as a measure of complexity rather than the more obvious cholce

s

max logzlbijl . We shall demonstrate
i,j

C(B') < C(B) +1.
It is clearly sufficient to show that

9.7 log, max(|by, [, by, 1) + 1og, max(|b11|, 5,1

and
1082 max(IbOJ_]s Ibozl) + 1032 max(lb21|s Ibzzl)

each increase by no more than one unit in passing from B to B'
Since the two arguments are identical we concentrate on the first of
these.

The expression 9.7 changes from log2b01 + 1og2 max(|b |b

11l by

to log2b02 + log, max(|b11-tb12[, [blzl) . But

by =ty < Ibyy | + £fby,) < (e+lymax([by 1, [b,]1) , and certainly

max([bll-tb12|, |5, :_(t+1)max(|bll|, b, D)

It follows that
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log, max(|bll—tb12|, |b12|) - log, max([by, ), [b;,1) < log, (t+1)
On the other hand
logybyy = 1ogybyy = 1og,y(by,/(thy, +1)) < log,(1/t) .

The expression 9.7 changes therefore by an amount which is no larger
than 1og2(t+1)/t.§ 1 . This concludes our argument.
It follows that the complexity of the matrix obtained after the

Euclidean algorithm terminates is less than or equal to

log2301 + logza02 + C(A)

The Euclidean algorithm terminates with a matrix whose sign pattern

is

*
We then subtract from the first column a non-negative integral multiple

of the second column; in fact the smallest such multiple such that the

resulting matrix, say B* , has the sign pattern

Using virtually identical arguments as before, it may be shown that the
measure of complexity C increases by no more than a single additional

unit on this last transition. It follows that
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*
C(B*) <1+ logyay, + log,ag, + C(A) .

At this point we enter into a series of elementary operations which
are designed to maintain the above sign pattern and ultimately to yield

by, +b;, >0 for i=1,2 . Assume for example that bj; t b, 20

and add t

i2

We write -b12 = tbll +r with t>1 and 0 <7r <b

times column one to column 2:

11

bor thgy * by
by, thi by, | .
| P2y By t by |

1f b21 + (tb21f+b22) < 0 we perform a simular step based on row
2 of this matrix. 1In other words we alternate between steps of the
Euclidean algofithm for finding g.c.d. (b;l, bIz) and g.c.d.
(b;1’ b;z) . Since logzlb:1| + logz|b;2[ have already been shown to
be bounded by linear functions of the complexity of the original matrix
A , it follows that at most a polynomial number of iterations are required
to bring the matrix to its final form.

We wish to verify that the complexity of the final matrix is bounded
by a polynomial in the complexity of A . |

Let us examine the change in log, max(|b |b12|) for each row

uls

separately, as we perform a typical elementary operation described above.
i=40 . We have
log2 max(]bOlI, |tb01-+b02|)
< log, max(|b01|, (1+t)max(|b01|, Ib02|)

= log,(1+t) + logy max(|by; |, [bgy D)
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so that log2 max([bOII, |b02|) increases by at most 1ogz(t+1)

i=1. Since b11 +b, 20 it follows that max(lblll, Ib

On the other hand, max(]bll|, !tblld-blzl) = b,, and therefore

1212 = Ipg,l

log, max(lblll, Iblzl) increases by log,b,; - log2]b12| = log, bll/|b12|
< log, 1/t .
it follows that

i=2. GSince |tb2 +b

1tBysl by

log, max(|b, |, |tby; +by,[) < log, max(|by, [s [byy[)

We see from this argument that the measure of complexity

2
! log, max(|b
i=1

|b

1l 12D

increases by no more than one unit on each iteration. This demonstrates

the following Theorem.

