COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 509

Note: Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulate discussion and
critical comment. Requests for single copies of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References inpublications
to Discussion Papers (other than mere acknowledgment
by a writer that he has access to such unpublished
material) should be cleared with the author to protect
the tentative character of these papers.

A MODEL. OF STOCHASTIC EQUILIBRIUM

IN A QUASI-COMPETITIVE INDUSTRY

John Sutton



A MODEL OF STOCHASTIC EQUILIBRIUM

IN A QUASI-COMPETITIVF INDUSTRY1

John Sutton

London School of FEconomics

A model of a quasi~competitive industry is constructed, in which
the firm's sales are described by a random variable whose expected rate
of change depends on price. It is shown that a stationary (non-degenerate)
market distribution of prices results, so that price differences persist
over time,



Considerable attention has been devoted inm recent years to the study
of markets which are quasi-competitive in the sense that they retain the
notion of a large number of firms selling a homogeneous product, but depart
from perfect competition in relaxing the assumption that consumers are per=-
fectly informed as to the prices of the various firms.

The initial surge of interest in this type of model was motivated by
the need, first noted by Arrow (1956}, to deal with the firm, even in a
competitive enviromment, as a price setter, in order adequately to tackle
the analysis of disequilibrium behavior.. Thus early work in the field,
beginning with-Fisher ((1970), (1972), (1973)) focussed on the question
of whether an initial market distribution of prices would, oQér time, con-
verge to a unique equilibrium price.

More recent work has, however, developed the idea that market equi-
librium might be characterized by a persistent distribution of prices.

That this is more reasonable in the light of "the variety and }olatility
of prices (which is) the commonplace of our experience' was argued by
Rothschild (1973). A further, and theoretically more compelling, reason
for exploring this question, however, is provided by what is probably the
most striking aspect of the literature on these markets: the fact that
for a very wide range of apparently quite reasonable assumptions, the dis-
tribution of prices converges to the monopoly price (Diamond (1971), Hey
{1974})). TIndeed, where prices do converge, they converge to the competitive
price-only under very strong conditions: for example, where‘firms are
artificially constrained to behave as if they were perfect competitors
(Fisher, Rothschild, op.cit.). Thus it would seem that in order to tackle

the question of whether, under conditions of imperfect price information,



any competitive features of the market may be preserved, we are compelled
to examine market equilibria of this more general class.

Such price dispersion as is empirically observed in many markets
undoubtedly owes its origin to a wide range of contributory factors. This
suggests representing the firm as experiencing a succession of exogenous
random shocks, as in Lucas and Rapping (1974). An alternative approach is
to explore the possibility that firms set a range of suboptimal prices via
their various estimates of actual demand conditions, as deduced by following
an optimal estimation procedure (stopping rule), as explored by Rothschild
(1974). More germane to our present concerns as to whether the range of
actual prices, or their average, might be (rawn by competitive pressures
below the monopoly price, is the more recant work which begins from the
notion that consumers differ in their costs of acquiring information, so
that firms partition themselves permanently into subgroups patronized pre-
dominantly by different mixtures of consumer types; the "better informed
consumers” being associated, as it were, with the "lower price firms."
(Salop and Stiglitz (1978), Axell (1977).)

The present model adopts a rather different type of approach; we
aim to model equilibrium in the quasi-competitive economy as an ongoing
process, in whichb firms continually compete with each other to increase

their respective sales to a number of identical customers.

1. BACKGROUND

The present approach to the problem rests on two fundamental notioms.
The first of these is that a consumer will not always select a supplier
at random in making each purchase, but will show some tendency to return to

his previous supplier. This is reasonable in a model with imperfect informa-



tion, insofar as the consumer, being unaware of rival prices, may be
indifferent between his old supplier and a randomly chosen alternative,
as will be the case in the present model. (Alternativeiy, such persis~
tence might derive from the notion that the consumer remains with his old
supplier until he hears of a lower price offer elsewhere.) Such
persistence of patronage also derives indirect support from the evidence
on the anglogous problem of brand choice in the marketing literature (for
example, Brown (1953).) 1Its role in the model is to make current sales
depend not only on current prices, but also, indireﬁtly, on past prices
via their effect on current patronage. In the present context we will
introduce this assumption in a very simple forﬁ analogous to that of the
marketing models, in which a fixed proportion of the firms' consumers leave
each period.

Our second basic notion concerns the responsiveness of consumers
to price in their choice of a new supplier. We require that the rate of
arrival of new (potential) ﬁustomers is greater, according as the price
(currently) set by the firm is less.

This may seem not only eminently reasonable, but rather innocuous.
In fact, however, its implications are far reaching; in particular, it is
not true in the usual sequential search models, and it is this which leads
to the tendency for price dispersion in such models to collapse (Butters
(1977a), (1977b)). The idea, in the sequential search model, is that con-
sumers select each potential supplier at random, and decide on the basis
of the price then ohserved whether to proceed further. If a range of prices
[?min’ Pma;] persists, it follows that it 1s never optimal for a firm to
charge pmin’ for no potential customer will refuse a price offer of
Pmin + %«: where ¢ 1is the {lowest) search cost; the potential gains

certainly fall short of c.
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One way out of this difficulty is to assume that some consumers
have ¢ = 0, which is equivalent to assuming that they are perfectly informed,
or enjoy free information. Such models as have been constructed suggest
that this is not enough~=the distribution of search costs over consumers

must exhibit a "heavy concentration,"

or an "atom" of probability, at

¢ = 0 (Axell (1977), Salop and Stiglitz (1978)). This approach to the
problem is then, arguably, an uncomfortably strong one--for in attempting
to relax the notion of "perfect information”" in competitive theory, we in
fact retain it among a (substantial) subset of agents.

Our present "solution" is less drastic; we merely assume directly
that the arrival rate is price dependent--this does involve the nction
that some free channel of information exists, but we do not require the
stronger property that some consumers enjoy unlimited access to such
information.

Our motivation for this procedure is the observation that the

standard search model actually understates the volume of information which

is in practice available to the consumer, whether via "passing by stores,"

1 "

"reading advertisements," or "hearing of price offers" from fellow consumers.
We will introduce here only such a partial broadening of the avail-
able channels of information flow as is essential to our analysis. What

we have in mind is the notion that, in casual encounters, some individuals,
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knowing of a low price offer, will mention it to acquaintances whom they
know are interested iﬁ making a purchase in the current period. Clearly,
one does not tell one's acquaintances of all the prices one observes; there
is a disutility to be set against the potential value of the information
involved. Hence ﬁe may reasonably assume that news of lower prices,
being more valuable, will bé more widely communicated.

