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SYSTEMS DEFENSE GAMES:

COLONEL BLOTTC, COMMAND AND CONTROL*

by

Martin Shubik and Rchert James Weber

i. COLONEL BLOTTO GAMES

The first example of what is usually referred to as a Colonel
Blotto game appears to have been given by Borel:** a defender is defend-
ing three points against an aggressor, and the sides have equal forces.

The objective of the aggressor can be formulated either as:

(i) Maximize the expected number of points captured,
or (ii) maximize the expectation that a majority of peints are
captured.

For three targets and equal forces these objectives are essentially

the same.

Games invelving the first type of objective were generalized

*

by Tukey and several others*** to a class of assignment games with mili-

tary applications known in the literature as Colonel Blotto games. Quoting

*This work relates to Department of the Navy Contract NOO0l4-77-C-0518
issued by the Office of Naval Research under Contract Authority NR 047-006.
However, the content does not necessarily reflect the position or the pelicy
of the Department of the Navy or the Government, and no official endorse-
ment should be inferred.

The United States Government has at least a royalty-free, nonexclu-
sive and irrevocable license throughout the world for Government purposes
to publish, translate, reproduce, deliver, perform, dispose of, and to
authorize others so to do, all or any portion of this work.

**Borel (1938).

***Tukey (1949), Blackett (1958), Beale and Heselden (1962), Dresher (1961),
Groass (1950).



Beale and Hesselden:

A Blotto game is a zero-sum game involving
2 players, who may be called A and B, and
X independent battlefields (which may, in par-
ticular, represent target areas). A4 has M
units of force to distribute between the battle~
fields, and B has ¥ units. Each player
must distribute these forces between these battle-
fields, once for all, and without knowing his
opponent's distribution. Then if 4 sends g
units and B Yy units to the kth battlefield,
there is a payoff of P}(mk, yk) from B to A

at this battlefield; and the payoff for the
game as a whole i1s simply the sum of the pay-
offs at the individual battlefields.*

In this paper we conslder a further generalization which is of
importance to a class of military problems. Specifically we wish to take
into account the possibility that there exists a complementarity among
the posts being defended, i.e. the "score" is not determined merely by
adding up individual target values but is determined by considering the
worth of capturing or 'neutralizing" various configurations of targets.
Our generalization includes the classical Blotto games as well as games
involving objectives of the second type (il).

We consider the possibility that the defending forces may be of
different size than the attacking forces. The minimum defense force re-
quirement for a guaranteed defense can be calculated (if such a defense
is possible). If the defending forces are less than this minimum then
our concern is with the level of expected success of the defenders.

By considering complementarity among targets we are 1n a position
to model networks and netwerk failure. Given the redundancy in systems
such a8 telephone and other communication systems (for example, early warn-

ing networks and command and control systems or electrical power grids),

*Beale and Heselden (1962), p. 65.



it is natural to consider how many components can be knocked out before
the system can no longer perform its function. Furthermore we may wish
to consider cost tradeoffs between built in redundancy and defense costs.
If one or even a few nodes of a network are inactivated messages
may be rerouted or power redirected. Beyond some critical level however
the system is no longer viable. Although in many instances systems degrade
in a continuous manner, for many purposes it is sufficient to consider two
states corresponding to "on'" or "off"; that is, to functioning or not functioning
at an acceptable level. For example a minimal size for a defensive second
strike force may have been selected in advance and even though some retali-
ation might be feasible with fewer weapons than the minimum level selected,
regarding the overall system as merely having two states may be an adequate
approximation for the purposes at hand. We consider the general case but
investigate the more special case as well. Surprisingly it provides mathe-

matical links among military, voting and circuit design problems.*

2. SYSTEMS FERFORMANCE AND THE CHARACTERISTIC FUNCTICHN

An n-person game in coalitional form is described by a character-
igtie function v(+) defined con all subsets of the set of all players
N . If one is considering networks or battlefields or key targets, then
the v(S5) may be interpreted as the value remaining in the system if only
the set of nodes § 1is held. (In traditional cooperative game theory it
is frequently assumed that the characteristic function is superadditive;

i.e. if S and T are disjoint, then u(S) + v(7) < v{5 U T) . However,

*Beale and Heselden (1962), Young (1977), Dubey and Shapley (1977}.



in a competitive context this assumption may not be reasonable. For example
if one is protecting a network of Doomsday devices, the characteristic
function may assign a value of 1 to every nonempty set.)

