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AN INDEX THEOREM FOR GENERAL EQUILIBRIUM MODELS WITH PRODUCTION™

by

Timothy J. Kehoe**

1. Introduction

It is well known that some variant of Brouwer's fixed point theorem
can be used to prove the existence of equilibrium prices for a general model
of economic competition. However, simple existence proofs leave many inter-
esting questions unanswered: For example, is the equilibrium price vector
unique? 1If not, is it locally unique? Does it vary continuously with the
underlying parameters of the model? Answers to these questions are inti-
mately linked with the applicability of such models to problems of compar-
ative statics. Consequently, it is not surprising to find that a large
amount of effort has been devoted to analyzing these questions. To pro-
vide compléte answers, however, requires a more detailed set of assumptions
than those required for simple existence proofs. TFor this reason we adopt
a differentiable framework.

There have been many approaches to answering the question of when

an equilibrium is unique (see Arrow and Hahn (1971) for a survey). Recent
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Many of the results presented here were discovered independently and simul-
taneously by Mas-Colell,



ones have included the use of a tool borrowed from the field of algebraic
topology, the fixed point index (Dierker (1972, 1974, forthcoming), Mas-
Colell (1976, forthcoming), and Varian (1975)). Researchers have recog-
nized the close connection that this tool, when cast in a differentiable
framework, has with the concept of regularity introduced by Debreu (1970)
in response to the questions of local uniqueness and continuity. With
the notable exceptions of Mas-Colell (1975, 1976, forthcoming) and Smale
(1974), attention has been focused on pure exchange models that allow no
production. One reascn for this has been that, in contrast to the case
of the pure exchange model where the excess demand function has been the
natural subject of study, the model with production has had no obvious,
single-valued, differentiable, function teo investigate.

Using a variant of a device due to Todd (1977), we define a single-
valued function whose fixed points are equivalent to equilibria of a model
with an activity analysis production technolegy. We associate each fixed
point of this function with an index that is an integer determined by the
local properties of the function at that point. The global index theorem
makes a statement about the sum of all the indices of equilibria allowing

us to establish conditions sufficient for uniqueness.

2. The Model

Let us begin by describing a simple version of the Walrasian model
of cconomic cquilibrium. We assume that there is a finite number, n ,
of perfectly divisible commoditics. On the consumption side of the model
responses of coﬁsumers to a vector of nan-negative prices w = (nl, ...,ﬂn)'

arc aggregated into a vector of market excess demand functions



L) = (ﬂl(“), caey Rn(ﬂ))' - We take these Tunetions to be completely

arbitrary except for the following assumptions:

A.l (Differentiability) Each gi is a continuously differentiable func-
tion defined, for the sake of simplicity, over the domain of all non-negative

prices except the origin, R:\{O} .

A.2 (Homogeneity) Each gi is homogeneous of degree zero; that is,

gi(tﬂ) = gi(n) for all t > 0 .

A.3 (Walras's law) The vector function ¢ obeys Walras's law,

nteln) - 0 .

The production technology is specified by an activity analysis matrix
A with n rows and m columns. Aggregate production is denoted Ay
where y 1is an mx1l vector of non-negative activity levels. We assume

that A satisfies the following assumptions:

A.4 (Free disposal) A includes n free disposal activities, one for

each commodity.

A.5 (Boundedness) There is no production without any inputs,

{yly » 0, Ay > 0} = {0} .

Alternative forms of these assumptions are useful: The free disposal as-
sumption implies that the nxn matrix -1 is a submatrix of A . The
boundedness assumption implies that there is some vector , strictly
positive, such that 'A< O

For our present purposes an cconomy is completely described by an

excess demand function representing the consumption side and an activity



analysis matrlx representing Lhe prodaction side.

Definition. An equilibrium of an economy (£,A) is a price vector =
that satisfies the following conditions:

a. m'A<O0.

b. There exists ¥ > 0 such that &(7) = Ay .
n > —
c. Ei=1ﬂ1 =1.

The condition 7'A < 0 implies that at prices 7 no excess profits can
be made. £{n) = Ay requires that demand equal supply at equilibrium.
This condition together with Walras's law implies that #'Ay = 0 . Thus
profits are maximized by the aggregate production plan Ay . Since A.1
rules the vector m = 0 out of consideration we use the homogeneity as-
sumption to restrict our attention to the unit simplex

n - P s s .
321" = 1} when examining equilibrium positions.

5= 1{neR[n, >0, %
At this stage it might seem more appropriate to include the vector of
activity levels § directly in the definition of equilibrium. However,
we shall soon impose conditions on (£,A) that would make this addition
superfluous.

We shall find it useful to consider whole spaces of economies.
To do so, we must specify some topological structure on the space of eco-
nomies satisfying A.1-A.3 and on the set of activity analysis matrices
satigfying A.4-A.5. A topology on a space is specified by defining a sys-
tem of open sets. Recall that in a metric space this is done by employ-
ing the concept of distance bhetween two points in that space. We now give
the space of economies the structure of a metric space: Let

nx (m-n)

