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ABSTRACT

In approximating the small sample distribution of the least squares
estimator of the coefficient in a non-circular autoregression the saddlepocint
method is complicated by the presence of a branch point of the integrand
within the natural contour of integration. Some new approximations are given
kased on a conteour looping around the branch peint; and a uniform approximation

which is valid as the saddlepoint crosses the branch point is also developed.

KEYWORDS

Steepest descents and ascents, elliptic integral, uniform approximation,

parabolic cylinder functien.

1. INTRODUCTION

In an earlier paper (Phillips (1978)} it was found that the derivation of
the saddlepoint approximation to the distribution of the least squares estimater
of the autoregressive coefficient in a nen-circular autoregression was
complicated in certain cases by the existence of a branch point of the integrand
within the natural contour of integration. This complication meant that the
usual saddlepoint approximation was unavailable in a sizeable region of the

tail of the distributicn for values of the autoregressive coefficient greater
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than 0.5. The present paper gives some new approximations to cover this case.

2. APPROXIMATIONS BASED ON A LOOP AROUND THE BRANCH POINT

We work with the model Yo T ay, + u, (t.= ... -1,0,1,...) where

,|a| < 1 and the u are i.i.d. N(O,czl. The least squares estimator of a is

~ T T 2 :
given by a = Et=l Ytyt—l/2t=l Yeop = y'Cly/y C2y where y' = (yo,...,yT), and

the density of a is given by the expression

1 3M(zl,u-le)

2ni du

(1) pT(x) = dzl

u=0

where the integration is taken along the imaginary axis in the z. plane or

1

an allowable deformation of this path and M(zl,zz) is the joint moment generating

function of the quadratic forms y'Cly and y'Czy. In fact, we find that

_ 2.5 =
M(zl,zz) = (1-a™) hT+l where
(atz )T (a+z, ) 2+a’
2) SRV Sy I FSUNE S
T+l T 2 a+z
wo(1-w)
2 2
[2T+2 (a+z ) 4o opip 2 zfr]
- |w - w + a'w
a+z
1
and w satisfies w+w-l = (l+a2—2z2)/(a+zl}. After changing the variable of

integraticn in (1) from z, to w and neglecting the term in square brackets

1

on the right side of (2) (which is exponentially small as T + =) we obtain

(details are available on request):

)
(3) Py {x) ™ ‘T'g)(l-ﬂ(r)r_l)/z J(wz_kwl) (=312, (1
2ri{l+a”-2xa) -
where
¢(w) = ..(_.l_:ﬁ.)..:;_/i 1+ 1 ](w2-2xw+l) (1+a2w2)-—2w2(1+a2_2x)
a(w)k T3 a(w)%(l+32—2xa)-l N
af{w) = (l—aw)2(1+aw-2wx)(l~2ax+uw) and the path of integration C is taken inside

the unit disk ]wl £ 1 from e—le to ele where x = cos 0 (see Daniels (1956) p.l72).



the factor (w2-2xw+1) has a saddlepoint at w=x on the real axis and the

natural contour of integration is then the straight line connecting e“ie to

eiB which, at w=x, is the line of steepest descent through the saddlepoint.
However, the integrand of (3} has a branch point on the real axis at

w= 1/(2x-a). We cut the w plane along the real axis to the right of the branch
peint and, then, whenthe saddlepoint lies outside the branch peint {i.e. when

2
1+ox~2x <0 or when x>1/(2x-a) in the right hand tail) we deform the path of

integration in a loop around the branch peoint as in Figure l. We have a

A
L4
L
1 R ‘ i
2x-a
L
Y 2
ALl

similar configuration when %<0 in the left tail and this will be of greater

importance when a<Q also. In what follows we will assume that (2x-a)hl>0.