This leads directly to our second basic notion, that the rate of

arrival of new customers is greater, the lower the price,

2. THE DYNAMICS OF CONSUMER FLOW

The treatment of the consumer choice problem in the present
analysis is rather primitive. We merely extend the usual simplistic
approach of the current literature to an enviromment in which the

consumer makes multiple purchases.

We assume the good in question to be one which the consumer purchases at
certain regular intervals ("consumption plamning periods":) Within each’
of these intervals, he may or may not consume one unit of the good in
question--some imperfect substitutes are available to him, and, on the
basis of his income and (average) prices in other markets, he will choose
not to purchase if the price exceeds some ceiling price PO’ which we may

identify with the "monopoly price."



The notion that the consumer derives utility from one unit of the
commodity (per period), but not from additional units, is of course very
restrictive, but is not unreasonable for a range of actual commodities.

It is useful as an assdmption in the present context only in that it
allows ué to focus attention on those aspects of the model which are novel.

That the consumer makes his purchases one unit at a time we might
associate either with income constraints within each "consumption planning
period,”" or with the notion that the good is pefishable——we shall prefer
simply to appeal directly to the latter notion here.

We now proceed to an informal discussion of the dynamics of consumer
flow in the model, which provides a motivation for our formal assumpfion on
_ the démaﬁd conditions faced by the firm in the next section. As wé already.
noted above, we intend to introduce some persistence of patrénége by simply
assﬁming that some fixed fraction, say y , of the firm's customers IeaQé
per unit time. We now consider the selecﬁion'of an alternative supﬁlier by
these "floating" consumers.

It will be a property of our model that each firm's price fluctuates
over time in a similar manner, and our consumers will be armed with imper-
fect information concerning the prices of particular firms. Thus they face

a problem in general of choice between probability distributions which is



intrinsically rather complex. We now introduce an assumption which seems
to play no important economic role in what follows, but which is useful

in simplifying the #nalysis. This is the notion that tﬁe frequency of
purchase of the commodity in question is low, so that the interval between
successive purchases is long,

One--rather trivial--consequence of this is that we may then assume
that the rate of departure of customers is price independent, for the
customer will regard the price charged by his previous supplier as a poor
guide to his current price; his previous supplier is then characterized by
the same expeced price for the current period as a randomly chosen firm
(i.e. the consumer does not benefit from any serial correlation in the
individual firm's price.)

A more important consequence of our "infrequent purchases" assumption
is simply that it allows us to confine the consumer's choice to a choice
between prices known with certainty, and a single price distribution
characterizing "all other firms".

Our assumption on the dissemination of price information is that a
certain fraction a of our "floating" consumers hear of the price currently
offered by the firm; we take it that information is "sparse" in that we
ignore the possibility of hearing of several offers.

Our consumer, thus informed, makes a choice between this offer of
P or a random chéice. (In terms of the standard sequential search model,
wé may characterize him as facing a choice, at his first "visit," between
two types of firms: that firm whose price he knows, and all other firms,
the latter having unknown prices described by identical probability

distributions.)



We will assume our consumers to be risk neutral, so that a price
is preferred to a random offer according as it lies below the average
markef price P.

The value of news of a price offer may be measured by the expected
saving P ~ P ; we specify the fraction of "floating" consumers who hear
of the firm's price offer as a(P - P), which is zero at f'z P (news of
zero value is not communicated) and we assume that returns to price
reductions are diminishing, in the sense that a(P - P) is concave.

Those consumers who do not hear of some specific supplier's price
are now assumed to choose a new supplier at random, armed with a reserva-—
tion price reflecting the market distribution of prices and the consumer's
(constant) unit search cost. It will be an immediate conclusion of our
analysis of the firm's optimal pricing policy that the maximum market price
will coincide with this cémmon reservation price Pr of our identical
consumers.

Thus, in fact, we shall see below that those consumers who select

a new supplier at random will not in fact encounter a price in excess of

their reservation price, so that they will in either case make a purchase

from the first supplier visited.

This is merely a simple consequence of our assumption of.identical
consumers, It is perhaps worth stressing at this point that it does not
imply that their merely latent willingness to search hés no effect--in
fact it has, as we will see below, a crucial effect on the equilibrium
price distribution.

The net flow of consumers is described, then, as the sum of three

contributions; a fixed fractional rate of departure of existing consumers,

a price dependent rate of arrival of informed consumers, and a rate of



arrival of consumers who select a new supplier at random. We may model
this last contribution by assuming that each of our N firms enjoys the
same probability 1/N of being selected so that the rate of arrival of
new customers from this source is described by a binomial distribution,
or, approximately, in the limit, a normal distribution with the same mean
and variance.

Our use of two deterministic elements leads to a considerable
simplification in the formal analysis; a framework in which all three
contributions are probabilistic can be written down, however, and
approximate solutions found. It seems, though, that there is little new,
of economic interest, to be gained from such a géneralization.

In the same spirit, we introduce the notion that, of the
(identical) patrons of any firm (whose common-planned frequency of pur-
chase is one unit every m periods, say,) a fraction of exactly 1/m
make a purchase in any period. Thus "sales” in any period is simply a

multiple 1/m of current "patronage," so that we may proceed to formu-
late our model in terms of a "sales™ variable x, labelling our above
contributions as "a flow of customers equivalent to sales of X units
per period."

For any distribution of market prices (concentrated on [p, Pé])
vur assumption on the individual demand schedules implies that total
per period sales over all firms are constant, irrespectivé of the
actual market price distribution; we will denote this level of total
sales as Nx, thus defining X as the average level of sales over all
firms.

The first contribution to consumer flow corresponds to a rate of

departure of a fixed fraction y of the firm's patrons per unit time.



If the firm's sales are currently =x, the component of the rate of change
of sales via this contribution equals -yx; while the total (gross) rate
of outflow of consumers from their current suppliers equals ~-yNX.

We now proceed to the reallocation of these "floating" consumers
to alternative suppliers. A fraction a(P - P) of them hear of, and
accept, the offer of any firm whose price is P, implying a rate of
arrival of "informed" consumers of yNza(P - P); representing the pro-
bability distribution function of the market distribution of prices as

Y(p), this accounts for a fraction of

fga(i" - PYNAY(P) = A(F, Y(P)), say,

of our YN; floating consumers. Hence a total of YN§(1 - A(F} Y (®P)))
choose one of our N firms at random; our third contribution to consumer
flow is represented by a binomial distribution with mean vy%(1 - A) and
variance (1 - 1/N)yx(1 - A), which, for reasonably lérge N,.1is well
approximated by a normal? with the same mean and variance; we will avoid
some clumsiness of expression in the sequel by dropping the factor

(1 - 1/N) =1 in the wvariance.