AC {1} xR

be the space of activity analysis matrices that satisfy



A.4 and A.5; here ~I is the submatrix of free disposal activities. We

endow A with the standard topology on Rnx(m—n) by defining the metric
2 1/2
1 ,2 2 1
d(A™, A%) = (Zr£=1z?=n+l(aij mag;) ) for any AT, AZc A . Let D

be the space of Cl functions satisfying A.1-A.3. We endow D with the
topology of uniform Cl convergence on compacta. Letting M be some

compact subset of Rﬁ\{O} , we define the metric

i 2
102 1 2 35 9

d (£, %) = sup |5 (m) -g5(m)| + sup |T=(w) - ——(m) for any
M R i i . . oT. AT,
1,meM i,j,meM| ] |

gl, 52 ¢ P . Since we assume A.1 and A.2 we shall use S5 as the compact

domain on which maps gl , 52 are compared. (This topology is the same

as the Whitney C1 topology if we restrict the domain of our maps to the

compact set S .) The space of economies E = 0 x A has the induced pro-
1 .1 2 2 . .

duct topology: For any (¢, A7), (¢, A") ¢ E we define the metric

1 2

ateh, b, (8, aD1 = d (el D +aw’, 4H

Definition. An economy (&,A) 1is an element of the metric space E = D x

3. The Mapping

Let us now define a mapping of § into itself which whose fixed
points are equivalent to equilibria of an economy (£,A) . Letting N be
any non-empty, closed, subset of r" , we define the projection map
pN : R* > N by the rule that associates any point q ¢ R” with the point
pN(q) that is closest to q in terms of Euclidean distance. It is well

N . . . .
known that p is continuous if N Is convex. Observe that our defini-

tion of equilibrium implies that any cquilibrium is an element of the con-

n

i=1"1 " 11 s .

vex set SA = {9 © Rn|w'A < 0, Z
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m FIGURE 1

Definition. For any economy (£,A) ¢ E, define themap g : S > S by

the rule

g(m) = p AT +E(M))

It will sometimes be convenient to refer to g as g(E’A)



o+ f,(ﬂ)

FIGURE 2

Note that, since g 1is the composition of two continuous maps,
it too is continuous. We shall apply Brouwer's fixed point theorem to

this map g to prove the existence of an equilibrium price vector for g .

Brouwer's Fixed Point Theorem. If f : M > M is a continuous map of some

1 . .
non-empty, compact, convex set M CR into itself then f leaves some

point fixed; that is, there exists =x ¢ M such that % = Ff(x) .

The motivation for our definition of g is clearly seen in the following

theorem.

Theorem 1. Fixed points 7 = g(7) of the map g and equilibria of the

economy (f,A) ¢ £ are cquivalent.



Proof. 7 = g(m) if and only if T 1is the unique solution to the quadra-

tic programming problem

- 1 n ~ A 2
min —Z—Z:.Fl(pi -, - Ei(ﬂ))

p'le=1, where e= (1, ..., 1)' .

By the Kuhn~Tucker theorem there exists § = (§1, ey §m)' non—negative

and A such that
p-7-£(a) +Ay +de =0

and p'Ay =0 . But p =7 so that £(a)

fl

Ay + e . Applying Walras's

law, A.3,

0= n'g(m)

= q'Ay + 7h'e

~

Therefore since 7 ¢ Sy s the equilibrium conditions are satisfied. [:1

Consequently, Brouwer's theorem implies the existence of equilibrium
and hence the logical consistency of our model. The restriction of the
domain of g to & , while entirely natural for proving existence of
equilibrium, would make our discussion of regularity and index theory
awkward. We want to study the derivatives of g . To simplify matters we
define X to be a smooth (that is, C]) n dimensional manifold with boundary,
embedded in R"  so that it contains § in its interior and does not con-

tain the origin. We want to cxtend the domain of the map g to X .



Lemma 1. Let £ be any function satisfying A.l and let X CR" be de-

fined as above. . { can be extended to a Cl map with domain X .

Proof. We demonstrate our contention by constructing a Cl map

£% Rn + R® that satisfies £x(m) = £(m) for all = ¢ X rle . There

are two steps in this construction. First we deal with the relatively

minor technical problem of £ being undefined at the origin. Second we

follow Saigal and Simon (1973) in extending £ to a Cl map on all R" .
Since X 1is compact and does not contain 0 ¢ R" » the continuous

function l|W” achieves a minimum o > 0 on X . Let £ be such that

lin]] >« >8>0 for all = e X . Take a smooth function & : R » R

that satisfies

a(w)

I
ek

i f[n]] <8

I
o

6 (m) if |||

RY

a

0<o(m) <1 if B < vl <o .

The construction of such a function, known as a bump function, is a stan-

dard exercise (see Hirsch (1976), pp. 41-42). We define go(n) = (1-8{m))e(m)

for all « ¢ R:\{O} and Co(ﬂ) =0 for mw= 0. Note that go is Cl .

n
ﬂR+.

Now extend ﬁo to a Cl map on all R employing the following

recursive procedure. Given El_] defined on {n ¢ Rnlﬂi > 0, cees T > 0}

o

n .
maps R, into Rn, and agrees with ¢ on

define &i on {n ¢ Rn| 0, ..., m_ > 0} by the rule

Ti+1 = n =
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RN if m, >0

i i-1
£ (nl, ...,wn) = {—g (ﬂl, cees My _gs "My Moo ...,ﬂn)

+ 251'1(ﬂ 0, , M ) if w, < 0.

T, . .
i+1? n i

1r e M-

Note that Ei+1 extends 51 and is Cl . Therefore ¢¢* = En extends

go to all R" . []

We shall use this lemma to assume that g is defined on X (although
there isnoreason to expect that ¢ satisfies A.2 and A.3 at points not

in xﬂRi).