The v{5) reflect in an extremely general way the many types of
complementarity which can exist ameng the various combinations of points

in the network.

Sclutions to Games in Ccoperative Form

a0
[NEY

There are many different solutions which have been suggested by
game theorists for games in coalitional form. They all reflect various
aspects of dealings among cooperative players with different goals. Here
we note the value sclutions and the nucleclus which can be given natural
interpretations in terms of a military problem of defending a system with
n nodes. In order to give this interpretation in detail we must reform-
ulate the original n-persen game in coalitional form as a two-person non-
cooperative game. We do this in Section 3. Prior to doing this the cooper-
ative solutions are defined and illustrated.

The Shcpley value™ awards to each individual his expected marginal
worth on the assumption that all individuals enter all coalitions in a
completely random order. The amount assigned to an individual < may

be described as

(1) 6. = 2 T slimeesll! [0S - i3]
s L

Consider the 3-person game with a characteristic function as follows**

*Shapley (1959).

**The notation v(7J) stands for the worth of the set consisting of <
and J . We shall at times omit the braces from one-element sets.



(1) = v(2) = v{3) =0
v(12) =1, v(l3) =2, v(23) =3

v(123) = 4

A simple calculation gives the Shapley value of this game as ¢1 = 5/6 ,
¢2 = 8/6 and ¢3 = 11/6 .

A different value solution originally applicable only to voting
games was suggested by Banzhaf.* Here an individual < may be regarded
as a "switch" with on-off probabilities of 50:50., We then use the same

type of marginal consideration as before, obtaining

1 :
(2a) B, = J [v(SUi) -v(S)] .
T oseyvi 2E

The 8. will not necessarily sum to v(N) 1in this formulation, hence

if we wish we can define a "normalized Banzhaf value" as

(2b) B

Applying these formulae to the example above we obtain for the
unnormalized values B = (1, 3/2, 2) , or B' = (8/9, 12/9, 16/9)

Instead of regarding the probabilities that an individual will
be "on" or "off'" as 50:50 we could consider them more generally as given
by t and 1l-t where 0 <t <1 . A general class of values has been

considered with:

d, = 1 )" ursui) ~v(s))
Sch\1

*Banzhaf (1965).



The Shapley value is simply the unweighted average of all of these "t-
values."

Dubey and Weber have shown that there is a whole class of (not
necessarily symmetric) value solutions™ which includes both the Shapley
and Banzhaf values as special cases; the solutions differ from each other
in the weights or probabilities placed upon the formation of the different
coalitions. Why one should choose one set of weights over another appears
to be a problem better answered by the needs and reality of a specific
model than one amenable to purely a priori considerations.

The rucleclus is essentially the center of gravity of the core
of a game, if a core already exists, or it is the point at which the
core first appears if a coreless game 1s appropriately modified.

In order to make this statement more precise the excess of a coalition

5 , when viewing a prospective payoff vector a = (al, ey an) , 1s
defined as
(4) egla) = vis) - .Z a -

1es

The excess is a measure of how much more (or less) a coalition 5 can
claim for itself in comparison with what S obtains at the specific im-
putation a .

The nucleolus is the imputation at which the maximum excess of
any coalition is minimized. (Nonuniqueness 1is resolved by successive
minimization of the nonmaximal excesses.)

For the game above, the imputation a = (al, Ay a3) that minimizes

the maximum excess is the point (2/4, 5/4, 9/4) , for which

*Dubey and Weber (1977). In Dubey, Neyman and Weber (1978), it is shown
that the additional requirement of symmetry yields precisely the family
of all weighted averages of t-values.



3 3
€15(@) = 20 -2~ 74

1 1
923(a) = 35 - 3= 7 -

In the remainder of this paper we will not deal with the nucleoclus.
However in slightly different models than the ones used here it plays an
) *
important role.

The solution concepts above appear to offer different ways for
assigning values or worths to the components of the game, but we have
given no indication of how to link these valuation schemes with competi-

tion or conflict. We do this in Section 2.2.