It is worth remarking at this point that it is the stochastic nature
of this rate of arrival of new-customers allied to our assumed persistence
of patronage which drives'the system, leading to the possibility of per-
sistent price dispersion below.

We may thus model the firm's sales, over time, as a stochastic
process such that if sales take the value x at time ¢t, then sales at
time (t + At) are given by a normal distribution with mean x + uAt
and variance UzAt. Here u represents the expected rate of change of

sales, and we may wvrite
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o= oeyx (P
where

u = vx(1 - AP, Y(P)) + yNxa(P - P)
and

02 = yX(1 - ACP, Y(P)))

Here W) represents the sum of our two rates of arrival, one--price
dependent--contribution corresponding to informed consumers, the other
corresponding to the expected rate of arrival of random searchers; while
o2 is the yériance associated with this latter contribution.

This process, in the limit At + O, may be represented as a
Wigner process with "drift" ¥ and "variance" o2,

| We now consider the behavior of our process at. the boundaries
corresponding to zero sales, and to full capacity; respectively.

We will assume, technically, that our procecs has reflecting
barriers at 0 and M, whefe full capacity corresponds to a level of
output of M units per unit time. Such barriers carry the interpreta-
tion that "the process starts again" when one of these values is
reached. Economically, we are in effect assuming that the firm cannot
attract a level of patronage in excess of fhat corresponding to full
capacity operation; explicitly, if the number of arrivals i§ such that
planned sales exceed M per unit time, then some of these.potential

customers find the firm unable to supply, and we are in effect assuming

that such consumers immediately switch their patronage to an alternative

supplier.

The reallocation of these unsatisfied consumers to alternative

suppliers is represented by the addition of a further (deterministic)
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flow, via a constant "correction term" 15 to ul(P) above. This
correction term, which will be small except where x v~ M (a point to
which we return below), is defined implicitly by the requirement that

industry sales coincide with total demand Nx,

3. THE FIRM

We may now proceed armed with the preceding motivation to specify
the cost and demand conditions faced by the individual firm. We will
assume throughout that the firm has constant marginal costs MC up to
full capacity operation, and so declining average costs AC(x) which take
the value AC(M) at full capacity. Empiricai support for this specifica-
tion is reviewed, for example, by Johnston (1960)., We will further assume
{to ensure thbat our model is viable) that our monopoly price P, exceeds
AC(M).

Turning now to the demand side, we may sum up our discussion of

the dynamics of consumer flow in two stages:

Assumption 1 (Demand conditions): For all prices P < Pr’ the reserva-

tion price, the firm's sales, per unit time, are described by a Wiener

process between reflecting barriers at 0 and M with drift
u(P, x) = -yx + p,(P) (1)
and constant variance 02; for P > Pr sales are zero. Explicitly

By =¥x(1 - A(P, Y(P))) + Wxa(F - P) +n

- (2)
].IO(P, X3 A, P’ Pr) +n

0% = Y(1 - A(F, Y(P))) (3)

where
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AP; Y) = jga(i; - P)NAY(P) (4)

It remains to specify the properties of the function a(P - P), as

illustrated in Figure 1.

%0

FIGURE 1. The properties of the function a{P - P)

We wish to assume that o 1is zero above F; and that for P < P it
is positive, and exhibits diminishing returns. Since, as is intuitively
obvious, an optimal pricing policy will never involve reducing price below
a point at which o(P - P) becomes horizontal, we may conveniently exclude
the appeafance of negative prices in our analysis as follows: we note that,
in seeking an equilibriumdistribution of market prices, we shall be able,
below, to confine ourselves to distributions characterized by average prices
lying in the interval MC - ¢ <P < P, (here ¢ is the unit search cost).
Thus, introducing a "saturation level”, P - P = R < MC - ¢, such that further

price reductions below this level are no more widely disseminated, it follows
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that o is horizoutal at all nonpositive P, for any P in the appropriate
range.

We may now state’

Assumption 2 (Diminishing returns to price reductions): The function

a(P - P) satisfies, for some K < MC - ¢,

a=0, P-P<o
a=0, &a=a(0) <o, P-P=0
. ; - (5)
a>0, a<0,a<0, R>P-P>0
a = a,, &nﬂ 0 P-p >R

The upper bound a, thus defined will be found useful below; we
remark here that our essumption that information is sparse, i.e. no consumer
hears of more thén one firm's price, and our interpretation of a as the
fraction of all consumers hearing of the price offered by any particular-firm,

imply that Nao < 1.

4, THE OPTIMAL PRICING POLICY

The expectation of the firm regarding the probability distribution
of sales, after any time lapse 1 , depends only on current sales, being
independent of present time, i.e. the process defined above is Markovian.
Hence, tha optimal price depends only on x, and is time independent. We
may therefore describe a price strategy as a function P(x) defined on
0 < x < M; our problem is to find the function‘which ﬁaximizes expected per
period profits. We are thus assuming the firm to be a long-run profit

maximizer, with zero discount rate.
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It is convenient to work from this point forward in terms of the
markup p = P — MC over marginal cost, so that our optimal policy is
expressed as p(x). We may define the level of markup corresponding to P
and Pr as p and P, respectively, while o(P - P) may equivalently
be written as alp - p).