4. Regular Economies

When studying fixed points of g we want to rule out certain degen-
erate situations. For this purpose we employ the notion of regular economy
introduced by Debreu. References for the technical concepts employed in
this and subsequent sections are the books on differential topology by

Milnor (1972), Guillemin and Pollack (1974), and Hirsch (1976).

Definition. Consider a Cl map £ : M > N from a smooth manifold of di-
mension m to a smooth manifold of dimension n . A point xe¢ M is a

regular point if DfX : 'l(M)x - l(N)f(x) has rank n ; in other words,

is onto. A point y ¢ N 1is a regular value if everv point x for which

E(x) =y 1is a regular point. Points in M that are not regular points

are critical points; points in N that are not regular values are critical

values.

By convention, any point y for which the set f_l(y) is empty is a regulér

value. Also, if m < n , then clearly every point x ¢ M is a critical
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point. We extend these concepts to maps such as g  that are not everywhere
differentiable by requiring that the map fo. exist at a peoint x for
X to be a regular point.

In the following analysis we fécus our attention on economies (£,A)
for which 0 1is a regular value of the map {(g-I) : X - R  where I is
the identity map on R" . IImfortunately, the map g defined in the previous
section is not everywhere differentiable. The projection map pSA has kinks
because of the boundary of SA .  Consequently, g 1is only piecewise dif-
ferentiahle. As we shall see, however, g 1is a smooth map on any open
set U< X such that all points in the image g{(U) are contained in the
same face of SA . In order to ensure that g is differentiable at every

equilibrium, let ws make the following non-degeneracy assumptions on

(£.8)

A.6. No column of A can be expressed as a linear combination of fewer

than n other columns.

A.7. Llet B(7) denote the submatrix of A whose columns are all the
activities earning zero profit at 5 . At every equilibrium 7 all 9b
are strictly positive in the equation £(7) = Z §bb
beB (1)
We now turn our attention to finding an expression for Dgﬁ - I

for an equilibrium 7 of some ecomomy (f,A) satisfying A.1-A.7.

Lemma 2. Let p be the map that projects any point q ¢ R® into the
non-empty set {xlx'C = ¢'} . 1If the columns of € are linearly indepen-
dent then p is a smeoth function with Jacobian matrix qu = I-C(C'C)—lC'

for all g « k™
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The proof of this result is a straightforward application of the Kuhn-Tucker
theorem. Of course I —C(C'C)-lc' is simply the orthegonal projection
into the null space of C as anyone familiar with least-squares regres-
sion techniques would expect.

We want to apply this lemma to g-I . Note that at any fixed point
7, w'B(1T) =0 and A.6 implies that B(T) has fewer than n columns
and these are linearly independent. Let C=[e B(x)] ; the columns of

C are linearly independent since 7'e = 1 while T'B(7) = 0 .

Theorem 2. Let (§,A) be any economy satisfying A.1-A.7. The map g

is differentiable in some open neighborhood of every fixed point 7 and

the Jacobian matrix Dg. - | equals (a-ccroy ey #DgL) - T

Proof. By assumption A.7 any activity aj not in B(f) at equilibrium

7 1is such that ﬁ'aj = g(%)'aj < 0 . Therefore % has an open neighbor-
hood U such that g(ﬂ)'aj <0 for all =w e U by the continuity of g .
Lemma 2 implies that if all the constraints g(u)'B(f) < 0 are satisfied

with equality then the vector y varies continuously with w . But

9b >0 for b e B(W) implies that there is an open neighborhood.'VC:!J

of © where g(n)'B(7) = 0 . Using the chain rule we can differentiate

g to obtain
- e -1 T -
bg, -1 = (-cc'e) "eDG+ne ) -1

for all = ¢ V . [:j

Definition. Aa economy (i,A) ¢ [ that satisfies A.6 and A.7 and has
Dgﬁ-I non-singular at every equilibrium is a regular economy. The set
of regular cconomies is denoted R . Fconomies that are not regular

are critical economies.
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To justify this terminology we note that Theorem 2 implies that 0 is
a regular value of g-1 if (4,A) is a regular economy. As we shall
see, the conditions that define a regular economy are satisfied by almost
all economies in & . Of course, the semse of the phrase "almost all"
has been made more precise. We shall also demonstrate that these condi-
tions for regularity are equivalent to those given by Debreu (1970) for
the special case of a pure exchange economy with all equilibria strictly
positive.

Another useful concept is that of the equilibrium price correspon-

dence.

Definition. The equilibrium price correspondence I :+ E + S associates

with any economy the set of its equilibrium price vectors.
Theorem 3. T 1is an upper-semi-continuous, point-to-set correspondence.

Proof. Let (gi, Ai) -+ (£,A) and wi + m  where wi £ H(Ei, Ai) . We
want to show that 7 ¢ [{(£,A} . Let us define the production set

Y(A) = {Ay[y‘i 0} . We can rephrase our equilibrium conditions as

NCELAY = {7 ¢ S|n'A < 0, E(x) £ Y(A)} . Now if all Ai satisfy A.4-A.5,
Ai + A implies Y(Ai) »+ Y(A) . (We can use the Hausdorff distance for

n ; .
non—empty, closed subsets of R te make precise the notion of conver-

gence of sets.) {i(ﬂj) is jointly continuous in gi and n , Where
i . . 1 it i
£ varies in the topology of uniform C convergence on compacta; T A

is likewise jointly continuous in a~ and Al . Therefore we have

ni Ai + 'A< 0 and Ci(ﬂi) + £(m) . Since Y(Al) - Y(A) and

ﬁi(ni) € Y(Ai) » E£(m) € Y(A) . Thus = e II(£,A) . [j



14

One immediate consequence of this theorem is that for any economy (£,A) ,

the set of equilibria TN(f,A) is a closed subset of the compact set § ;

therefore II(£,A) is compact. In the case of a regular econonty, the in-
verse function theorem applied to g-1 at implies that the equilibria
are isolated. Thus any economy (£,A) ¢ R has only a finite number of

equilibria.