-1
In Figure 1 the circle Y has centre (2x-a) and radius €. Along L

ll'
P 2.5

w=x-iy(1-x2) with Ogy¢l and, along L4, w=x+iy(l-x") °. We select that branch

of (l-lno:w—sz-:);i for which the integral is positive and, along L,, we set
2|L1e1”-'/2 with (Zx-a)-1+a <y < x; and, along L3,

2|1/263ni/2

(l+aw-2wx)& = |1+ay-2y
we set (1+aw—2wx)1/2==11+ay-2y for the same values of y. Taking
each of these integrals in turn we find first that the integral around vy

vanishes as the circle shrinks to the point (2x-a)-l. Along Ll and Lﬁ’ we

expand ¢(w) in a Taylor series about its appropriate value on the real axis

where w=x and find for the dominant term in each case



E%I I(wz-wa+l§T-3)/2¢(w)dw
L
L (1ex2) TB/2 407 32 J%l_yz)(m-s)/zdy
2m (l-ux)2[l+ux—2x2|5e“l/2 o
and
5%; I(wz-wa+1)(T—3)/2¢(w)dw
L4, (r-2)/2 2.3/2 1
{(1-x2) {(1-x") 2, (T-3)/2
v 7 3 7% gni/z|| 1Y) dy
(L-ax) ‘| 1+ax-2x"| e o

so these integrals cancel on addition.

(T-3)/2

2
L., and L. are paths of steepest ascent for (w -2xw+l) from the

2 3
saddlepoint at w=x. Most of the contribution to the integrals along these

-1
paths comes from the vicinity of w=(2x-a) on the real axis. To evaluate

these integrals we first define

_2.3/2
$(w) = (1-w ) :
(l-aw) (1-2ax+aw)
so that
(@) pon = —2 114 oi7h;

(L+w{a-2x))

We now consider the integral

-3/2, N
(2x-a) 2 ( (2x-0) ~Low)

L,

Along L2, w=x—y(1-x2)& for Ogy<A(x) where A(x) = (Zx—a)_l(lﬂxz)ﬂ

2
(5) 1 I(w -2xw+l)

2wi

L

(2x2-ax-l);
2 2 2
and (w -2xw+l}=(1-x")(1+y }. (5) becomes

(T-3)/2

(A (x) -y)

2
1ty ) w(x—y(l-xz)H)dy

27 L]

A(x)
1 o) (T2 /2 (
(2x-a)

o)



Alx)
(6) '«,_1_(1-x2)(r 2'5)/2w(x-1(x)(1-x2)5) (l+z?)(T-3)/2 o
2 (2x'ﬂ)]’ (l (X} _y)I:

0

since ¥(.) is analytic on L., and most of the contribution to the integral comes

2

from the vicinity of y=A{(x). The corresponding integral along L3 takes on the

same value (5).

Hence, adding the contributions from the separate components of the
centour in Fiqure 1, we obtain

' A(x)
(1-3) (10" (1-x%) T2 /2y ey 0 1xD) Y (14y2) (T-3)/2

- dy
(T-1)/2 o) O x) =) *

o)

(7} p.(x) ~
T (1+a2-2xa)

The integral that occurs in {7) can be calculated exactly. We distinguish cases

of odd and even T.

When T is odd we let n = {T-3)/2 and then

2.n
—ilix—l—;-dy = Q(y)(l(x)-y}a
(A (x) -y)

where Q(y) is a polynomial of degree 2n ({c.f. Gradshteyn and Ryzhik (1965), p.80).
We write Qly) = Zifo qkyk and the coefficients g, can be recovered from the

identity
2.n
{(I+y")" = Q' (y) (A (x)-y) - XQ(y).

For the definite integral in (7) we need only the constant coefficient Iy

which we calculate to be

n
q, = -2-2A(x) Z

[ n ]Acx)zk'lz;3.4.;.(zk)
k=1

n-k 35
25t (2k+4)

Then

L

(A (x}-y)

Aix)
(l+y2) {(T-3)/2
=1

n e 3. 2
n-k

]! n
dy = 2h(x) T {1 + X(x) ] G
k= 5:3...(2k+%}

o



Noting that x—A(x)(l—xz)H = (2x-a) "} we see that (7) becomes
(T-3) (1-a )*(1 e A T T
{8) pT(x) ~ -1} 72 L
ﬂ(l+u -2xa) (2%-a)
. A (x) 2X2 (2K)
. 2X(x) {1+A(x) ) [ k] s s }
k=1 25" . (2k+4)

where A(x) = (2x-a) "t (l-x?) "% (2x%-ax-1) .