We now consider the probability distribution of sales associated
with any price strategy. Let y(xo, X; t) be the conditional probability
that sales lie in the interval (x, x + Ax) at time ¢, given that x = X9
at t =0, Then y(xo, X; t) 1s described by the forward differential

equation of the Wiener process

2 .2
o 8y _ & 4
3 5 (! 3t

with boundary conditions for reflecting barriers at x = 0, M,

2
%—%-uyﬂo; x =0, M

where the latter equation corresponds to the requirement that x takes
values in the interval 0 < x < M only (Cox and Miller (1965), p. 223).
The process converges as t + = to a stationary distribution with

density, up to a normalising constant,
exp 2 [% u(w)dw (6)
o2 0

so long as the integral of this expression over [b, @] is bounded, as is
certainly the case here, where 02 >0 and u 1is bounded ébove, by (1-5).
(Mandl (1968), chapter IV). The expression (6) for the denéity -y(x) may‘
be verified by setting the time derivative to zero in the forward differ-—
ential equation. It indicates, for example, that for a "constant price"

policy, where u = -yx + ul(P), the sales distribution is a truncated normal.
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It follows from the ergodic property of the stationary distribution
(ex. Yaglom (1962)) that we may interpret y{x) either as the cross-
sectional distribution across firms at any point in time, ;r as the time
average of any one firm over an arbitrarily long interval,

Differentiating this expression we obtain immediately the relation-

ship for the density y(x),

) = Sy

c
or
y 2
2 = Suw o wm
y 2
o
The normalizing constant is determined by the requirement that

Igy(x)dw =1

In order to embody this property into our analysis below we introduce the

distribution function

Y(x) = fgy(w)dw (8)

The optimal pricing policy will now be described as the solution to
a control problem; we may choose an appropriate control variable by refer-

ence to our equation for drift, in terms of p,

up, X) = -yx + u; (p) ' @'

where ul(p)- is, by virtue of Assumption 2, positive, and exhibits
diminishing returns up to p, after which it is constant up to the

"reservation price” P> and zero thercafter.



Our problem is to

maximize fgp(x)y(x)xdx
p(x)

subject to p. -p 20

. 2
y= Tu(p. x)y
[¢)

Y=y

end point condition

YO) = 0; YN =1

ur(p)

16

(10)

11

(12)

FIGURE 2, The function ul(p). The tangent at p = P passing through

Prs

#1(p,)  corresponds to the critical value of the costate

variable A, representing the shadow price of patronage, above

which price reductions below p. are profitable, as defined

in the text.
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A set of sufficient conditions for a maximum in the general control
problem has been provided by Kamien and Schwartz (1971); in the present
context they take the following form:

Define the Hamiltonian

H=punum+ny+xéw@uxxnu> (13)
a

Let U(x, y*(x), Y*(x), Mx), A(x)) be the value of p which
maximizes the Hamiltonian at x, given the (unknown) optimal wvalues of the
state variables y, Y and the asséciated Lagrange multipliers X, A.

Then p*(x) 1is an optimal pricing policy if U as defined above
is concave in ﬁhe state variables vy, Y .and there exist functioms X(x),
A(x), w(x) such that  A(x), A(x) are continuous and w(x) 1is integrable
and the following equations are satisfied:

P*(x) = Ulx, y*(x), Y*(x), A(x), A(x)) (14)

§H .
-7 - A = 0 (15)
. 2
- %% = 3 = -px - A-) ;5 u(p, %) (16)
2
%%, = 0 = y(x)x + A ;5 %% y(x) + w(x) (17)
w(x) > 0 (18)
wx)(p, - p) = 0 (19)
AMx) >0 (20)
x(0) = 0; A(M) =0 (21)
Y(0) = 0; Y(1) =1 (22)

Here, equation (14) defines U, while (15)-(16), (20)}-(21) are the

usual differential equations for the costate variables XA and A, and
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(17) is the condition for an internal maximum of the Hamiltonian over the
control, modified by the inclusion of a shadow variable w(x) which is
positive only where P=P by (18), (19).

The K-S conditions also require that the constraints on the control
variable prescribe a feasible region which satisfies a constraint qualifica-
tion; for the present case, where the feasible region is described by our
single constraint P, " P2 0 this is trivially satisfied.

The first of our differential equations for costate variables (15)
implies that A is a constant} this is of course true in general for the
costate variable (Lagrange multiplier) associatad with an iéopermetric
constraint (Bryson and Ho (1975), p. 90). 1In facﬁ, the particular structﬁre
of the present problem allows for a simple interpretation of A as the
negative of the maximand, expected profits per unit time, at the solution,
This is established in Appendix 1.3

Turning now to the properties of the solution path to our set of
equations (14)-(22), we first examine the requirement that p shall be
that value which maximizes'the Hamiltonian

2
H = pyx + Ay + ) — (-yx + ul(p))y (13)"
o _

given y, A and A. TFrom our assumed form of the drift function it follows
immediately from inspection of (13)' that two cases arise depending on the

values of A and x.

For values of A/x sufficiently large the maximum is given by a

point on the concave portion of the drift function such that

. 2 Sy
-—-—Hy,\-ﬁ-k.;—i—--a;.y—o

or

(23)

>
[}
t
lQ
%
ke



19

We define a critical value (Alx)c such that for values
(A/x) > (A/x), a maximum is attained on the concave portion of the drift
function; while for (A/ﬁ) < (A/x)c the maximum occurs at p\= Pp- This
critical value corresponds via (23) to the slope &p/8u of the tangent
passing through the point P> ul(pr), as illustrated in Figure 2.

It follows from this that the value of the control variable »p
which maximizes the Hamiltonian depends only on X, x, being independent
of y; and so the value of the Hamiltonian maximized over the control
variable is linear, and so concave,'in y. Moreover, the Hamiltonian is
independent of Y, so that our problem satisfies the requirement of con-
cavity of H in the state variables as demanded Sy the K-S conditions.

Turning to the two cases just identified, we note that our optimal
pricing policy p{(x) consists of segments (i) along which price coincides
with the reservation price, and where (using (17), (18), (19))

(\/x) < (A/X)c, w(x) > 0, ard (ii) along which price lies below the
‘teServation price, and moreover, below average market price, where
(Ax) > (A/x)c and w(x) = 0. The explicit form of the policy may be

deduced from the solution paths of the differential equation

L] 2 .
A= px = A= A Ty oulp, ) COLN
g .

with A(0) = M) = 0 (21)"

as the (negative) parameter A varies.

The qualitative properties of the solution paths are deduced in
Appendix 2; and formal proofs are supplied in Appendix 3. In view of the
very lengthy nature of the mathematical development we merely state the
form of the family of solution paths, parameterized by A , being the

negative of expected profits per period.
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Afx = (A/x)c

A |
i
}
...A |

I X *M
|
|
]

> P — —
|
i
|
|
|
|
y(p) ' X,

FIGURE 3. The optimal pricing policy p(x), the shadow price of
patronage A(x), and the probability density function
of market prices y(p).
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From equation (16)', (21)', we have immediately for x = O that
A(0) = 0 and, i(0) = -A.