Theorem 4. The equilibrium price correspondence I is continuous on

R and the number of equilibria is locally constant.

Proof. We model our proof after that of Dierker (1974, forthcoming) for
the pure exchange model. Let (7 .A) be a regular economy. The set

N{E,A) = (g—I)‘l(O) consists of a finite number of equilibria

ﬁl, v ﬁk . Each x° has a neighborhood that is mapped diffeomor-

phically by g-1 onto a neighborhood of (¢ . We make use of the follow-

ing result from Dierker (1974):

Lemma. Let =z map a neighborhood of = ¢ X diffeomorphically onto a

neighborhood of 0 ¢ R" and z(w) = 0 . There exist a neighborhood V
1

of w and ¢ > 0 such that every C function z maps V diffeomor-
phically onto some neighborhood of 0 provided the Cl distance of

, .
z|V and z{V 1is less than ¢

It follows that each ﬂi has 2 neighborhood Vi such that (E—I) : Vi > r"

is a diffeomorphism onto a neighborhood of the origin if E is C1 close

_ ()

n (% K) Vo
toe g on V, . Let and g = g £ for some (£,A) ¢ L.

i
We have no trouble with the differentiability of g since we can choose

1

v small enough for g|Vi to be C by Theorem 2. The topology on E

is fine enough for us to find a neighborlicod U E of (£,A) such that
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(E,K) e U implies that E|Vi is smooth and had C1 distance less than
e from g[Vi .

Let each Vi be small enough so that Vif] Vi‘ =@ for i# 1.
k
Recall that 1 is upper-semi-continuous. The set L]cl(Vi) , where
i=1
cl(Vi) is the closure of Vi , 1s a compact subset of X , implying

k
that H(E,K) L]Vi for all (%,X) € U . Thus the number of equilibria
i=1

is locally constant. Furthermore, the correspondence Il can be considered

(k)

3
1

=3
1

L

FLGURE 3
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as the union of k single-valued functions on U . They are continuous
since I 1is upper-semi-continuous. [:I

When the economy under investigation is regular this theorem provides us
with answers to the questions of local uniqueness and continuity posed

earlier.

5. The Global Index Theorem

We are concerned with fixed points of the map g defined on the
manifold X . Although g is not everywhere differentiable, if the economy
(£,A) satisfies A.6 and A.7 and has locally unique equilibria, we can
smooth g without disturbing its fixed points. Although this operation
is not strictly necessary to derive the results that follow, carrying it

out gimplifies our exposition.

Llemma 3. Let g : X -+ X be defined as previously. If (¢,A) ¢ £ satis-
fies A.6 and A.7 and if the fixed points of g are iselated then for any

e » 0 there exist a Cl map g* : X + X and an open set VX contain-

ing {7 ¢ X|g(m) 7} which satisfy
a. |lgx(m)-g(m|| < e for all = e X ;
b. g*(n) = g{n) for all = e V ;

c. g*(m) =1 dimplies T e V .

Proof. We make use of the following well known theorem (see, for example,

Dieudonne, p. 133.)
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n
Weierstrass Approximation Theorem. Let X C.RY be a compact set and

n : .
g : X > R be a continuous map. For any ¢ > 0 there exists a polynomial

X .

o

map h : X -+ R"  such that Hh(w)—-g(ﬂ)” < e for all =

The set {w ¢ X|g(ﬂ) = 1} consists of a finite number of points

nl, eny nk . By Theorem 2, for each 77 we can find some &y > 0 such

that g(w) is differentiable on some open ball UiC: X centered at T

with radius ay - Choose « small enough so that U; r]Ui, =p

17 v Oy
, . i
for i #i' . For each =« choose some Bi such that oy > Bi >0 .

Let Vi be the open ball centered at »'  with radius Bi . DNote that

k
the set V = LJVi containsg {r =« X|g(ﬂ) = n} and that g is differen-
i=1
k . 0
tiable on the set U = LJUi . Let 0" : R® »R be a smooth function

i=1

such that Oi(n) =1 4f ||t -x

<h . 0t =0 if flatoall e,
and 0O < Gi(w) <1 if Bi < ||ﬂi— r|l < a, . Let 9 : R* > R be the smooth
funcelon &(n) = Z?zlﬁi(n) . Note that 8(n) =1 for w ¢ cl(V)
o(r) = 0 for me X\U, and 0 < 8(n) <1 for = ¢ U\cl(V)

We are now ready to coustruct a map g% satisfying the cenditions
of the lemma. The continuous function ||g{un) - =|| achieves a minimum
§ > 0 on the compact set X\v . By the above theorem there exists a smooth
map h : X o R" such that [|h(n) —g(n)|| < ¢« < 6§ for all = ¢ X . Since

g maps X into S that is, maps X into its interior, we can choose

A r
. small enough so that h : X +» X . Define the map g* : X >~ X as

gr) = 6(w)gln) + (L-0(u))h(x) . Note that g* is Cl and agrees with
g on V . Also note that for any 10 ¢ X\V . ||g*(w)-—g(ﬂ)|!_i £ and