9.8 [Theorem]. The number of elementary operations required in
Theorem 9.5, and the complexity of the final matrix B are both bounded

by polynomial functions of the complexity of A .
This conclusion permits us to use the matrices A and 3B inter-
changeably in any discussion of polynomial algorithms.
X. The Algorithm for Integer Programs

with Two Variables and Two Inequalities

In this section we shall show how the above considerations can be

used to provide a polynomial algorithm for solving the integer program
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max aOlhl + aOZhZ

a);hy +a)5h, 2 by

8510 +aghy 2 by

with hl’ h2 arbitrary integers. We continue to make the assumptions
that A 1is of rank 2, and that there exists a positive vector = with
1A = 0 . The considerations of the previous section imply that there

is no loss in generality in assuming that A has the sign pattern

with a,
i

FIGURE 25

Figure 25 illustrates the constraint set for such a problem. We

denote by (El, EZ) the typically non-integral solution of
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81151 + 31252 = bi for i =1, 2, and by h¥ » the smallest integer
greater than or equal to 51 . We move up the line hl = h; untll we
find the largest integer hg so that (hI, h;) violates the second
inequality. Clearly (h¥, h;) satisfies the first inequality since
points which violate both inequalities have both coordinates less than
those of £ .

It is trivial to argue that (h*, h;+1) is the optimal solution
to the programming problem if it alsoc satisfies inequality number 1.
We therefore assume that this is not the case; the two points

(h;, h;+1) and (hI, h;) therefore have the labels 1 and 2 respectively.

The three points

* * *
h} h¥ hi+1
* * *
n} hi+1 hi+1

form a primitive set. If the third point satisfies both inequalities it

optimal since we would have a completely labeled primitive set. This

third point clearly satisfies the first inequality since

* * * *
all(h1f+l) + alz(hzi-l) > a lh1 +a..hi >b

1 1272 ="1°

If it is not optimal it must violate the second inequality and receive
the label 2, as indicated.

We move to an adjacent primitive set by replacing (h¥*, h;) by
(hii-l, h3-+2) . This new point will be optimal if it satisfies both

inequalities. It definitely satisfies the second inequality since

* * * * 4
aZI(hl-fl) + 322(h24-2) > 321h + a22(h2 1) >b

1 2"
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If it is not optimal 1t must receive the label 1 as indicated, and the
process continues by removing the vector (h¥, h5-+1)

The process moves through a sequence of almost completely labeled
primitive sets and terminates when a vector satigfying both inequalities
is introduced. But we need not actually carry out the sequence of re-
placement steps, since the vectors being brought in lie on one of the

two parallel lines:

(h,, h,) = (h;‘+t, h*+t) and

10 M2 2
% *
(hy, hy) = (h}+t, Bj+1+1) .

It is sufficient to examine each of these two lines, find the first lattice
point satisfying both inequalities--simply by division--and compare the
two values of the objective function.

We see that a fixed number of arithmetic operations is required to
calculate the optimal solution, after the matrix has been brought into
the correct form. This demonstrates that our methods provide a polynomial
algorithm for the integer programming problem with 2 variables and 2

inequalities.

XI. Primitive Sets Associated with an Integer Program with

Two Variables and Three Inequalities

Theorem 3.3 tells us that the solution of the integer programming

problem
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max a01hl + a02h2

a . h. 4+ a

11t apoh

2 =

amlhl + am2h2 2 by s

and hl and h2 integral, may be found by solving a suitable subproblem

obtained by selecting 3 or fewer of the m inequalities. The number

of subsets of 3 inequalities is rg] which is polynomial in the data

of the problem. If we can show that the integer program with 3 inequa-
lities has a polynomial algorithm, then the rather inefficient algorithm
which solves all of the problems obtained by selecting subsets of 3
inequalities, and checking to see whether the remaining inequalities

are satisfied, will be polymomial in the data. For this reason we shall

concentrate on matrices A which have 4 rows and 2 columns:

01 %02
i %2
81 %22
831 %32
L _
Let us consider a primitive set composed of four vectors ho, hl,

h2, h3 in the plane. Each of these four vectors will be an extreme

point in the convex hull of the four points, and, of course, there will
be no other lattice points in this convex hull., It follows that the

four vectors are the vertices of a parallelogram of unit area.
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FIGURE 26

th

Assume that the line through h:l corresponds to the i row of

the matrix A . In Figure 26, hl and h2 are on opposite sides of

the parallelogram, as are ho and h3 . In attempting to remove, for

example h1 » we press in the side containing h1 until we reach one
of the other three vectors. The first vector to be reached will always
be ho or h3 3 1n Figure 26 it is h3 .