Hence, for valués of A close to zero, the solution éath A(x)
lies below the critical ray A/x = (k/x)c in the region of the origin;
it may further be shown to lie wholly below that ray. Thus the optimal
pricing policy involves setting p = P all x. The agsociated root Xy
such that Ac(xM) = 0 increases continuously as A declines from zero,
The boundary condition A(M) = 0 serves to identify uniquely the solution
path corresponding to the given level of plant capacity,

For values of -A 1lying above the critical value (llx)c howéver,
the solution path A(x) 1lies, in the region of the origin, above the
critical ray and the optimal pricing policy consists of two segments.
Price increases strictly, and continuously, with current sales, up to some
critical value X though remaining below average market price; and
thereafter jumps discontinuously to the reservation price P, for all
X > X, The associated root Xy increases continuously to + ® as A
declines towards some limiting finite value corresponding to the exbected
profits of a firm wifh_unlimited capacity facing the given demand conditioms.

| The increasing form of the pricing policv reflects the combination
of two factors, both operating in the same directioﬁ. Firstly, price
reductions are attractive insofar as they lead to increases_in patronage,
and so to increases in future, as well as present, sales. The value of
such increases in patronage is greater, according as we are further below
full capacity operation, and can meet such increases as result; the shadow
price of patronage declines to zero at full capacity.a Secondly, price
reductions are less costly in terms of profits foregone according as sales

are less; this latter factor implies the rather interesting property that
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the (increasing) form of our optimal solution is preserved, even when the
level of capacity becomes infinite,

The optimal pricing policy thus generates a distrisution of market
prices consisting of an atom at the reservation price Pr’ and a continuous
segment lying wholly below the average market price P, and whose minimum

may be shown to correspond to that price Pmin such that

_22. A = %.E. , Or A = -12-———-2---—6 3 (26)
o P =P in §u/eD) o o p .
min

The inFerpretation of this expression is that price is reduced, as
sales fall towards zero, to a minimum price which is lower according as
IAI » expected profits per period, is greater (reflecting the greater
returns from increasing the level of patronage), and according as the
returns to price reductions, measured by 2(u/02) = Y¢/y, are more
favourable.

To establizh that, for any level of capacity, M, an associated
optimal pricing poliey of the form described does in fact exist, we invoke
Lemma 1, which summarizes the properties of the solution paths, and whose

proof is given in Appendix 3:

Lemma 1. The solution A(x; A) of equation (16)* has a root Xy
A(xM) = 0 which increases strictly and continuously from zero tp + = ag
the parameter A decreases from zero. Moreover, there exists a.critical
value of A, say Ac » such that for 0 > A > Ac the solution is of the
form | p(x) = Pos all x; while, for Ac > A the solution consists of

two segments such that p(x) 1is strictly increasing up to some value of

x, and thercafter jumps to P, for all greater x.
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The boundary condition A(M) = O is thus satisfied for exactly one
number of this family; and this fixes both the pricing policy, and.the
associated value |A| representing the expected per period profits assoc-
iated with that policy. Moreover, as expected, the greater the level of
capacity, the greater the level of expected profits. Less obviously, low
values of capacity and so expected profits, are associated with a policy
of no price reductions, p = P, all x. The intuitive interpretation of
this is simply that, for a given response function, the attractiveness of
price cuts is measured by the additional profits which higher sales imply;
the lack of capacity to achieve such sales implies a reduced willingness to
reduce prices so as to increase patronage. It is,.however, the obverse of
this view that is our prime focus of interest: for a given level of capacity,
as we will see below, a greater responsiveness of consumers to price reduc-
tions enhances the attractiveness of price cuts.

The above Lenma immediately implies, then:

Theorem 1. For any given demand conditions satisfying Assumptions 1, 2,
and where P? > MC, there exists a unique optimal pricing policy p(x) on
[b, ﬂ], where p = P ~ MC > 0, which maximises the profit functional
fg p(x)y (%) xdx.

The optimal pricing policy p(x) whose existence is thus established

depends only on the parameters Pr’ P, A and n (which determine, via

Assumptions 1, 2, the demand conditions faced by the firm. In particular,
the function (P - P) being given, the dependence of the optimal pricing
policy on the shape of the market distribution of pfices is captured com-—
pletely via the effect of the latter on the four parameters ?} Pr' A and

n. Here A represents the fraction of all "floating" consumers who

hear of a price P < P offered by some firm, i.e. the fraction of such
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consumers making an informed choice, as opposed to a random choice, while
the parameter n represents the "correction factor” associated with the
requirement that total sales equal Nx in each period. We now formally
define the value of n generated by any market parameters (P, Pr’ A, n),
with associated values u(p, x}, a? and optimal pricing policy P*(x),

as that value which equates the expectation of the sales distribution, with

probability density function, from (6) above,
Cexp 5 [5 (u.(BE(W), W; A, T, P.) + n)aW
eXp 02 0 llo Ja Wy By By Ty n

{where o is defined by equation (2) above) with the given level of
average sales, X.

By invoking the bounds to u,02 implied by (1-3) we may, for aﬁy
X <M, deduce bounds to n such that n g n < 7; explicit expressions
for n, n are given in Appendix 3.

Finally, regarding thie family of functions P(x) as a subset of
the space of all (Lesbegue) integrable functions on [b, M:J equipped with

the integral norm, we can further establish (Appendix 4):

Lemma 2, As the given market parameters F; A and n, which {together

e e p—

with Pr) determine the demand conditions faced by the firm vary, the

optimal pricing policy  P(x), and the associated values

' P
P = Ig‘ P(x)y{x)dx and A = foo a(F - P)y(P)dP and n,

generated by that policy vary in a continuous manner with these market

parameters.
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5. INDUSTRY EQUILIBRIUM

Having established the nature of the optimal pricing policy of the
individual firm, for given demand conditions, which reflect inter alia the
actual distribution of market prices which prevails, we now turn to the
question of whether, for some such market distribution of prices, the
implied optimal pricing policy for the individual firm is such as to
generate that distribution of market prices.

We have in mind here a Nash equilibrium: given that all other firms
follow this priciﬁg policy, each individual firm finds that the resulting
mérket distribution of prices implies that its (unique) optimél strategy
is to adopt that same pricing policy.

One point worth noting is that we ignore collusive behaviour, which
is reasonable on the basis of our "large numbers” assumption., A second is
that all firms adopt the same (uniquely defined) policy, though their
actual prices will differ, reflecting fluctuations in patronage, at any
point in time.

The results summarized in Lemma 2 establish a mapping from the space
of market ﬁrice distributions to the space of pricing policies. The choice
of anf given pricing policy by individual firms, in turn, generates a
certain market distribution of prices. We aim to establish the existence
of a fixed point in the mapping of the market price distribution into
itself.