[lg iy - ﬁ” > 8 » ¢ implies that g(n) # n . Hence g* 1is the map that

we desire. [:]
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We now present the formula for computing the local Lefschetz number
of an isolated fixed point T of the map g . Actually, the local
Lefschetz number of an isolated fixed point is a purely topological con-
cept which requires only the continuity of g in order to be defined.
However, in keeping with our differentiable approach to the study of equi-
libria, we shall concern ourselves only with cases where g 1is differen-
tiable at its fixed points. The above formula indicates that if (t,A) ¢ €
satisfies A.6 and A.7 and has locally unique equilibria, then, for our

g(E’A) is Cl .

purposes, we can assume that
For a C1 map g : X + X we compute the local Lefschetz number
of an isolated fixed point 7 as follows. Take a small closed ball B
containing T and no other fixed point. The rule v{mn) = [g(n)-—ﬂ]/|lg(ﬂ)— nH
defines a smooth map from the boundary of B, 8B, to the unit sphere,
E - The local Lefschetz number is defined to be the degree of this map
v which can be any integer. Intuitively, the degree of v measures the
number of times v wraps around Z » taking orientation into account.
To be more specific, we choose some regular value y of v and count
the number of points in its preimage v_l(y) » adding +1 for every point
m £ v (y) such that the non-singular linear map DvTr : T(BB)TT - T(Z)y
preserves orientation and adding -1 for every point = ¢ v_l(y) such that
Dﬂv reverses orientation. It is well known that this claculation is inde-
pendent of the regular value y and the ball B and that a regular value
always exists (see Hirsch (1976), p. 124).
In the special case where 7 is a regular point of g-T1 this
reduces to the following rule (see Hirsch (1976), p. 122). L%(g) = +1

if Dgﬁ-I preserves orientation. Lﬁ(g) = -1 if Dg%-I reverses orien-

tation. Thus, L%(g) = sgn(det[Dgﬁ-I]) when Dg%-I is non-singular.
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Theorem 5. Let (£,A) ¢ £ be any economy that satisfies A.6 and A.7 and
has locally unique equilibria. ¥ L (g) = D" .

w=g ()
Proof. This theorem is a special case of a major theorem in algebraic
topology, the Lefschetz fixed point theorem (see Dold (1965) and Cuillemin
and Pollack (1974), pp. 119-130). Saigal and Simon (1973) prove a version
particularly suitable to our purposes. The basic idea is that if g is
a C1 map X > X with isolated filxed points and if we calculate the

local Lefschetz number L%(g) of a fixed point T as above there is

a global Lefschetz number L(g) = % L“(g) which is a homotopy invariant.
m=g ()

In fact, L(g) 1is independent of g ; it depends only on the manifold X .
Let ¢ be the map ¢ : X - X that maps every point into the con-

stant x = (1/n, ..., 1/n)' . Since X is convex we are able to construct

the homotopy G : X x [0,1] -~ X by defining G(n,t) = (1-t)x + tg(m)

Note that ¢ 1is a smooth map and x 1is the unique fixed point of c .

Therefore LC = L;(c) . Since L(g) is a homotopy invariant,

L(g) = L(e) = L(e) = sgn(det[-1]) = (-1 . []

Figure 4 illustrates this theorem for the case where g maps the unit

interval into itself. Here Z Lﬂ(g) = L(g) = -1 .
=g (m)

Although we can compute the local Lefschetz number of a fixed point
whenever it is isolatcd, we shall have little use for it except when (f,A)

is a regular economy.
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g(m)

FIGURE 4

Definition. For any economy (£,A) ¢ £ satisfying A.6 and A.7, if an
equilibrium 7 is such that [(I-—C(C'C)_lCF)DEE-I] is non-singular

then index (%) is defined as (—l)nsgn(det[(l-C(C'C)_lc')DE%-—I]) .

The advantage of this concept of index is that it can be calculated with-
out reference to the map g . Note that if (£,A) is regular then
index (1) = (—1)“Lﬁ(g) . However, we leave index () undefined in cases
where @ might not be a regular valuc of g~-1 .

Let us now state our central result which is an immediate consequence

of Theorem 6 and the definitions of dindex (ﬁ) and regular economy.

Theorem 6. 1f (£,A) satisfies A.1-A.7 and is a regular economy then
index () isdefined and cqual to +1 or -1 at every equilibrium 7 and

Z index (w) = +1 .
Tell(E,A)
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6. Caleculation of the Index

In order to apply our results to specific economic models, we want
to develop alternative expressions for the index (T) . One way to do
this is to manipulate the matrix [Dgﬁ-—C(C'C)_lC'Dg%-—C(C'C)_IC'] with-
out changing the sign of the determinant. FElementary operations with this
property can be found in any standard text on linear algebra; our reference
is Gantmacher (1939). However, to the writer's knowledge, the following

useful result in linear algebra is not found elsewhere.