2.2. The Noncooperative Game

We recast the game given in characteristic function form as though
it were a two-person zerc-sum game played between two opponents, a de-
fender and an attacker. The n players in the original game are regarded
as nodes or individual targets in a network that the defender 1s trying
to protect and the attacker is tryimg to destroy.

There are several different models of combat at a single target
that we can choose. The validity of different models of combat undoubtedly
depends directly upon the type of target and the nature of attacking and
defending forces. Specific mathematical forms to describe the battle

outcome at a single target are discussed in Section 3.

*Shubik and Young (1978).



Let (xl, ey xn) and (yl, vens yn) be the assignments of forces
of the defender and attacker to the n targets and let f&(xj, yj) be
the function (as yet unspecified) which indicates the outcome of the battle
at point J . A natural interpretation which we take at this time is
that it specifies the probability that the defender retains point J

Assume that the goal of the defender is to maximize the (expected)
effectiveness of the surviving configuration of targets. The probability
that the targets in the set § survive, while all others are destrovyed,

is 1 fé{ri, yi) n(1-f.(r., y.)) . Therefore, the expected effective-
1e§ JES Jog o

ness of the surviving collection is

Diz,y) = j“{ Nz )N (1-Fi(zsy yi))1wis) .
Sci 1eS JES

Let 4 and 5 be the respective amounts of strategic resources
(for exawple, troops or ballistic/anti-ballistic missiles) held by the
defender and the attacker. 1If we assume that the interests of the attacker
are directly opposed to those of the defender, then we have at hand a
two-person zero-sum game. The defender may choose any allocation
r = (xl, ey xn) of resources, subject to the constraint that E:i =4 .
Similarly, the attacker may choose any allocation y = (yl, ceny yn) for
which Zyi = B . The payoff (to the defender) is pD(x,y)

If we suspend the interpretation of the functions fﬁ as indicating
probabilities, we find that this competitive game directly generalizes
the traditional Colonel Blotto games, as described in the first section

of this paper. Assume that the underlying characteristic function is

additive, so that p(5) = ) v(k) for all SC¥ . Then
keS



n
Dix,y) = } Fi(Tys vy ) rv(k)
k=1

By identifying Pk(xk, yk) with fk(xk, ykjvv(k) (for example, by tak-
ing Pk = fﬁ and v(k) =1 for all k ¢ N ), we may obtain any classi-
cal Blotto game we desire,

Prior to investigating the two-person zero-sum game, it is desir-
able to describe some models for individual battle outcomes. These are
critical for calculating the probability of the capture or destruction
of an individual target. It is this tactical information which is needed
as & basls for overall strategic command decisions concerning allocation

of forces.

3. BATTLE MCDELS

It may well be reasonable to state that the probability that a
target J 1s captured or destroyed is a function fﬁ(xj, yj) of the
resources expended in attack and defense by the two sides. The actual
appearance of this function is an empirical question which depends upon
target type, force mix, doctrine used, morale and many other factors
which cannot be stated in vacuo,

A listing of the various battle models which have been considered
together with a critical evaluation of their validity is beyond the scope
of this paper. Such a study would be of considerable worth but does not
appear to be available. Even Napoleon's dictum that God is on the side
of the strongest battalion does not appear to be borne out when the sta-
tistics of the size of forces of victors and losers of major battles are

compared.*

*See Dupuy (1977), p. 89.
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For the purposes of this paper we consider a simplified class of
models where the attacker and defender have homogeneous resocurces; hence,
force mix problems are set aside.

In particular we consider

m
YT

(5) flx,y) -
yr + (l-yJ)y

unless =0, y =0

=Y if =z

I
(=]
"
B
[l
o

Y may be interpreted as an indicator of the natural defensibility
of the target. If x =y , then [flz,y) =1vy.

m reflects the importance of the difference in size between the
attacking and defending forces.

The homogeneity of the function f allows us to concerm ourselves
with the ratio % = 4B of defending to attacking forces, rather than
with the specific amounts 4 and &

Surprisingly, at one extreme in the class of mechanisms suggested
by (5) we have a mathematical analogy between an economic market and a
kill or capture probability. At the other extreme the Colonel Blotto
capture conditions appear, and we observe a mathematical analogy between

*  This

combat and a peculiar auction known as "the dollar auction."
auction serves to illustrate problems in escalation. It is discussed

further below.