The fact that the firms pricing policy depends on the market distri-
bution of prices ounly via the parameters P, Pr’ A and n, means that a

considerable simplification of the existence proof is made possible by

working directly in terms of these parameters.,
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We may further confine our search for an equilibrium by noting the
form of the firm's optimal pricing policy developed above. This ensures
that any equilibrium price distribution must take either thé form of a
degenerate distribution, or else a bimodal distribution with support
{[@, E], Pmax}' Given the unit search cost, c, the consumer computes the
reservation price in the usual manner, viz Pr is the price such that, on
obtaining an offer of Pr’ the consumer is indifferent between accepting
the offer and searching further, his expected gains from one further

search

P
r
fo (P_ - P)AY(P)
coinciding with c. Now the price distribution generated by firms'
optimal pricing policies has its maximum at Pr' so that a necessary con-
dition for a market price distribution to be an equilibrium is that its

maximum Pmax coincide with P_. This in fact immediately allows a simple

representation of Pr’ viz

P, o= min(P + c, Po) (25)

To see this, consider a market distribution of prices of the form

just described, for which Poax = P+eccx< PO. Then, any offer above

ax
P +c will be.rejected, since the expected gains from one further search,
following a price offer of P, equal P ~ P, which exceedsr ¢ if and only
if thé price P in question exceeds P + c. Thus any price éxceeding
min(P + c, Po) will be rejected.

This representation of the reservation price allows us to charac-

terize market equilibrium by the three parameters (P, A, n) where Pr

is given by (25).
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We now proceed to define a (vector valued) mapping &' of

(F, A, n) from the compact convex set

S-[O,PO]XEO,Nu[;!xEl,Tﬂ

in R3 into itself.

We define the mapping in two stages, dealing first with the subset
of the domain [MC - ¢, Po-j x [_b, Nao-_l X El’ Tﬂ Here, we have from our
above characterization of the reservation price that Pr > MC or P, 2 0.
Over this range, the optimal pricing policy of the firm is defined in the
manner discussed above; we define ¢(P, A, n) as the corresponding triplet
of values generated by the firm's optimal pricing policy for given market
parameters P, A, n. The continuity of the mapping is guaranteed by Lemma 2.
That ¢ is into is assured since we have from the definition of A in |

(5) above that O < A < Na,, for any price distribution while, for any

0’
optimal pricing policy P(x) and any P in the range [ﬁc - ¢, Pé] we

~have O < P(x) <P (as ensured by Assumption 2) so that the associated

0
average price Ig P(x)y(x)dx 1is certainly in I:O, PO-] .

(It is worth noting that it is not the case that P(x) > MC - c,
necessarily; for, in principle, we might have an optimal pricing policy
in§olving negative markups at low values of x; such that the average

price across firms fP(x)y(x)dx lies below (MC - ¢), though the average

across sales []P(x)y(x)xdx/fy(x)xd{] does not, 5o that expected profits

are positive. It is this rather pathological possibility thgt necessi-
tates our extension of the domain of P to [0, Pé]).

We now note that as P -+ (MC - ¢)+, so that P~ 0+, expected
profits per period, being bounded above by P.M, approach zero. It then

follows from our characterization (24) of the minimum price that for Pr
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sufficiently close to MC, the optimal pricing policy is of the form
P{x) = Pr' all x, so that the average price generated by the firm's
optimal pricing policies coincides with Pr'

We now extend the domain of the mapping & to the set S as

follows

il
v

Q(F’ A, ﬂ) 'y - MC -
¢'(?l A: T}) =

Q((MC - C), As n) ’ P MC - ¢

1A

Noting that this definition ensures the continuity of ¢' at
P = MC - ¢, by virtue of our above remark, we have immediately that &'
is continuous over the entire domain S, and that it maps S into itself.
It thus follows immediately from Brouwer's theorem that the mapping
possesses a fixed point, so that an equilibrium is guaranteed.
We may further note that this fixed point necessarily lies in the

-

subset PO > P > (MC - e); for we have that if f': (MC - ¢} then &'
maps P into MC, so that (Flg- is not a fixed point of &',

We now turn tolthe question of whether such an equilibrium involves
persistent price dispersion, or whether it is characterized by a single
price. We first note an immediate result: since the maximum market price
COincides with the reservation price, it follows that, if the market dis-
tribution of prices is degenerate, then it is degenerate at the monopoly

price. For, suppose the market distribution is degenerate at P < PO;
then Pr = min(§'+ c, PO) > P so that the maximum market price exceeds
P, thus implying a contradiction.

We now procced to develop conditions which exclude this possibility.

Assuming that the unique market price is PO’ we examine whether the

associated optimal pricing policy for the firm involves setting a price of
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Po for all x, as is required for consistency. We appeal to the condition
that the optimal pricing policy involves ﬁrice reductions according as
- A (xR

Appealing to our interpretation of A as the negative of expected
profits per period, we have here that A = - pdi. Using equation (23),
our critical value (A/x)c here takes the value -(02/2)'(6p/6u) p=F°
where, by using the fact that Y(p) here takes the form of an atom of

'

probability at p, we have from (4) that A = Na{(0) = 0, and soc from (3)

that 02 = yx, while differentiation of (2) yields

Gul

75; = yNxa(P - P) = vNxa(0)

Combining these results we have as our conditicn for a nondegenerate

gsolution that

X = - —E._EE = - 1 .
PoX h>- 53

or Nxp, lao)} > %—
We first note that a(0) represents the rate of change of the
fraction of consumers who hear of the firm's price per unit (absolute)
reduction in price; thus pa(0) .simply represeﬁts the equivalent rate of
response to fractional reductions in the markup P.
I1f this equation is satisfied, then price dispersién will persist,
for tﬁe nature of our underlying Wiener process implies that the p.d.f. of

sales is strictly positive at all x, O < x <M except in the extreme

7
case where ufo¥ + o implying that all firms operate always at full
capacity; we will return to this point below. Otherwise, our above condi-

tion is sufficient to ensure price dispersion. There are two economically
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interesting interpretations of the condition, as follows; for any level of
industry demand 0 < X < M,
(1) So long as the rate of response of sales to price
reductions is sufficiently strong, price dispersion
will persist, i.e. &(0) is large enough.
A much more appealing condition, however, is
(ii)  Given  any nonzero rate of response prl&(o)l, then,
so long as the number of firms in the industry is
sufficiently large, our condition is satisfied.