Lemma 4. Let € be an nxk matrix of full column rank k < n and let
.J be an nxn matrix. The determinant of (I-—C(C'C)_lc')(I+J)-I has

the same sign as

J C
det .
o 0
] -1 ] — [} ~1 ¥ T -1 L]
Proof. (I-C{C'C) "C")(I+I}y -1 = J-C(C'C) "C'IJ-C(C'C) "C' . The deter-

minant of this matrix equals that of

J-ccroy tera-ceroy e 0
c'J+¢! I
Adding the last row pre-multiplied by C(C'C)-1 to the first, we do not

change the determinant of this matrix. We now have

_ -1

J c(Cc'e)

det .
C'I+C I

Subtracting the first row pre-multiplied by €' from the last we are left

with
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Note that C'C 1is positive definite and hence has a positive determinant.

The sign of the above expression therefore remains unchanged when the matrix

I 0
is post-multiplied by where 1 is nxn .
0 c'C
-1 1
J c(c'e) 1 0 J C
det = det .
c! 0 0 c'c o 0 [:]

We can use this lemma to calculate index (7) of any regular equi-

librium u of an economy satisfying A.1-A.7.
(- - - )
DE - e' B(7) 0 e' 0
index(m) = (—l)nsgn det e 0 0 = (—1)nsgn detle Dgﬁ B(7)
B'(x) 0 0 0 B'(MH 0
k L — — —

An alternative expression is

-DE~+E  -B(m)
4 ~ m
index(m) = sgnidet

B' () 0

where K is an nxn matrix whose every element is unity. To see why

this is so, note that
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1 et 0
-DE~+E  -B(m)
det| T = (-1)"det |0 Di.-E B(D)
B'(7) 0 T
0 B'(W) 0
L el

If we post-multiply the second column of the final matrix by 7 and sub-
tract from the first column we do not change the determinant. The homogeneity
assumption, A.2, when differentiated, implies that Dgﬁﬂ =0 for any

T e Ri\{O} . Also e'n =1 and B'(7)7 = 0 . Thus we are left with

0 e’ 0 0 e' 0 T

(-1)"det |e D~ -E  B(i)| = (-1)"det|e DE» B(7)

0 B' (1) 0 J 0  B'(m) 0

Let the matrix J be formed by deleting from Dg% all rows and
columns i for which %i = 0 and then deleting any one more row and column.
Let B be formed by deleting from B(T) columns corresponding to disposal
activities and all rows i for which ﬁi = 0 . Note that Walras's law,

A.3, when differentiated implies that (DE%)'% = —£(T) = -B(ﬁ)yB . Using
this observation and matrix manipulations similar to those above it is

easy to demonstrate that

-] -B
index (w) = spn|det|
B! Q
if more than one ﬁi is strictly positive; dindex (ﬁ) = +1 otherwise.
Now if A = -I (the case of the pure exchange model) and if
Ei(ﬂ) > 0 for any w such that ﬂi = 0 then any equilibrium 7 is

strictly positive and dindex (1) = sgn(det[-J]) . Such is the situation
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analyzed by Dierker (1972, 1974, forthcoming) and Varian (1975) who cal-
culate the same expression for the index. Moreover, since A.6 and A.7
are satisfied by any economy (&, ~I) , if det[-J] # 0 at any equilib-
rium then (g, -I) 1is regular. This concept of regularity is therefore
equivalent to that of Debreu (1970). Thus, this formulation of index (%)
allows us to compare our results with those previously known for pure ex-
change economies. Even for these economies our results are more general
than those given elsewhere; we allow some prices to be zero at equilibrium.
One other point is worth mentioning. For the sake of clarity, we
have defined the map g on the n-manifold X . However, since g(X) CZSA ,
we could have well worked with the n-l-manifold X N {% ¢ Rnlzzzlﬂi =1} .
Many writers find it more elegant to work with an n-1 manifold in this
type of model, identifying S with its natural projection into the last
n-1 coordinates. Although this is less trivial than it might seem, we
can use the homogeneity assumption A.2 and Walras's law A.3 to drop the
first coordinate from consideration. In this setting the natural defini-
tion for index (7) , at least when w 1is strictly positive, becomes
(—l)n_lsgn(det[37—§(§'§)-1§“33-E(ﬁ“ﬁ)_l§“}) . Rather than going through
the derivation of this, which requires some work, we simply note that by
Lemma 4, this is equivalent to the expression for the index that we have

already derived.
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7. Genericity of Regular Fconomies

The value of the global index theorem depends on how common a situ-
ation regularity is in the space of economies. Intuitively, we view
economies that are not regular, critical economies, as somehow degenerate.

Thus, we might hope that such economies form a very small subset of F .

In fact this is the case.

Definition. A property that holds for some subset V of a topological

space U 1is a generic property of U if V 1is open and dense in W .

We shall argue that the property of regularity is generic, in other words,
that R is open and demnse in F .

It should be noted that genericity as defined above is stronger
than the usual concept. Mathematicians often speak of some subset V of
a space U as being residual if it contains the intersection of a count-
able number of open dense sets. For example, the set of irrational numbers
is a residual subset of the reals. A property that holds for a residual
subset of U 1is then called a generic property. We shall insist on the
stronger definition, however. This is to ensure that the set of critical
economies is not demse in & . The set of irrational numbers is not open;
its complement, the set of rational numbers, is dense on the real line.