The replacement for hl will either be the 3rd slack vector, or
a lattice point which forms a parallelogram of unit area in conjunction

o .2 .3 3

with h”, h™, h™ . But this can only be the vector h' = 2h° - hl ,

which is the replacement if and only if it satisfies the second inequa-

lity, i.e.
a hz + a h2 <a,.h! + a.,h! .
2171 2272 2171 2272
' 2 _ .3 0
Since h' - h" =h™ - h this is equivalent to
0 0 3 3
dy1hy o ayphy < agyhy +oayh; .

But this means that if we press in the line through h2 , 4as the
first step in removing h2 » we will reach h0 before h3 . The replace-
, 2 0 2
wene for h™  will therefore be 2h° - h° .

The original parallelogram and the two new parallelograms obtained
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by replacing h1 and h2 are shown in Figure 27. Of course the two

LS =

FIGURE 27

new parallelograms are always congruent.
In Figure 26, if we press in the side containing h3 we first reach
h™ ; whereas if we press in the side containing h0 we first reach
hl . It follows that the replacement for h3 is 2h2 - h3 » and the
¢ 1 0

replacement for h  is 2h™ - h™ . The two new congruent parallelograms

obtained by this replacement operation are drawn in Figure 28.

FIGURE 28

0
1f, as in Figure 29, the same vector, say h” , is first reached

2
by pressing in the line through h1 and the line through h® , then the
replacement for either one of them is the zeroth slack vector. In this

case the chain of quadrilaterals will end with the two triangles
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FIGURE 29

(ho, hz, h3) and (h”, b, h3) both of which form primitive sets, in

conjunction with the zeroth slack vector. We formalize this result in

the following theorem.

11.1 [Theorem]. Let ho, hl, hz, h3 form a primitive set with

the line through hi corresponding to the ith

Let h0 and h3

RO + 1 = nl + 02 .

row of the matrix A .

be on opposite sides of the quadrilateral, so that

1. Assume that when we press in the line through hl we first

hit h3 and when we press in the line through h2 we first reach h0 .
Then the replacement for h1 is 2h3 - hl and the replacement for h2
1s 2% - n? .

2. If on the other hand we reach the same point; say h0 y Wwhen
pressing in the lines through h1 and h2 s then the replacement for

either hl or h2 is the zeroth slack vector.

Theorem 11.1 tells us that the primitive sets with 4 vectors asso-
clated with a given 4x2 matrix A will form a chain of quadrilaterals.
Each quadrilateral will be obtained from the previous one by the reflec-
tion of a given vertex about an adjacent vertex. The chain of quadri-
laterals will terminate, on either side, when a pair of primitive sets

is reached each consisting of a triple of vectors and the same slack vector.
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FIGURE 30

There 1s a very simple test for determining whether the four vertices

of a parallelogram of unit area form a primitive set for the matrix A .

r .2 .3

Consider, for example, the unit square with vertices ho, h™, h", h

as in Figure 31. The four associated vectors in X are given by the
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FIGURE 31
columns of the matrix
n? R
891%802 81 22 O
a;y+tay, 8y a0
asptag, 2y ay 0
La3l tag, a3 a3, O |

If the four lines corresponding teo the rows of A can be drawn as in
Figure 31, then the four row minima lie in different columns; let us
assume that they lie along the main diagonal. But conversely, if the
four row minima lie in different columns the vertices of the unit square
will form a primitive set, since there are obviously no other lattice
points in the larger quadrilateral of Figure 31.