A simple intuitive interpretation of (ii) can be provided: the total
volume of sales Nx determines the "catchment area" of potential sales for
the firm, in setting its pricing policy. Thus the smaller the firm in
relation to the industry, the greater the fractional increase in its sales
implied by a price cut~-for it draws-customérs from a larger number of
similar rivals.5

Thus we see, interestingl&, that price dispersion is guaranteed
precisely in the "atomistic" limit which we usually build into our defini-
tion of a competitive industry. In the present instance, we have merely
preferred to proceed more slowly, in two steps**firs; using only the
associated rationalization of the "no collusion" assumption via our Nash
equilibrium definition, and only now strengthening our "large numbers"
assumption further.

‘It is an important feature of equilibrium in the model that, so
long as our above conditions on the availability of information are satis-
fied, the maximum market price lies below the monopoly price, and is
"usually" independent of it. This is a feature of some importance, for it
is the kind of result we expect in a competitive model. (It also means

that we can now relax our notion that all consumers have the same ceiling
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price; so long as N 1is large enough, our results are independent of this
assumption.)

Finally, we remark on the role of excess capacity in the model. So
long as the monopoly price P0 exceeds AC(M), then, if we allow free entry
in the long run, excess capacity will tend to appear, and to persist. For,
if the number of firms was so low as to eliminate excess capacity, so that
X = M, then expected profits per period would exceed total costs, so that
(supernormal) profits are earned, and further entry induced. This entry
of additional firms, though it (at least eventually) reduces expected
(supernormal) profits to zero, does so only at the expense of creating

excess capeity. Such excess capacity may be interpreted as a welfare loss

associated with the lack of perfect information per se.

6. SUMMARY AND CONCLUSIONS

Equilibriuvm iz characterized in the present model by persistent
stochastic fluctuations at the level of the individual firm, while total
industry demand remains constant. The driving force which keeps the system
from collapsing to ardegenerate equilibrium is endogenous: consumers,
enjoying only partial price information, display, on the one hand, some
reSpénsiveness to price reductions, thus making such reductions worthwhile,
but on the other hand some consumers, being currently uninformed of a more
favourable offer, choose a new supplier at randem. The firm, at each
point in time, sets a price which, given its current level of patronage,
is optimal; but the response to the price it chooses, in terms of the
change in patronage which follows, is stochastic. Each of our firms,
following the same optimal pricing policy, thus generates over time.a

different price history.
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Equilibrium is characterized by the stationary distribution of the
underlying stochastic process. This characterizes not only the cross
sectional average over all firms at a point in time, but also the distri-
bution generated by the price history of any individual firm over an
arbitrarily long period.

This approach thus generates a "solution" to the problem of des-
cribing a "price dispersion equilibrium", the motivation for which we
noted earlier, which is interesting in certain respects. Our consumers
are identical, differing at any point in time only in their information
sets; they do not differ, in particular, in their costs of acquiring
information. This is closely associated with another property in which
the present model differs from some recent work, which we noted above:
firms do not separate permanently into "high price" and "low price" firms,
but display, over time, identical characteristics.

The motivation for adopting the particular approach to the problem
developed in the present paper lies in the observation that macroeconomic

}bquilihrium" is in practice characterized by a comparatively steady
aggregate of the widely ﬁarying experiences of individual agents; and
that an adequate description of certain macroeconomic phenomena may
depend cfucially on an explicit recognition of this fact (for example,
Tobin (1972)). The divergence of experience across different firms has
its origin in a wide variety of factors; what we have been concerned with
here is the development of a coherent framework in which the minimal
amount of dispersion associated only with the random choice of supplier
by imperfectly informed consumers is endogenous to the model. The macro-
economic consequences of this feature of equilibrium yill be the subject

of future work.
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APPENDIX I°

THE INTERPRETATION OF THE LAGRANGE MULTIPLIER Vh

Abstract: It is shown that the valuves of the Lagrange multiplier associated
with the optimal pricing policy coincides with the negative of the maximand,

m , being expected profits per period. This is established by noting that

M
the maximand f p(x)y(x)xdx , 1in the more general class of problems obtained
0 .

M
by replacing our isoperimetric constraint (12) by Y(M) = f y(x)dx = k ,
. 0 '

is linear in k ; and combining this with the standard interpretation of

the Lagrange multiplier.
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APPENDIX II

QUALITATIVE PROPERTIES OF THE OPTIMAL PRICING POLICY

We present here a qualitative analysis of the form of the solution

paths to our basic differential equatiom,

A =-px - A~ 22-u (p,x) (16)
o]

with CA(0) = a() =0 {21)"

deferring all formal proofs to Appendices III and IV.
We noted in the main text that two cases arise as follows. Defining

our critical value _(}./x)c we have, either,

@) o < Nx < _(J\/x)c , w(x) >0, and p=7p

T
or () Mx> (Mx)_, wlx) =0, and p<p_. (2.1)
Again, as noted above, we have at x =0 that A =0 and X(O) = -A ,
so that if

0>482-0G/x),

our solution path (at least in the region of the origin) 1s of type (1),

and our equation reduces to the special form
: 2
A =-p.x - A- Ae(p - yx) (2.2)
: r - 0,2 r

where n. =.u1(pr)
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The form of the solution path may here be deduced readily from the

tangent diagram (Figure 2.1); the loci A = 0 take the form

p.x =~ |A]

2 2
FYX T T Wy
o o

being a right angled hyperbola., The solution path increases up to the point
of Intersection with this locus, and subsequently declines to cut the hori-
zontal axis. The proofs of this are straightforward but tedious, and are
given in Appendix IITI. We furthermore establish there that the root

xﬁ s A(xM) = 0 1increases strictly and continuously from the origin as A

declines from zero.

2 Ir
2 " v
—_— e— —y

_|_r\_|_‘ ¥

X
P l._.-
r Y
FIGURE 2.1. The solution path to the first form of the basic differential
equation. (The- case of |A| < (prprly) . For
&l > (. p_/Y) the branches appear in the second and

fourth quadrant.)
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We now turn to the alternative case, where

—(A/x)c > A

so that our solution path in the region of the origin is of type (11); thus
price lies below the reservation price when sales are sufficiently depressed.