*Shubik (1971).
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3.1. Proportional Bid and Kill Probabilities
If we set y =1 and m =1 . then (5) becomes:

(6) flz,y) = E%Q :

This condition can be stated as "you get in proportion to what you pay.”
Suppose for example that there is a single target. Then in a
military context (6) gives the probability that the defender wins. Al-
ternatively we may consider an economic context as follows: Imagine that
instead of a single target there is a single good to be sold. Further-
more consider that the good is divisible (for instance a thousand gallons
of gasoline). Interpret the x and y as sums of money bid for the
good. Then (x+y)! may be regarded as an overall price, and the price
divided intc the amount of money bid by an individual indicates the pro-

portion of the good that individual receives.*

3.2. (olonel Blotto Models
Set y = 1/2 and let m -+« . Then (5) becomes
1 if x>y
flx,y) =
(N 1/2 if z =y .

Q if T <y

*Shubik (1973), Shapley and Shubik (1977).



12

The function in (7) presents the crudest form of "superior forces"
model. It states that superior forces will win with certainty.

If one imagines that the forces on each side are essentially inte-
gral (for example the defender has m battalions and the attacker has
n battalions and an assignment of forces must always be made in integral
units) then the force-allocation game can be solved as a matrix game.
1f one allows for a continuous distribution of forces, all except a few
highly special cases are difficult to analyze fully.*

A natural question to ask is whether the finite models show nice
limiting behavior as the grid is made finer. That is, suppose we allow
the splitting of battalions into brigades, or even into individual troops:
as we consider closer and closer approximates to continuous distributions
of forces do the sclutions behave in a regular way?

The original Blotto games use the battle condition reflected in
(7) together with the further simplification that the values of the tar-
gets are independent. This is equivalent tco stating that ' «) 1is addi-
tive; that 1is,

v(5) = Y vii) for all SCWN.
1e8

Here by having a2 general characteristic function v(-) and using
the battle conditions of (7) we describe a much more general class of
Blotto games. Unfortunately,if resocurces of the defender and attacker

are the same or even close, in general there are no pure strategy solutions

*Gross {1950), Beale and Heselden (1962).
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to these games. The existence of pure strategies, as is shown elsewhere,*

will depend upon a relationship between the relative size of forces

k and the exponent 7 in (5). 1In particular, as has already been noted
by Peyton Young (in a different andrmore specialized context),1f k 1is
large enough then the Colonel Blotto game will have a pure strategy solu-
tion.

It is clear that whenever the relative size of the defending force
to the attacking force is such that the defender can guarantee the allo-
cation of superior forces to the defense of all »n targets there will
be a pure strategy solution. This is correct but trivial and suggests
that a better model is called for. 1In particular a natural extension of
the model which is discussed in Section 5 relates the cost of the defend-
ing forces to the value of the targets defended. In the formulation above
the forces are given and their cost is not calculated in the payoffs.

We noted at the start of Section 3 that the Blotto game formula-
tion could be related to a peculiar form of market. The analogy is not
as far-fetched as it may seem at first glance. In a normal price market,
individuals commit resources in the form of money and they receive goods
in proportion to the amounts bid. In an auction market individuals com-
mit resources in the form of promises to pay; the individual who wins
must provide the money bid and obtains the prize, while those who lose
make no payments. In a military engagement both sides commit their re-
sources and, although only one side gets the prize of victory, both must
pay.

The dollar auction is an elementary game in which somecne auctions

*Shubik and Weber (1978).
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off a dollar. Bids are sequentially accepted (in units, for example,
of five cents). When no bid 1s entered in a fixed interval of time the
game ends, and the dollar is given to the highest bidder in exchange for
his bid. There is, however, the additional rule that the second highest
bidder must alsc pay the auctioneer the amount of his bid, and obtains
nothing. When this game is played with open sequential bids it prcvides
a classical example of escalation. Suppose, for example, that 4 has
bid §1 and B thas bid 95¢. E may decide to bid $1.05 in order to cut
his losses to 5¢. Using the same reasoning A4 may then raise his bid
to $1.10, and so forth.*

If we consider a similar game, played with both individuals making
single simultaneous bids, then the relation to the Colonel Blotto game

emerges. Suppose each of the two players has $2. We use as the payoff

functions
l-x if =z >y
- 1 .
(8) rl(x,y) ={3-¢ if =y
-x if x <y
1-y if y »=x
d Piz,y) ={ 2-y if y ==z
an 2 EX 2 éf 4

-y if y<x.