The particular location of the row minima in the above matrix is

equivalent to the sign pattern
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-+
(11.2)

<+ -

+ o+

in the matrix A . More generally if there is a unimecdular transformation
of the matrix A , multiplying on the right by a unimodular matrix T,
50 that AU has the above sign pattern, then the quadrilateral with

vertices

12 upp U

12 ry) Uy Hugy

will form a primitive set.
Let us consider a chain of quadrilaterals as depicted in Figure 30,
with the initial quadrilateral being the unit square. Without loss of

generality we assume that the row minima of

851%30; 301 8p2 O

31782 31 3y L

[_331"'&32 331 232 Q_L
nl LR T K

lie on the main diagonal so that the sign pattern of A is as 1l.2.
In this example if we press in the line through h2 we first reach
ho ;3 1f we press in the line through h1 we first reach h3 . It

follows that the second minima in rows 1 and 2 of the above matrix are

as indicated. This is, of course, equivalent to saying that
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all + a12 >0
a2l + 35,y < 0.
The replacement for hl is 2h0 - h1 and the resulting matrix is
given by

31239y 8ptag, a0
813%28), 3, %a;, a, 0
3%y, ey tay, a8, 0
a3p*2a3; aj%ay, a0

We can associate with this new primitive set the matrix

31 Y202 22
appta;; 2
antax  axp
azp*tag; a3

which will also have precisely the same sign pattern 11.2. This process
can then be continued to reach the full chain of quadrilaterals. At each
stage we have a matrix, say B , obtained from A by a unimodular trans-

formatjion, and with the sign pattern 11.2. If

bll + b12 <0

byy + by > 0

the next quadrilateral in the chain is associated with
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bo1*tPo2 P2
Biitbyy By |
by *byy By,
byy b3y by
if
b11 + b12 » 0
byy + byy < 0,

the new matrix is

[_b b.,, +b |

o1 Po1*Pg2
P11 Pri*by
by Baytby
b31 b3 tby

Finally if both bll + bl2 and b21 + b22 have the same sign the sequence

of quadrilaterals terminates. We summarize these observations as follows.

11.3 [Theorem]. Let the four vertices of the unit square form a

primitive set, so that the matrix A has the sign pattern

Perform a sequence of elementary column operations, replacing one of

these columns by the sum of the two columns, sc that the sign pattern



is maintained.

chain of quadrilaterals.
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Each such matrix corresponds to a primitive set in the

no longer be continued.

An example may be useful in illustrating these considerations.

with ties broken by

the lexicographic rule.

The chain terminates when this operation can

Let

This matrix has the appro-

priate sign pattern so that the four vertices of the unit square form

a primitive set.

The following 1ist of matrices illustrates the

followed in Theorem 11.3.

-4

-2

-1

Prencenacg
' |
[} i
i H
1 i
[ STTPEERES.)
B =
-~ .
- 7
#
[ Jp——" —
__,.o-----,m
P _‘--"
w::::--.-a-"--

sequence
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-13 -9
-—,-.“-"n
-1 1 __,_-_--j:Z" -
. -__.o-':-___o-' .
1 O -,::'_::-—- ‘‘‘‘ )
,:‘- - - - - -
4 3
L —
B T
=22 -9 e
0 1 P -
1 o0 8 e .
vi 3 &7, . . . . .

Is there a calculation, which is polynomial in the data of the problem
and which permits us to recognize the chain of quadrilaterals and the
two simplicial subdivisions which appear at either end of the chain?
The answer is quite immediate if two rows in the original matrix A are
proportional to each other. 1In order teo consider the more difficult and
general case I shall assume that no two rows are proportional.

The four rows of A are selected from a larger problem satisfying
the assumption of local finiteness 1.2. If these four rows yield primitive
sets in conjunction with the remaining slack vectors then assumption
1.2 will apply just as well to the vectors in R4 given by x = Ah .
We may then use the argument of Section IX to conclude that there is
a non-negative vector @ = (no, Tys Tos n3) , not all of whose coordinates
are 0 , such that 7mA = 0 . At least 3 of the coordinates of = are
strictly positive, since otherwise two of the rows of A would be pro~
portional.