Here (A/x) » {A/x)c and w(x) = 0, so that from (23) we have

2 2
YR - M) - RV - M) S
2 au 2 apl
Where the latter ecuality follows from the form (2)‘of our drift function.
It 18 convenilcnt to introduce as an ancillary variable the value
of Bp/Bpl ; defined over the relevant portion of the drift function, which
we label ¢ . We then obtain on substituting into our differential equation,
d 2 2

=l %ﬂx‘b =-pidx - A- |- %“xr:a -%—-p(x)
2]

Carrying out the differentiation on the left hand side and simplifying,

we obtain

d %.A "¢ 2
R L 1O
o)
or $ = £(4, x; A) + g(s, x) , say. (2.3)

The form of the first term on the right hand side implies that, for

any solution nonsingular at the origin

2
$ = =4

g
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We first investigate the derivative at the origin. Taking limits on both

sides of the equation,

Applying 1'Hospital's rule to the first term on the right hand side,

we have
. . 2 )
$(0) = -¢(0) + cz(p-w) x=0, ¢=(2/62)A
or $(0) = 38(4,%) -
' . x=0, ¢=(2/07) A

We now formally define our nonsingular solution ¢(x} on [0,»} as:

0) =245 § =Jel5 00, x=0
a o
dx) = 2 +g(6,x) , x>0. (2.4)

The solution thus defined 1s differentiable, and hence continuous,
at the origin.

fﬁe properties of the solution paths to Q.4 now follow from the
properties of g(¢,x) , which may be deduced from the assumed form of our
drift function. |

A useful graphical representation of g(¢,x) is illustrated in Figure
2.2, as the length of the horizontal segment at height yx between the

vertical axis and the point of intersection with a tangent to the drift
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function at ¢ , from which we may immediately see the following properties,
whose proof is trivial:
(1) (dependence on x ): At x =0, g(¢,0) 1is positive from
and decreases as ¢ increases towards b -

As x 1increases g(¢,x) falls, the rate of decline being less

as ¢ Increases towards ¢c

Yx

FIGURE 2.2. (p-ué) , where p = By - YX, $ o= ap/apl , as a function
of ¢, for p =< P, -

(11) (dependence on ¢ ): At x =0, g(¢,x) decreases with in-
creasing ¢ , as noted already., This is true also for small
x 3 for sufficiently large x however, g(é,x) increases with increas-
ing ¢ . (This may be interpreted graphically in Figure 2.2

by considering a horizontal above the point of taﬂgency at ¢ .)
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From these properties of g($,x) the qualitative properties of our
solution paths may be deduced using a tangent diagram, showing the sign
of & as a function of ¢ and x , for any fixed value of A, over the
range ¢ > ¢ 3_(2/02)-A ; x>0,

For any value of ¢ , we may investigate the value of the derivative
as a function of x by reference to Figure 2.3 which indicates the graphs
of the two terms f£(¢, x; A) and g(¢,x) of equation (2.3).

Since ¢ > (2/02)-A , f£(¢, x; A) 1is negative and increasing in x, and
f(9, x; A) » = as x =+ 0+ (rectangular hyperbola).

From our discuséion of the properties of (p-u¢) , we have that
g($,x) 1s initially positive. For ¢ =0 , g(¢,?) is constant. Here
one, and only one root exists (Figure 2.3a). For ¢ < 0, there are at
most two roots x' and x" (Figure 2.3b), the lesser of which we may iden-
tify with our unique root at ¢ = ¢ by noting that % is negative to the
left of x'

An immediate property which follows from the form of f£(x; ¢, A) is
that x" increases as A declines (i.e. |A| dincreases); this will be

found useful later.

f .
I I oI

Figure 2.3. The roots of the differential equation &(x) = £(x, ¢; A) + g(x,¢) .
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Qur tangent diagram thus consists of three regions, as indicated
in Figure 2.4. Noting that our nonsingular sclution has $>0 at x=0,
it follows that there are two possibilities for the form of ¢(x) ; either
(a) ¢(x) increases monotonically with x ;
or (b) ¢(x) increases initially with x , but intersects the boundary
of regions II and III at some point, and thereafter decreases.
Thus, either ¢(x) Increases monotonically to ¢ = ¢c , or else there is

noc root ¢ = ¢c .

1 11 111

$<o0 .$>° §<°

FIGURE 2.4. Tangent diagram for the differential equation
$(x) = £(x, ¢; N) + g(x,¢)

(A further property illustrated in Figure 2.4 is the following: 1in a neigh—
borhood of the point (x =0, ¢ = (2/02)}A )}, f++ as x> O+ . accord-
ing as ¢ $ (2/02)-A . Hence as x » 0+, the boundary of regions I and
II appreoaches (2/02)fn 2) |

We demonstrate in Appendix III that for A = j(llﬁ)c = Ag s 5ay,
we have the trivial solution with root x, = 0; and as A declines from
‘Ac » the root x, exists, and increases cogtinuouslj yith _|A| , 1.e.,

the solution is of type (a).
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Combining this with our analysis of the first special form of the
equation, we may form the composite solution path which characterizes the
case A < 1(A/x)c and which is illustrated in Figure 2-5-Th; root X,
defines the initial conditions

2 .
q
A(xc) =T ?fﬂxc¢c

for equation (2.2) over the interval x > X, -

As A declines towards some critical value, Xy >+, correspond-
ing to the level éf per period profits associated with a firm-having infinite
capacity; and the.solution path for X below this value is of type (b); |
i.e., no root X, exists.

fhese results, and those concerning the first form of the equation

summarized above, combine to yield Lemma 1 of the text.

2
A = %r X¢c
A
1
i
H
N ‘
f
|xC xM
1
1
¢‘.':
¢
2
=5 A
g

FIGURE 2.5. 'The nature of the sclution path tor the "price reauctions case.
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Thanks are due to Franklin Fisher, Katsuhito Iwai and John Hey,
for a number of useful sugpestions on the present model, I am
also indebted to Koichi Hamada, Michael Jones-Lee, '
Christopher Dougherty, Christopher Pissarides and Anthony Sampson,
and to an anonymous referee, for their many valuable comments on
an earlier draft. The paper is based on work carried out during
a visit to the Cowles Foundation which was supported financially
by the SSRC.

Though it is worth noting that our motivating "story" somewhat
understates the loss rate of consumers implied by the lower
"tail" of the normal, an effect subsumed in our "correction term"
below.

Appendices I, III and IV will be made available by the author on
request.

An interesting analogy is provided by the analysis of optimal
pricing where some persistence of patronage is present in the
model of Phelps and Winter (1970), who consider a monopolist with
a finite time horizon in a deterministic setting.

That the entire industry should constitute each firm's "catchment
area" may seem a strong assumption; all that is required, however,
is that the firm's catchment area becomes arbitrarily large in

the limit N -+ «, as for instance is the ca<2 where the catchment
area corresponds to any fixed fraction of the total market.
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