*shubik (1971).
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This formulation implicitly assumes that there is a direct and simple
relationship between resources committed and their costs. This is clearly
true 1in the deollar auction. 1In a battle however, one might at-
tribute some value to victory, but there is a difficult problem in cast-
ing the value of victory, the resources committed and the costs of the
resources in commensurate units. We return to this problem in Section 4.

A relationship between auctions and Blotto games has been remarked

upon before by Sakagushi.*

3.3. A Corment on Conflict Models

Zero-sum games can be qualitativelyclassified, according to whether
they have pure-strategy optimal solutions, or require the use of randomi-
zation for optimal play. Pure-strategy sclutions to a competitive de-
fender/attacker game are closely related to the t-values of the under-
lying characteristic function game.

Specifically, assume that the same outcome function f(+,+) de-
scribes the situationat all »n targets (battlefields), and further assume
that f 1is homogeneous of degree zero (so that f(x,y) = flar,ay) for
all a > 0 ). Let the initial resources of the opposing sides be 4
and B, respectively. Then, 1if both sides have optimal pure strategies,
these strategies must be resource allocations proportional to the f(4,E)-
value of the underlying game.

Furthermore, let f have the form f(x,y) = yxm/(yxm-+(l-y)ym)
Then, for all sufficiently small values of m , the allocations propor-

tional to the f(4,B)-value are indeed optimal. (Note that small values

*Sakagushi (1962).
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of m correspond to outcome functions which are relatively insensitive
to small differences in opposing allocations at a target. It is not un-
reasonably to expect such a situation to occur.)

Further details concerning these results are presented elsewhere.*

4. THE COSTS OF SYSTEMS DEFENSE
"What price freedom?" is a saying that is difficult to operationalize
for political philosophers, for Department of Defense budget proposers,
or for economists.
A model that links the value and the cost of defense is presented
here and a different model is alsoc noted in Section 5.
Here we consider the value of defense in relationship to its costs.
In Section 5 we take the costs of defense as given but consider the pos-
sibility of trade-offs between systems design and the defensibility of
a system. (From the point of view of modelling the process of defense
the model here is far less satisfactory than that in Section 5.)
At a high level of abstraction we can consider four major factors
in the description of the defense of a system:
(1) The military or societal "worth'" of defense;
(2) The type of forces, quantity of forces, and force-structure
used in defense;
(3) The cost of the forces;
(4) The '"hardness" or 'defensive strength” of individual

targets.

*Shubik and Weber (1978).
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The models in Section 3 essentially avoid the problems of compar-
ing value and cost by portraying value in the characteristic function
and specifying the available attack and defense forces. Thus the military
resources enter only as boundary conditons on a force assignment problem,
rather than as resources whose costs must be taken into account in the
paycffs. By using this formulation there is no need to compare value
and cost.

In economic markets involving bidding or prices the mechanism is
explicitly designed to include value and cost in the payoffs. If there
is some item selling at price p and an individual buys = units of it,
paying in some other commodity of which he has a supply M , then his

payoff 1is given by:
¢(x, M-pzx)

If we were to regard M as a money which the individual values

more or less at a constant worth we might write his payoff as:
$(x) + M~ px .

We can easily modify the games of Section 3 to include costs in
the following manner. The defender and attacker first each select force
levels kl and kz » Incurring costs of cl(kl) and cz(kz) . They

then each assign forces and the payoffs are given by:
(9) Py = v(8) - e (k)

for all & .
P2 = v(s°) - cz(kz)

where the v(S5) 1is the worth (in monetary units) of the set S5 of targets
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defended successfully. (In analogy with our earlier zero-sum model, we
could alternatively define P2 = _p(8) - cz(kz) ; 1f v ie constant-
sum, these two approaches are equivalent.) This is a two-stage noncon-
stant-sum game.