When T is even, we set n = (T-2)/2 and write

A(x) X (x)

(L+y 2)(T 3)/2 2)(T-2)/2

(A (x) -y) {(l(x) -y) (y+i) (y-:.)}

e (X))
] "

| -y y+i) (y-i) 1

1]
Ea
I 10
o

n 2k
(9) = Z [n] v dv

k=0 ) {(v+l(x))(v+i3(v—i)}%
=A (%)

This is now an elliptic integral and can be evaluated from the recurrence

relation
(4k—l)R2k = 2(1*2k)A(x)R2k_1 + (3-4k)R2k_2 + 2(1-k) (x)RZk-3
C
where R2k = { (v+A (%)) (v+i) (v-1)} -4 2kd
=X (x)

by which we can express each of the integrals in (9) in terms of the two basic
integrals Rl and RO. The latter can be reduced in terms of elliptic integrals

of the first and second kinds as follows (see Byrd and Friedman (1971), pp.86-87

and p.206):



° dv y J
(10} R, = SRRV LR JURSR
_l(x){(v+l(x))(v+i)(v-i)}
- ° vdv _ Alx) + (1+A(x)2)5
A { (w42 (x) ) (v+i) (v=1)} {142 (x) )
=X (x)
‘ 2.y sn(ul)dn(ul)
+ 2(1+A (x)7) [F(¢;k) - E{¢.k) +—W
. 2.k
(11) = - Alx) + (l+;(i:) ) F(4,k)
{(1+A (x) )
v 20 00D Fm - 20 + sin(9) (1-ksin’(4))
' L 1 + cos(¢)
re
where F{d,k) = 2d6 5% = u
‘0 (1-k"sin”8)
rd
E(6,K) = | (1-k’sin0)’d8,
JO
( .
alanm?d ]
¢ = cos R R
EETEEY
Lo e e |
2 (144 (x) %)

and sn{ ), ¢n({ )} and dn( } are the Jacocbian elliptic functions.

The approximation for T even is clearly more awkward to evaluate than
wheh'ris odd., But both cases are in turn more complicated than the usual
saddlepoint approximation which is available when x<(2x-a)-l. An alternative
approximation which is much simpler in form can be obtained by approximating
the integral that occurs in (7) rather than evaluating it exactly. ‘The

following derivation was suggested to me by Professor H.E.Daniels (1977):

(12) T dy = T dv

. 2 2
Jk(x)(l+yz)(T-3)/2 . Jk(x)eh(T-B)y Ik(x)e%(T—3)(l(x)—v)
y "~ —_— 7T
v

(A (x)=-y} (A ({x)-y)

o 0



-8 -

(T_3)-&e5('r-3)ux) { w1 (T=3) A xhwthaw o
0
ERT-NA2 | <k ~(T-3) A v,
N (T-3) e w e dw
5 o}
h L(T=3)A(x)
mTe
(3 = PR
(T-3) “A(x)

Using the approximation {13) in (7) we obtain the approximate density

L 2
(14) PT(x) n (T-3) "(1l-a L X
. - m{l+a -2xa)

. 2
% 1og?) (2780 /2, or o =1 B (T-3)A ()

(T-13/2 5 ) 0"

In deriving (13) we replace a finite integral by an infinite integral, so

that the approximation will be most satisfactory when (T—3)HA(x) is large.
Note that when A(x) is small the approximation (13) will behave in a different
way from the true value of the intégral (12). In particular, as A(x) *+ O
{i.e. as x approaches (2x-a)-l in Figure 1), (13) tends to infinity, while

the ;ntegral itself tends to zero. In this respect the approximate density

{14) compares with the usual saddlepoint approximation obtained when

x < (Zx-a)-l and x approaches the branch point from the left side.

J. A UNIFORM APPROXIMATION IN THE VICINITY OF THE BRANCH PQINT

As the saddlepoint w=x moves past the branch point (2x-u)-l on the
real axis the usual saddlepoint approximation for x < (2x-a)‘l and the
approximations given in the previous section for x > (2x—a)-1 all break down.
An approximation which holds uniformly for values of x in the vicinity of

(2x-u)—l therefore seems desirable.

To find such a uniform approximation we return to (3) and {4) from which

we have



(T-B)/2¢(w)dw

k!