If all four of the coordinates of m are strictly positive then,
since the system 7A = Q0 consists of two homogeneous equations in four

variables, there is a standard way of finding an altermative solution



88

with three positive components. Let us assume that this has been done

and that = are positive and Ty = 0.

0 "1* M2
We may then use the arguments of Theorem 9.5 to construct, in poly-
nomial time, a unimodular matrix U , such that B = AU has the follow-

ing sign pattern

-+
(11.6) .
<+ -
by, b
| P31 P32

Moreover bll + b12

Theorem 9.5 may be used to demonstrate that the complexity of B is

>0, and b + b

21 22 > 0 , and the arguments of

bounded by a pelynomial function of the complexity of A .
Let us consider the following four cases for the sign patterns of

the last row of B .

Case 1. b31 >0, b32 >0 .,

In this case the matrix 11.6 has the appropriate sign pattern which

permits us to identify a primitive set. The columns of

Boi1tPos Poy bpy O
bijp¥byy by by, O
byptbyy By by, O
byy*b3; by by, 0

0 o2 3

will represent the final primitive set in the chain of quadrilaterals,

which is then followed by the simplicial subdivision giver by the two
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0,1 .3

triangles (h, h™, h 0 42

) and (h”, h°, h3) in conjunction with the third

slack vector.

Case JI. Db <0, b

31 < 0.

32

In this case the arguments of Section IX permit us to conclude that

w?, nt, B3, e, @0 w2, b, &%) and

o ,1 .3 o .2 .3

m?, ut, 83, &%, «? u? W3, 0

are all primitive sets. Since the replacement operation keeps us--subject
to translations--in this class of primitive sets, it follows that there

are no quadrilaterals associated with this 4x2 matrix. All of the primitive
sets consist of triangles in conjunction with the zeroth or third slack

vector.

Case III. b >0, b <0 .

31 32
This case falls into two subcases depending on the sign of b3l+b32 .
If b3l+b32 > 0, then the matrix
o1 ~Po2  Po2
“b11-P12  bya
L PR
| P317P3p Py

has the sign pattern



90

with the sums of rows zero and one positive. The sign pattern is as
in Case 1I, and there are no quadrilateral primitive sets.

On the other hand if b + b < 0 then the matrix

31 % Py
“Po1 " bo2  Poy
“bip ~ by by
by = by by
| "33 " b3 By |

has the sign pattern

— pENS

+ -

with the sums of rows zero and two positive. The sign pattern is as in

Case I.

Case IV. b <0, Db

31 >0 .

32

We use the same arguments as in Case 1II.
e see that in all cases in which there is a chain of quadrilateral
primitive sets, the above method will produce a matrix which represents

a guadrilateral primitive set appearing at one end of the chain. Moreover
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the complexity of this matrix will be bounded by a polynomial function
of the complexity of the original matrix A . To find the matrix at
the other end of the chain let us assume that the sign pattern of the

matrix already determined is

+ -
+ +
- +
If b01 + bo2 and b31 + b32 have the same sign this matrix repre-

sents the quadrilateral primitive set at the opposite end of the chain,
which in this case contains only one such primitive set. On the other
hand if the signs are opposite we replace one of these columns by the
sum of the two columns, in such a way that the sign pattern is maintained,
and continue until a primitive set yielding the opposite end of the chain
is obtained.