The difficult half of proving that regularity is a generic property
of &t 1is proving that R 1is dense in £ ; Theorem 4 already implies that
it is open. Our approach can be motivated by an argument reminiscent of
the countlng of equations and variables by Walras. Our equilibrium condi-

tions can be expressed as a system of n+k variables in n+k+l equations
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B o=
g(m) = By
e'n =1

where B 1is the nxk matrix of activities B(%) . Walras's law implies
that one of the n equations in E(n) = B§ can be eliminated. The con-
ditions that ensure regularity also ensure that the equilibrium pair
(1,¥) is a locally unique solution to this system that is stable under
small perturbations. If A.6 or the determinant condition does not hold we may
not have enough independent equations to expect the equilibrium to be unique.
On the other hand, if A.7 does not hold then we may have too many indepen-
dent equations to expect a solution to exist. If we do not have as many
independent equations as variables then it is intuitively plausible that
some very slight perturbation in the underlying parameters of the economy
could make the equations independent. Similarly, if there are not as many
independent variables as equations then some slight perturbation of the
system could make a solution impossible. What we need is freedom to make
perturbations in a sufficient number of directions.

The proof that the set of matrices satisfying A.6 is open and dense
in A dis trivial. Therefore, we can demonstrate that R is dense in
E by proving that for any economy (ﬂo, A) that satisfies A.6 but not
A.7 or not the non-zero determinant condition, there is another economy
(gl, A) that is regular with dS(EO, El) < g for amy & > 0 . We reduce
the problem from one in the infinite dimensional vector space U to the
finite dimensional vector space R" by parameterizing any excess demand

function ¢ ¢ D with a perturbation vector v ¢ R" . Define the function

§(myv) = (6,C0,v), ..u,y 6 (mvN',
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6 satisfies A.1-A.3 and therefore so does £+8 if £ does. For any
economy (£,A) we consider the family of economies
{(gv, A) € E\Ev(n) = E(m) + &(m,v), v & R%} . Our goal is to demonstrate
that the set of regular economies is dense in this n parameter family.
If it is, the topology on & 1is such that for any e > 0 we can find a
e’ > 0 such that Hv|| < ¢' dimplies that 4d[(£,A), (Ev, A)] < ¢ . Comn-
sequently if regular economies are dense in this n parameter family they
are dense in [ .

In R the concept of density is related to that of Lebesque measure.
Recall that a set U R" has Lebesque measure zero if it is possible to
cover U with a countable number of rectangular solids with arbitrarily
small volume. The complement in R" of a set with Lebesque measure zero
has full Lebesque measure. This concept of Lebesque measure is easily ex-—
tended to manifolds using local parameterizations (see Guillemin and Pollack
(1974), pp. 204-205). It is well known that a set of full Lebesque measure
is dense (see Milnor (1972}, pp. 10-11). A theorem in differential topology
that is a direct consequence of Sard's theorem is particularly suited to

our purpose (Guillemin and Pollack (1974, pp. 67-69).

Transversality Density Theorem. lLet M , V , and N be smooth manifolds

without boundary where dim M = m , dimN=n, and m <n and let
y . N . Suppose that F : M x V> N is a C1 map such that for every
(x,v) ¢ M x V |, rank DFv(x,v) =n . The set of v ¢ V for which

F(x,v) = y implies that rank DFX(x,v) = n has full Lebesque measure.
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Before applying this theorem to our problem, a few preliminary de-

finitions are necessary. For any nxk matrix B, O <k < n-1 let

Kp=1xe RY|B'x = 0, e'x = 1} ,
Op = {x ¢ R"|B'x = 0, e'x = 0}
" "

Kg ()
FIGURE 5

Note that at any equilibrium & of an economy (£,A) ¢ E , both KB(%)

and KB(%) N int X are smooth and without boundary. Consider the C1

map fB(“) (KB(ﬁ)fl int X) - 0 defined by the rule

B (i)

~ - 0.
By = p P iy~ w =0 PP ) . 1 (60 saristies

A.6 and A.7 then fB(H) agrees with g-I 1in some neighborhood of =
. ~ _B(fr) ~ - . -
on KB(ﬁ) . At an equilibriuvm 7% , f () = 0 . The derivative map
D[E(ﬁ) : T{K, ,~, (Y int X}~ > T(O_ . ..) maps O_ .~ into itself: on
il B{7) ™ B(w) 0O B{(m) >
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B(7)

= "'1|
Df s = (I-c(c'cy "c')me. .

%)
For any economy (£,A) we focus our attention on all possible maps
fB where B 1s some nxk submatrix of A, 0 <k < n-l, such that
KBIW SB # @ . Obviously, every equilibrium 7 is such that 7 € KB and
fB(%) = 0 for some such B , namely B(%) . The converse, however, does
not necessarily hold; in addition to 1 ¢ KB and fB(ﬁ) = 0 the condi-

tion 7 e S, 1s needed for T to be an equilibrium. To apply the trans-

versality density theorem we use the function & to parameterize our maps

fB with the perturbation vector v e R" . Define the Cl map

0
B : (KB N int X) x R" » OB by the rule FB(TI,V) =p B(E(Tr) +8(m,v))

In order to apply the transversality density theorem we demonstrate

that for all (mw,v) ¢ (KB(\ int X) x R"  the derivative map DF§ : R™ > OB
has rank n-k-1 , 1in other words is onto. DFﬁ(n,v) = (I-—C(C'C)_lC')DcSV
where C = {B e] . Now
_11'1"-1 . L ]
Dév(w,v) = ; E
Ty e nn-l

fl

has rank n-1 since DGV('IT,V)e 0 but the (n-1) x {n-1) matrix formed
by deleting any row and column j for which ﬂj > 0 1is non-singular.