(T"3)(1-02)5 1 'J (w2-2xw+l)

(L+a’-2xa) (T1/2 5 o) 271 ((2x-a) "T-w)

(15) pT(x) "
_a)

c

Using a line of approach developed by Professor Daniels (1977) we can now write

the integral that occurs in (15) as

m -1
1,2 (T-3) /2 1 -5 —u((2x-a) " "-w)
o [ (W =2xw+l) ¢(w)r(§) J u ‘e dudw
c 0
® -1
- rg.) J o E%I J w221y (T 72, m0(2x=0) ")
0 C

. ) 2
We now let w = x+iz{l-x )% and let C* be the contour in the z plane corresponding
to C. We obtain

o2 (1272 =

-1
(1- s J Geme(2x-a) ) f%’[ (1—z2)(T‘3)/2w(x+iz(1-x2)5)
(o} : c*
iz (1-x2)
e dz
2. (T-2)/2 = ‘ -1
(1 xFiE) J u Ee—u((2x—a) -x)du g; I w(x+iz(l-x2)e)
(o] Cc*
2 . 2.4
e-H(T—3)z +uiz (1-x") dz
2 (T-2)/2 = _ -
= dzx ) z J u Yexpl-u( (2x-a) "F-x) - 4(1-3) Fu? (1-x2) }au
(%) (2m)
0 _ 2 32
1 : f ¢(x+iz(l-x2)&exp{-%(T-3)[z-igiéfg-l—J }dz
@ 1, |

We now let C* be the contour crossing the imaginary axis orthogonally at

h

z=(T—3)-liu(l-x2) . Most of the coﬁtribution to the integral comes from the

vicinity of this point and the usual saddlepoint approximation gives us

2, (1-2)/2 - - _
(1-x ) (3‘3) J u-Hexp{—u((Zx-u) Ly -k (-3) lu2(1-x2)}
T(k) (2m) 0 -
| ¥ (x- (T-3) "Lu(1-x%) ) du

=~ 2
(l6) = . f W—Hexpf-(T—3)[Wu(X)+%']}w(x'w(l-x2) Jdw
2 0
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b

where u(x) = (1~x2)_ (2x-a}-1(1+ax-2x2) = -A(x). We could now expand

b (x-w (1-x2) 7

) in a Taylor series about its value when w=0, and then integrate

term by term. The integ;als in the resulting series can be expressed quite

simply in terms of parabolic cylinder functions. However, this reduction

of (16) neglects the fact that-when u(x) < O an important contribution to

the integral comes from the vicinity of w = -p(x). Indeed, when u(x) < O the
analysis of the previous section is relevant and we recall that the approximations

there are based on the value of the analytic part of the integrand at the branch

point (2x-a)-1 rather than the saddlepoint at x.

To cope with this problem and to ensure that the uniform approximation to
(16) reconciles with the usual approximations on either side of (2x~a)_l we
expand ¥ (.) as follows:

, 2.5
{17) H'J(x-w(l-xz)l!) = §(x) “(WX)-MX-H; E:; — } + wi{wtu (x))G(w)

We take G(w) to be defined by (17) and note that the singularities of G(w)

at w=0 and w=-p(x) can be removed by writing

~1 -1 2. %
_JuoTT ux) o2t _ ) =g {xHu(x) (1-x9) )
Glw) = { i w+u(x)}{w(x wi{l-x"}") P (x} T x) . w}
-1 2.k
L Bx) {w(xwu-xz)”) _ w(x)} _ P00 =y (kb (x) (1-x) D)
w ) 2
p{x)
1 ¥ (x) =g (x4 (x) (1-x2) D) ¥ () = (x-w (L-x2) )
* w+u (x} w 2 * ulx) 2
p(x) u(x)
Slpe (DT () z-l, 2.5/2 gix) g xbu(x) (1-x2) %)
= 1 (x) ZFLT P w (1=x") - 5
u(x)
r

: X:=1 0 'P(r) {x+p (x) (l-xz)]’) (w+p (x))r,

T owtp (x) r!
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{16) is now

(Loxdy (T=3)/2+4 {Ju . 2

(18) H w exp{-(T—3}va(x)+§-]}dw¢(x)

2% o

¥ (x) =p (e ) (1-x2) D )
U (x) J

@ 2
+ J wﬁexp{-(T-B}[wu(x)+§ ]}dw{

o]

@ 2
+ J waexp{-(T-B)Iwu(x)+§-]}(w+u(x))G(w)dw}
(o]