One additional observation may be useful. The operation of replacing
a column by the sum of the two columns is very slow when compared to the
Euclidean algorithm and may lead to a chain of quadrilaterals--and there-
fore a number of neighbors of the origin--which is quite large in terms

of the complexity of the problem. Consider, for example, the matrix



92

— -
-1 -1
-1 k

]
1 -k
1 1

with k a large positive integer. Since

R [ 1 -l—j-—
-1 k|11 j -1 k-j
1 -k |0 1 i 1 k44 |
11 1 141

with the appropriate sign pattern for all 0 < j < k , it follows that

for these values of j , all of the gquadrilaterals

0 1 3 j+l

0 0 1 1

are primitive sets. But then the origin has at least k neighbors,
and therefore the number of neighbors is not a polynomial function of

the data.

reemmam e ————— E-] -] ol i e =g

' . T

1 et

1 Vo et e

: L] - e

3 e

: _I_-- - -,—"

H ety - o -

" ------- : -----

beslle . ——— ° © o
FIGURE 32

This observation is important enough to be put into the form of a theorem.
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11.7 [Theorem]. The cardinality of the minimum neighborhood system

associated with the general integer program is not polynomial in the.data.

If the two variable problem is to have a polynomial algorithm it
must mean that the chain of quadrilateral primitive sets has sufficient
structure so that it can be inspected in polynomial time, even though
it may contain a non-polynomial number of members.

Consider a matrix at one end of such a chain with sign pattern

ot

It is elementary that there is a non-negative vector 7 such that 7B = 0

with either n3 = 0 and the remaining coordinates positive, or T =0

and the remaining coordinates positive. Let us assume that the former
occurs. It follows that a matrix in the sequence obtained by replacing

a column by the sum of two columns will never have b,, +b,, < 0 for

il i2
both 1 =1, 2 . Until the chain is completed one of these sums will

be negative and the other positive.

Assume that b11 + b12 < 0 and write -b11 = tb12 +r with t
a positive integer and 0 < r < b12 . The matrices
Po1tdbgy  Boy
P11 %35, By
Ba1¥IByy By
B3y FIP3; Py
L —

will have the same sign pattern as the original matrix for 3 =0, 1, ..., t,
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so0 that the quadruples

0 0 1 1

0 1 ] i+l

will all form primitive sets. Such a sequence of primitive sets will be

called a link in the chain of quadrilaterals.

11.8 [Definition]. A sequence of quadrilateral primitive sets all
of whose members lie on two parallel straight lines will be called a link
in the chain of quadrilaterals.

The particular link illustrated above terminates whemn 3j = t since
(bll-ftblz) + bl2 is no longer negative. If the chain of quadrilaterals
does not terminate it must now be true that (b21+-tb22) + b22 < 0.

We then write -b22 = t'(b214-tb22) +r' , with t' a positive integer,
and 0 < r' < (b21-+tb22) . This gives a new link of quadrilateral primi-

tive sets with t' members, illustrated in Figure 33. By arguments

similar to those given in Section VII, it may be shown that the quantity

log2[b11| + log2|b12|

+ log,|b,, | + log,|b,, |

decreases by at least one unit in traversing a link in the chain. This

demonstrates the following conclusion.

11.9 [Theorem]. The number of links in the chain of quadrilateral

primitive sets is polynomial in the data of the problem.
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XII. The General Algorithm for Integer Programs with Two Variables

We are now in a position to discuss our algorithm for integer programs

with two variables and three inequalities:

max a01h1 + aozh2

8y1h; + 2158, 2 by

a,,h, +a,,h, > b

2171 2272 2

a,,h, +a,,h, > b

3171 3272 - 73

with h h2 integral. Let us assume that the methods of the last several

1?
sections have already been applied to determine the chain of quadrilateral
primitive sets and the two simplicial subdivisions appearing at the ends
of the chain. To be specific let the inequalities 0 and 3 relate to
opposing vertices in each quadrilateral, and similarly for inequalities
1 and 2. 1In addition let one of the simplicial subdivisions involve
the Brd slack vector and the other the 1% slack vector. The case in
which one of the subdivisions involves the zeroth slack vector will be
commented on later.