Letting p = rank(I-—C(C'C)—lC')DGv ., we note that
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(I--c(c'(:)"lc')DaV C
rank = p+k+1
0 I

p+k+1

= rank -1
(C'C) C'DGv L

= rank

= rank[Dc‘Sv e B

Clearly rank[DGv e B] > n since Dév has rank n-1 , Déve =0,

and e'e = n . However, (I--C(C'C)_lC')D(Sv maps into Op implying that
p = n-k-1 .

We first demonstrate that for almost all v ¢ R , the economy
(gv, A) satisfies A.7. Let B* be any n x k* , k% > k, submatrix of
A that has B as a submatrix. KB*{W int X dis an n-k*-1 submanifold
of the n-k-1 manifold KB Nint X . We res;rict FB(w,v) to domain
(KB* Nint X) . As a consequence of the transversality density theorem,
for almost all v ¢ R" . FB(w,v) = (0 implies that rank DF? = n-k-1 .
However, k* > k implies rank DF? < n=-k*~1 < n-k-1 . Thus for almost
all v ¢ R" there is no 7 ¢ Ky N int X such that Fo(mv) = 0 . In-

tultively, although FB takes (K (M int X) x R into O the image

B* B

FB(KB* (Y int X, v) Is a very small subscet of OB for any fixed v ¢ R? .
indced for a set U of full Lebesque measure in R"  the image

B . ] ;

F (KB* (M int X, U) does not contain 0 . We can repeat this same argument

for all possible combinations B and B* . The intersection of a finite

number of sets of full Lebesque measure alse has full Lebesque measure.
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Now if we apply the transversality density theorem to

B .

Fo: (KB M int X) x R" - Op we establish that for almost all v e R"

FB(n,v) = 0 implies that rank DF? = n~k-1 . Thus for almost all v e R"
B(T) _

if T is an equilibrium of (,» A) then DF. = (I-—C(C'C)"IC')DEﬁ

has rank n-k-1 . Let x ¢ Rn be such that

(I—-C(C'C)_IC')Dgﬁx -ccoy =0

1

Since the columns of (I-C{(C'C) c')ng?T and those of C(C'C)”lc are

orthogonal and rank C(C'C)_IC = k+1 ,

(x e RM(T-cc') M eHpex=0) N (x ¢ B¥c(c'e) e =0 = {0} .

1

Pre-multiplying the above equation by (I -C(C'C) "C') , we have

1

(I-c(cre)” C'IDE-x = O .

T

On the other hand, pre-multiplying by C(C'C)—lc produces

C(c'C)"lc'x =0 .

Together these imply that [(I-C(C'C)_lC')Dgﬁ-C(C'C)—1C'] is non-singular.
Again using the fact that the intersection of a finite number of sets

of full Lebesque measure also has full Lebesque measure, we have proven

Theorem 6. The scr of regular cconomics R is open and dense in § .
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8. Extensions and Conclusions

The above treatment of gencricity of regular economies is rough
in the sense that the perturbation of excess demand functions, while en-
tirely natural for economies where all commodities enter into consumers'’
final demands, is not always appropriate in economies where production
plays an important role. In such economies there are likely to be primary
commodities which are inelastically supplied as inputs to the production
process and intermediate commodities which are only produced in order to
produce other commodities. It is possible to extend our argument to such
situations but there are several minor technical problems. First we must
deal with the possibility of excess demand being unbounded at
some points on the boundary of Ri in order to deal properly with primary
commodities. Second, we must slightly alter our definition of regularity
to deal with the possibility of prices of intermediate commodities being
undefined at equilibria where no production takes place.

Another direction in which our discussion can be extended is pro-
duction technologies with smooth production functions. Tt is relatively
easy to exploit the properties of the profit functions in such a technology
to show that our mapping and index theorem carry over when we substitute
the input-output vectors for production [unctions used at equilibrium for
activities.

These matters are discussed in more detail in the writer's doctoral
dissertation which is currently in progress. Also discussed there are
conditions that may be placed on the sfructure of an economic model such
that the index theorem implies uniqueness of equilibrium. We remark on
two sets of such conditions, one dealing with the production side of the

economy alone, the other dealing with the consumption side alone. First,
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if we can impose conditions on (f,A) that ensure that there are always

n-1 activities in use at equilibrium then

index (1) = sgnidet| = sgn(det [B'B]) = +1
B' 0
at every equilibrium. The global index theorem then implies that there
is a unique equilibrium. Recall that the conditions of the non-~substitution
theorem of input-output analysis imply that there are always n-1 activi-
ties in use at equilibrium. Second, if the excess demand function £ is
such that J 1is always negative definite then there is a unique equilib-

rium if the production technology is such that (g£,A) satisfies A.4-A.7.

This can be seen by noting that

index (%) = sgn|det = sgn(det[-Jldet[-B'J "Y&]) = 41

at every equilibrium. It is interesting to note that it has been_shqwn by
Kihlstrom, Mas-Colell, and Sonnenschein (1976) that negative definiteness
of J implies that the weak axiom of revealed preference holds for & ,
a condition previously known to imply uniqueness.

A final remark should also be made with regard to the necessity
of the conditions we have established for uniqueness of equilibrium. Con-

ditions such as gross substitutability in £ are neither necessary nor

sufficient for index (m) to be positive. Constructing an economy with

gross substitutes and with an equilibrium with index (7) = -1 is fairly
casy. Such an equilibrium cannot be unique.  Such an observation might
imply that non—uniquencess of equilibriom is a less pathological situation

than is sometimes thought.
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