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AN EVEN MORE ELEMENTARY "CALCULUS" PROOF

OF THE BROUWER FIXED POINT THEOREM*

by

Yakar Kannal

1. The Brouwer fixed point theorem is usually proved by means of
either combinatorial arguments, homology theory, differential forms, or
methods from differential topology, see [1], [4], [5], [8]. J. Milnor
has suggested recently [6] an analytic proof. This proof, however, was

somewhat involved and "

strange.”" The proof given in [2], while analytic
and entirely elementary, uses a seemingly artificial homotopy in order

to get the desired contradiction via (n+l)-dimensional integration. We
offer here a self-contained proof, inspired by the one in [2], of the '"no
differentiable retraction" theorem, a proof which employs only "engineer-

ing type" Advanced Calculus concepts. The motivation for the computation

is clear.
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I am very much indebted to Professor H. Scarf for encouraging dis-

cussion concerning this work.

2. We prove in the present section the following:

"No Differentiable Retraction'" Theorem. There exists no twice differen—

tiable map f of the unit ball B in R" into its boundary § , such

that f(x) = x for all x e S .

Proof. Let f be such a retraction, f(x) = (fl(x), cany fn(x)) . Let
J{x) denote the Jacobian determinant of f at x . Expanding J(x) by

the first column, we get

of
W I = I ent e
i

where Ei(x) is the determinant of the matrix obtained from the matrix

s 3
sz afn
Bxl Bxl
(2) M(x) =
sz afn
k an an J

by omitting the i-th row. Note that J(x) vanishes identically on B ,

as the n scalar functions fl’ ceey fn satisfy the funectional relation
?=1fi(x) 21 . (Note that we use here only the easy part of the vanish-

ing Jacobian theorem.) Integrating J(x) over B , we find, using inte-

gration by parts and (1), that
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According to a well-known theorem of Jacobi [3]}, [7] (used in the proof
of the Brouwer fixed point theorem in [2]),
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(If n =2 then (4) reduces to the equality of the mixed derivatives.)
To prove (4), let g j(x) , 1# 3, denote the determinant of the matrix
L

obtained from M(x) by omitting the i-th row and replacing the row

ot af )} 2’8, 2%f_
Ty ey o bY |/, s, Applying the rule for dif-
x,’ * o8x x, ax,’ *O9X,3X
g 3 1°%3 1°%3
aEi
ferentiating determinants we see that —— = z. c, . . The equality of
CE jFii, ]
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the mixed derivatives = implies that ¢, |, = (—1)J c
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as the row of the second order derivatives get shifted j-i-1 rows when

one passes from ¢, ., to ¢

1,] .1 1if 1 <3, and i-j-1 rows otherwise

Hence
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Substituting (4) in (3), we find that a contradiction would follow once

we prove that



n i+l
(5) I= js... JE, 0] D E ()dx) «ovdxy jdxy 0 ... dx #0,

Note that dxl ...dxi”ldxi_'_1 ...dxn = xidc » where do denotes the sur-

face element ((n-1)-dimensional volume) on the unit sphere ( X, being
equal to the projection of the unit normal of S on the i-th axis).

Hence

i+l

n
(6) I = fs,.. fflcx){i=l(-1) x,E, (x)do .

In order to calculate 1 , observe that fi(x) =x, on S, 1l<i<mn,

i

Hence grad fi - grad X is perpendicular to § there. Thus there exist

scalars Ai (depending on x ) such that grad fi(x) = grad X, + A.x ,

i

and the matrix M can be written as

( )
Ao¥p e oeees AEy
1 + Azxz
AZXn 1+ Anxn J
\

i+

The sum z?=l(—l) 1xiEi(x) is equal to the determinant

%X Ale Anxl xq 0 0
X, l—+k2x2 Anxz X, 1 0

= =x1 .
xn J\2xn 1'{-Anxn xn 0 1

Moreover, fl(x) =X on 5 . Inserting these results in (6), we get

the result 1 = f . fxido >0, contradicting (3). (It is easy to
S



compute that I =-% [ ... Jdo = vol(B) .)
5

Remark. The idea behind the preceding procf is, of course, that the signed
measure of the image of B under a map f , such that £ is a diffeo~
morphism on S , 1s equal to the measure of the figure bounded by £(§)-
other regions cancelling each other out. It so happens that we can cal-

culate that signed measure explicitly in the case relevant for us.

3. The Brouwer fixed point theorem follows from the no-differen-
tiable retract theorem in a well-known way (see e.g. [2]). We sketch the

argument for completeness. Suppose that g : B+ B 1s a fixed point free

o

continuous map. The compactness of B dimplies that |g(x)-x| > e >

for x e B. Let h(x) be a 02 function such that lh(x)-—g(x)| <

Nm

on B (we can even let h be a polynomial). Then h(x) # x for x € B
and let f(x) denote{(for xe¢ B, x ¢ S ) the unique point on S such
that h(x) , x and f{(x)} 1lie on the same line and x 1is between h(x)
and f(x) , f£(x) =x for xe S . Then f(x) is a C2 retraction,

contradicting the theorem of Section 2.
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