The last integral in (18) is, by integrating by parts,

2

(T-B)-l Jaexp{-(T—B)[wu(x}+§-l}(hw-& .
0

Gi{w) + wG'(w))dw

which is of O(T’l) relative to the first two integrals in (18). We note also

that

@ 2
J waexp{-(T-B)[wu(x)+§ ] }aw
0

= ('1?-.'4)-'(l+a)/2 J vaexp{-(T—3)Hu(x)v-%vz}dv
o .
2
19 = -3 F 2 T n fu)

where Dv(z) is the parabolic cylinder function with variable z and parameter v
(Exdeyli (1953) Ch.8). Using (19} in the first two integrals of (18) we have

as the dominant term

.2 (T-2-%) /2 _ _ 2
tox ) {350 o * TS (o3 o) v
ZHn { . -k
+-(T-3)_&r(§q H(T'3)U(X)% (T-B)H x)) w(X)-¢(x+u(x)(l—x2)5)

From (15) the resulting approximation for the density is given by
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, 2
(-3 ¥ (1ea2)® (1ox?) (T-2741 /2 (=300 )
E

(2m) % (1+a-2x a)(T 1)/2

(20) .p,i.(x) ~
2x-a)

2k
- %2+ (x) {(1-x

4D L (- T ) P (0) + BT-3)TID  ((T-3)p () ) Db b le) (Lox ) "}

-3 ) u{x) }

-3/2

This approximation holds uniformly as x moves past the branch point (2x—a)-l
i.e. as u(x) becomes negative, because Du(z) is an entire function ¢of z. The

approximation can be computed by using the following expression for Du(Z) in

terms of the confluent hypergeometric function

2
_ SV/2 ~27/4 | T(k) z I(-h) ko 31,2
D,(z) =27 "e {_—I‘(lz Luy 1F1 vl 52?) + —25 —“I‘(-“-) 1Fp G-hvagihz )}
2

(Erdéyli (1953) p.117).

The uniform approximation (20} can be related to the formulae that apply
on either side of the branch point by taking an asymptotic expansion of Dv(Z)'

We have two expansions which are relevant in the present case:

{21) Dv(z) = zve-%z 1+ 0(2-2)] L < arg(z) < %=
and
2 L 2
(22) D (2) = 2% (1 + 0(z™H]- ;%EL) A N Ay

(Erdéyli (1953) p.123) w/4 < arg(z) < 5n/4

‘When x < (2x—u)-l'or uf{x} > 0 wea use (21) in (20) and obtain for the

dominant term

o o 3l s T2

b
T (Zﬁ)%(l+a2—2xa)(T l’/2(2x-a)su(x)%

(7-3) 7 (1-02) T (1-x2) (T*1) /2
7% 372

(2v)%(l+a2—2xu)(T_l)/2(1+ax-2x ) “(l-ax)

(23) =
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The saddlepoint approximation available in this case is given by

(T-a)r(———d(l a2)5(1 2 {(T+1) /2

{24) p_ (x} ~
T 21 l’r'(-"g-)u.m -2xa) T2

3/2 2. &

ax) (1+ax-2x")

and using the asymptotic relation T(Egii/r(%é = (HT)-H[l + O(T_l)l it is clear

that (24) and (23) are the same up to a relative error of O(T-l).

when x > (Zx-a)_l or u({x} < O we need to use {22) in (20). We see from
{22) that the dominant terms in the expansions in the present case are

2
b =hni -1 H(T-3)p(x)
n_,!(('r-sﬁu (x)) n - 2% e r(&z‘ e -

(T-3) "uix)

2
121/29&(T-3)u(x)

(T-B)&u(x)ﬁ

and

D_y (-3 )y & - (20 T eI - 3,"u<x)‘= R(T-3) ()

3/2

= 932 3y B o e Mo’

Substituting in (2Q) we obtain

2
(7-3) ¥ (1-02) 7 (1ox?) (T-278) /2 5 (T-3)u (x)

p.lx) ~
T (2n)5(1+u —2xu)(T 11/2 a)ﬁ

2
. {2H(T—3)—Hiu(x)-He&(T-B)u(X) ¢(x+u(xl(l—x2)H)}
i (T-3)5(1-a )5(1 2 (T- 2)/2 L (T-3)u (x) w((zx-a)'l)
ﬂa(l+c —2xu)(T -1)/2

which corresponds exactly with (14},
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