We shall use the labeling rule which labels a vector x = Ah with
the largest subscript corresponding to a violated inequality, and with
the label zero if all inequalities are satisfied. The algorithm of Sec-
tion IV for solving integer programming problems is concerned with a
sequence of almost completely labeled primitive sets, each of which bears
the 1abels 1, 2, and 3,with one of them doubled.

Let us imagine that the algorithm has entered a chain of quadrilaterals

and moved to the beginning of a link in the chain without having found a
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completely labeled primitive set. We wish to show that the passage through
the link can be accomplished with an amount of numerical computation
which is independent of the number of primitive sets in the link and
more generally independent of the complexity of the problem.
Without loss of generality we may transform the problem so that the

primitive sets in the link consist of the gquadrilaterals

0 0 1 1

0 1 3 j+1

for j =0, 1, ..., t . The corresponding primitive sets will be given
by the columns of

— |

1:'01 + (j+1)b02 b01 + jb02 b02

bll-'l-(j-i-l)b12 bll-i-jb12 b12 0

b21+ (;_’|+l)b22 1321+_']b22

byy + (3H1)by,  byy +3b3, by,

|l

with row minima lying on the main diagonal. The first of these primitive
sets appears in Figure 34, and the reader may verify that the four dis-

positions of the labels shown in Figure 35 are exhaustive.

FIGURE 34
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We shall examine each of these four posgibilities in turn and use
the orientation arguments of Section VI to determine which of the vectors
with doubled labels is to be removed. As the reader will remember we
remove the vector which yields an odd permutation of the integers
0, 1, 2, 3 when its label is replaced by the missing label ( in the

sequence
2(1,1), £(1,0), £(0,1), 2(0,0) .

Case 1

In this case the sequence of labels is (2,1,2,3) so that (0,1)
is removed and replaced by (0,-1) , which bears the label 3. It follows
that (0,0) is then removed and we continue down the line with ISt coor-

dinate equal to zero, until the final primitive set in the link,
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0 0 1 1

-t -t+l 0 1

is reached. Of course no calculation is necessary and we move immediately

to this latter primitive set.

Case Il

The sequence of labels is now (1,1,2,3) and therefore the vector
(1,0) 1is removed and replaced by (1,2) . We continue moving up the
line: 1f for every such point (1,2), (1,3), ..., (1,t) the label 1

is retained then we move immediately to the final primitive set

0 1 t t+1

On the other hand there may be some point on this line for which
the label changes from 1 to either 0 or 2. By carrying out two divisions
we can find the smallest value of j , say j* , for which (1,j) has
a label different from 1. If this label is O then the primitive set

given by

0 o | 1 1

0 1 j*-1 1%

bears all four labels and the vector (1,j*) 1is the global optimum for
the programming problem.

On the other hand the label for (1,j*) may be 2, as in Figure 36,
At this point the algorithm calls for the removal of (Q0,1) and its
replacement by (0,-1) . But this vector has the label 3 as does every

vector on the line (O, hz) with hz.ﬁ 0 . This means that we proceed
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immediately to the almost completely labeled primitive set

0 0 1 1

—t+j*x-1 —t + 3% j* -1 j*

which initiates the next link in the chain of quadrilaterals.

%]

R

:
|
1
1
|
]
1
1
]

("]

LS
v mr e Qe e

FIGURE 36

Case II1

The sequence of labels for this case is (2,1,3,3) so that .(0,1)
is replaced by (0,-1) . Since all of the vectors on thé line (0, hz)
with h2 < 0 have the label 3, we immediately move to the final quadri-

lateral in the link;
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Case IV
The sequence of labels for this final case is (1,3,2,3) so that
(1,0) is removed and replaced by (1,2) . The subsequent argument is

then identical with Case II.

To summarize we see that in two of the four cases we can move to
the final quadrilateral in the link with no calculation at all. 1In the
other two cases the passage through the link depends solely on determining
the first point on the line (1,j) at which a label different from 1
first appears. Since the number of links in the chain is polynomial imn
the data of the problem we see that the passage through the entire chain
of almost completely labeled quadrilaterals can be effected using a number
of calculations which is polynomial in the data.