The fact that the above game formulates well as a two stage pro-
cess should call attention to the possibility that in actuality the two
Stages are separate, inboth time and bureaucratic control. The problem in
a defense department in dealing with the government as a whole is to select
ki s 1ncurring the budgetary expemse ci(ki) . The problem of the com-

mander, having been presented with forces ki » 1s to allocate these
forces wisely.

From the viewpoint of analysis it thus seems to be reasonable to
regard the models of Section 3 as worth pursuing at the level of command
and control but to consider the type of model suggested by (9) as a dif-

ferent level of decisionmaking which involves deep problems in the modelling

of defense budgeting.*

5. THE HARDENING OF TARGETS

In order to illustrate the preceding comsiderations, we analyze
a simple example. Assume that the defender seeks to protect three sites,
at each of which several anti-ballistic missiles are siloed. If the at-
tacker destroys any two (or all three) of the targets, the overall defen-
slve system will collapse. The first site houses fewer missiles than
the second, which in turn houses fewer than the third; although any two
surviving sites will yield an adequate system, the survival of all three

provides even greater security. We model this situation with a charac-

*Hitch and McKean (1960}.
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teristic function v , which satisfies v(123) = 4 ; v(12) = 1 ,
v(13) =2, v(23) =3 ; v(5) =0 if |} <1.

Assume that the attacker and defender possess comparable amounts
of strategic resources; say, A = B =1 . Let the outcome of conflict
at site k be represented by the function P (z,4) = kam/(kam-f(l-Yk)ym) »
for some relatively small value of m (that is, assume that equal forces
engaged at site k will yield a result favorable to the defender with
probability Yy o and further assume that small differences in troop as-
signments lead to only small changes in this probability). The parameter
¥z, indicates the "hardness" of the target at site X --its natural strength
against attack. The optimal allocation of strategic forces by each side
will be proportional to the (yl, Yoo Y3)-va1ue of the game v . Hence,

this allocation will be proportional to the vector

B = (Y2 + 273 - 27273, A + 373 - 2v1¥3, 271 + 372 - 2Y1Y2)

In particular, if we initially have Yy =Yy =Yy = 1/2 , the optimal
allocation for each side is (2/9, 3/9, 4/9)

Now, assume that additional capital is available to the defender,
which may be used to harden any of the targets. Indeed, assume that an
investment of Ack units of capital at site k will yield an increase
of (l-—yk)-ﬂck in the hardness of target %k ; that is, ayk/ack = {1 -Yk)
A natural question is how best to invest the additional capital.

Assume that the defender allocates his forces according to

— 1 —
T = (xl, T, 33) » while the attacker's deployment is y = (yl, Yqo y3)

Then the value of the outcome of the competitive game, to the defender, is
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Diz,y) = PPy * 2P1Py * 3PoPy = 2010,P4 >

where each is evaluated at (z,, ) . The optimal strategies are
Fi K Yk

x*t =yt = B/Eai . Therefore, the rate of gain from investment in the

hardening of target k 1is

ap 3y

30 EI k k
(x4, y*) = —{(x*, y*)—(x*, y*) =——

3, Y o ¥ %y, Y e

The best investment is in the target (or targets) for which this expres-

sion is maximized. But the expression varies with the parameters Yy o

PR and Hence, if we begin with all Yg equal, it is best to

Y3-
initially invest in work at the site for which Bk is maximal; this changes

B as well as Yi after which we can determine the best target for

further investment. Beginning with Yy T Y, T = 1/2 , we obtain the

T3
results indicated in the figures. (As the available capital increases

without limit, the value of D(x*, y*) approaches 4, and the three sites

attract nearly equal proportions of the capital.)

Dix*, y*)
(value of game
to defender)

A 4 —
2.74 3.38
1.251
s ‘ ' 4 + + — +—capital

0 .087 .182.26 .63 .84 1.32 2.37 4.49
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Proporticon
of capital
invested
in each site
------ 1
—2/3
AL
21% m1/3
3
O 087 .182 .26 .63 .84 1.32 2.37 4,49 C3Pita

This model is presented merely as a simple suggestive example of
the type of computationwhich, although not easy, appears to be feasible
and relevant to studying tradeoffs in defense, in hardening of targets,

and in redundancy in systems.
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