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I. Introduction

A forecast from an econometric model has four main sources of uncer-
tainty. Uncertainty arises from the error terms, the coefficient estimates,
the exogenous-variable forecasts, and the possible misspecification of
the model.l In this paper a method is proposed for estimating the uncer-
tainty from these four sources. Two examples of applying the method are
also presented. The first example is for a forecast from the model in
Fair [8], and the second example is for a forecast from a naive model.
The naive model is meant to be used as a benchmark for the first model.
Given the obvious importance of knowing how much confidence to place on
any given forecast from a model, it is hoped that the method proposed in
this paper will become used by model builders to estimate the degree of
uncertainty of their forecasts. A useful by-product of the method is that
it also provides a quantitative estimate of the degree of misspecification

.of a model.

*The research described In this paper was financed by grant SOC77-03274
from the Natiomal Science Foundation.

lUncertainty also arises from having to make forecasts on the basis of
preliminary data rather than the finally-revised data. The uncertainty
from this source is probably small relative to the uncertainty from the
other four sources, but at any rate it has been ignored in this paper.



The method is outlined in Section IT, and its application to the
two models is discussed in Sections III-V. The results for the two models
are presented and discussed in Section VI. Section VII contains a brief

summary of the paper and some concluding remarks.

II. An Outline of the Method

The application of the method requires that a model be estimated
and stochastically simulated over a number of different periods., Consider
for sake of an example that data for a model are available from quarters
1 through 100,2 and that the lags in the model are such that the estimation
period can begin with quarter 11. Assume that the model has been estimated
over the period 11-100. Assume also that a forecast for the period 101-
110 has been made using this set of coefficient estimates and some prior
forecasts of the exogenous variables for the 101-110 period. This fore-
cast is meant to be dynamic (i.e., generated values of the lagged endogenous
variables used after the first quarter), with the actual values through
quarter 100 used as initial conditions. The problem is to estimate the
degree of uncertainty of this forecast.

If a full-information method has been used to estimate the model,
then one has directly available an estimate of the variance-covariance
matrix of the error terms and an estimate of the variance-covariance
matrix of the coefficient estimates. Otherwise, if only a limited-
information method has been used, the former matrix can be estimated

using the limited-information estimates of the single-equation residuals,

The data, of course, need not be quarterly. This quarterly assumption
1s made solely for expositional convenience.



and the latter matrix can be taken to be a block-diagonal matrix, Wheré
the blocks are the estimated variance-covariance matrices of the limited~
information coefficient estimates of the individual equations. Given these
two matrices, it is then straightforward to estimate by means of stochas-
tic simulation the uncertainty due to the error terms and the coefficient
estimates. TFor the above example, each "trial"™ would be a dynamic simula-
tion for the 101-110 period, with the actual values through quarter 100
used as initial conditions and with the prior forecasts of the exogenous
variables for the 101-110 period used for the exogenous-variable values.
The exact way in which stochastic simulation was carried cut in this study
for the two models is described in Sections IV and V.

The uncertainty due to the exogenous-variable forecasts can also
be estimated by means of stochastic simulation. This procedure is, however,
less straightforward than the above procedure for the error terms and coef-
ficient estimates because there is no obvious estimate available of the
degree of uncertainty of the exogenous-variable forecasts themselves.
The procedure followed in this study was to regress each exogenous variable
in the model on a constant, a linear time trend, and its first eight lagged
values, and then to take the estimated standard error from this regression
as the estimate of the degree of uncertainty attached to forecasting the
change in this variable for each quarter. Given this assumption for each
variable and the estimated standard errors, the uncertainty due to the
exogenous-variable forecasts could then be estimated by means of stochas-
tic simulation. The exact way in which this stochastic simulation was
carried out in this study is also described in Section IV. This regression
procedure is not, of course, the only one that can be followed, and all

that really needs to be pointed out here in the general outline of the



method is that some estimate or assumption about the degree of uncertainty
of the exogenous-variable forecasts must be made.

Estimating the uncertainty due to the possible misspecification
of the model is the most difficult and costly part of the method. It also
rests on one fairly restrictive assumption, namely that the degree of mis-
specification of the model is (in a sense to be described below) constant
across time. This part of the method is best described within the context
of the above example, and it is as fellows.

Assume first that the above model has been estimated for the period
11-70. Given this set of estimates and given the actual exogenous-variable
values for quarter 71, one can estimate by means of stochastic simulation
the variances of the one-quarter-ahead forecast errors for thg endogenous
variables for quarter 71. "Stochastic simulation" for this part of the
method means simulation that takes into dccount the uncertainty from the
error terms and the coefficient estimates, but not the exogenmous-variable
values. For present purposes the exogenous-variable values are always
the actual values.

Let denote the actual value of endogenous variable < for

Yiri
quarter 71, let Y71 denote the (unknown} expected value of Y:71 0

2 ) —
and let 971 denote the (unknown) variance of Yi91 " ¥i71 0 the fore-

cast error. y. and 0% are, of course, model specific in that they
Yinl i71 P

are, among other things, a function of the coefficient estimates of the

model. Now, stochastic simulation as outlined above can be used to esti-

mate . and 0% Call these estimates and 6% . Although
Yin 171 771

it is clearly not the case that these estimates will be exactly equal to

Y:11

the true values, it will be assumed in what follows that the differences

between the estimates and the true values are negligible. There are two



main reasons the differences are not exactly zero. One is that in any
actual use of stochastic simulation only a finite number of draws or trials
can be taken. The other, and perhaps more important, reason is that only
estimates of the variance-covariance matrices of the error terms and coef-
ficient estimates are available for use in the stochastic simulation.
The true variance-covariance matrix of the coefficient estimates, for ex-
ample, is not known, and so exact stochastic-simulation estimates cannot
be achieved even with an infinite number of trials. Tt is unclear as to
the likely size of the differences between the stochastic-simulation esti-
mates and the true values, but, as just mentioned, for present purposes
these differences are assumed to be negligible.3