But even more can be said. We can assume that the initial quadri-

lateral in the chain is given by

which is immediately preceeded by primitive sets composed of tramslates

of the two triangles

r 3 f 3
0 0 1
and
0 1 0
. ry \ J .
Y (.Y f
1 0 1
]
1l 1 )
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in conjunction with the 1St slack vector. At the other end of the chain
is another simplicial subdivision in conjunction with the 3rd slack vector.
If the algorithm passes through the chain it will never return to the
chain since if it does it will enter through the latter simplicial sub-
division and be forced to move through the chain in a direction opposite
to that given by our orientation argument. It follows that our algorithm
can be made polynomial in the data if we can recognize, in polynomial

time, a completely labeled primitive set associated with the first simpli-
cial subdivision or the initial almost completely labeled primitive set

in the chain of quadrilaterals.

But this is quite easy. Let us solve the programming problem in
which the first inequality is neglected. We adopt the labeling rule
which labels a vector x = Ah , with the label 3 if =x viclates the
third inequality, with the label 2 if it satisfies the third but violates
the second inequality, and with the label 0 if both the second and third
inequalities are satisfied.

Using our previous algorithm, we can find in polynomial time, a
triangle in the appropriate simplicial subdivision whose three vertices

bear the labels 3, 2, 0. One possibility is illustrated in Figure 37.
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S At

FIGURE 37

In this figure the vector (h¥, h;) receives the label 3 since it
violates the third inequality, and (h¥, hgi-l) the label 2, since it
satisfies the third but violates the second inequality. The vector
(hIﬁ-l, hg) satisfies both of these inequalities. If in addition it
satisfied the first inequality--which was neglected in determining this
vector--it would be true that (hi-bl, h;) would be the maximum for
the programming problem involving all three inequalities. In order to
continue we assume therefore that (hz-+l, h;) violates the first in-
eguality of the programming problem.

Let the labeling procedure now be changed so that a vector x = Ah
receives as a label the largest subscript associated with a violated
inequality. With this modification the vectors (h;, hg) . (hI, h;-bl) .
(h;-+l, h;) receive the labels 3, 2, 1 respectively. These three vectors
form a primitive set in conjunction with the first slack vector, which

receives the label 1. We have therefore constructed an almost completely

iabeled primitive set. By removing the first slack vector, we introduce
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(hI-+l, hg-kl) and enter the chain of quadrilaterals in Cases I or 1I
of Figure 37.
The solution of the programming problem in which the first inequality

is neglected may also be revealed by a triangle of the form

h;+1 h; h1‘+1
* * *
b3 h3+1 h}+1

instead of the triangle in Figure 37. 1In this case (h;-+l, hg) receives

e T 0 *
N (hl +1, h2 +1)

!
b
1
1
1
1
I
1
]
3

.

FIGURE 38

the label 3, (h¥, h;-lrl) the label 2 and (h¥+1, h3+1) satisfies

nd and 3rd inequalities. 1If this latter vector also satisfies

the 2
the 1%t inequality it is the global maximum to the programming problem.
As before we assume that (h;-+l, h;-bl) violates the ISt inequality,
and change the labeling procedure so that a vector x = Ah is labeled
with the largest subscript corresponding to a violated inequality.

The primitive set consisting of these three vectors and the first slack

vector form an almost completely labeled primitive set. When the first
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slack vector is removed we enter the chain of quadrilaterals in either
Casgse III or 1IV.

One final remark: If the simplicial subdivision at the end of the
chain involves the Oth slack vector rather than the 3rd slack vector,
entering this subdivision means that the final primitive set involves
the Oth slack vector, and the problem is therefore infeasible. These

arguments demonstrate the following theorem.

12.1 [Theorem]. Our algorithm may be accelerated so as to provide

a polynomial algorithm for the general integer program with 2 variables.
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