Since data on Yy;71 @re available, one can compute the actual error

in forecasting this variable for quarter 71. The expected or predicted

A

value of ¥:71 is Yr71 0

forecast error. Now, assuming that 5%71 exactly equals

~

50 that €771 = ¥z71 " ¥z71 18 the actual

Yi71 0 Sin
is a sample draw from a distribution with a known mean of zero and variance

2 ~2 , . 2
971 ¢ Ei71 is thus under this assumption an unbiased estimate of 971

One thus has two estimates of 0571 , one computed from the actual fore-
cast error (§§71) and cone computed by means of stochastic simulation

(6571) . Let di?l denote the difference between these two estimates:

. ~2 .2 ) .

= - a
di?l €71 = 9571 - Under the assumption that 771 1is exactly equal
is the difference between the estimated var-

to the true variance, d.
171

iance based on the actual forecast error and the true variance. Therefore,

It should also be noted that it is implicitly assumed here that the vari-
ances of the forecast errors exist. For some types of coefficient estimates
this is not always the case, but no attempt is made in this study to handle
this possible problem.
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under this assumption and the above assumption that 5%71 exactly equals
5%71 , the expected value of di?l is zero (since under the above assump-
tion the expected value of a%?l is equal to the true variance).

One can repeat the above procedure for quarters 72 through 100.
The model can, for example, be reestimated through quarter 71 and the above
calculations performed for quarter 72. This will yield a value of di72
for each variable < . Similarly, a value of di?B can be computed by
reestimating the mode}l through quarter 72 and performing the above calcu-
lations for quarter 73, and so on through quarter 100. This procedure
will yield 30 values of dit (¢ =71, 72, ..., 100) for each variable

7 , each of the 30 values being based on a different set of coefficient

estimates of the model and a different stochastic simulation. If the two

~

assumptions in the previous paragraph hold for all ¢t (i.e., Ypp = Uss
and éit = Ogt for ¢ =71, 72, ..., 100 ), then the expected value of
d. is zero for all ¢t .

1t

The discussion so far is based on the implicit assumption that the
model is correctly specified. If the model is not correctly specified,
then the expected value of dit will not in géneral be zero. The stochas-
tic-simulation estimate of the variance of the forecast error for quarter
+ 1is based on the assumption that the model is correctly specified for
this quarter. The computation of the actual forecast error, on the other
hand, is not based on any such assumption. Unlike the stochastic-simula-
tion procedure, the computation of the actual forecast error uses the
actual value of Yip s and clearly no specification restrictions are im-
posed on this walue.

The key assumption will now be made that the degree of misspecifi-

cation of the model is constant across time. More precisely, it will be



assumed that the expected value of dit is constant across time (i.e.,

is not a function of ¢ ). Although, as noted at the beginning of this
section, this is a fairly restrictive assumption, some constancy assump-
tion of this kind is needed before any attempt can be made to estimate

the degree of misspecification of a model, and the particular assumption
chosen here seemed to be the most natural one to make.4 Given this assump-
tion, an obvious estimate of the degree of misspecification of a model
with respect to the one-quarter-ahead forecast of variable 7 is the mean
of dit in the sample. This estimate, which will be denoted 3% ,

is in fact the estimate of the degree of misspecification proposed here.
In the above example, Eé would be based on a sample size of 30.

Note that 3% pertains to the degree of misspecification of a model
regarding the one-quarter-ahead forecasts. The above procedure, however,
can also be followed for multi-quarter—ahead forecasts. Each length of
forecast will have its ownm 3% value, and these values will not in general
be the same across lengths. The present procedure thus allows the degree
of misspecification of a model to be different for different lengths of
forecasts. 1t should also be noted with respect to the above example that
one observation is lost for each one quarter increase in the length of the
forecast, given the beginning quarter of 71 and the ending quarter of 100.
In other words, 29 values of dit can be computed for the two-quarter-
ahead forecasts, 28 values for the three—quarter-ahead forecasts, and so

on. In the rest of this paper Eék will be used to denote the sample

mean of dit for the k-quarter-ahead forecast of variable < .

4Note that even given this constancy assumption, the true distribution of
di# will depend on the exact way in which the model is misspecified. It

thus seems unlikely in any practical application that much could be learned
about this distribution.



It should be noted that the expected value of dit nlay be negative,
and so some of the E%k values may be negative. Although negative expected
values of dit may seem unlikely, it is clearly conceivable for a model
to be misspecified in this way. Consider, for example, the case in which
the true structure of the economy is changing over time. Any model based
on the assumption of a constant structure will be misspecified and will
(in a loose sense) have estimated the average structure of the economy
over the sample period. If, say, the model has most closely approximated
the average structure in the last fourth of the sample pericd, it may then
be the case that the stochastic-simulation estimates of the variances for
the period right after the end of the sample period, which are based on
the variance-covariance matrices estimated over the entire sample period,
will be larger than the variances estimated from the actual forecast errors.
Whether this is likely or not is perhaps unclear, but it should at least
be noted that negative values of E;k are possible.

It should finally be stressed that the Eik values are clearly
only approximate estimates of the degree of misspecification of a model.
The true distribution of dit is not likely to have a mean that is exactly
constant across time, as 1s assumed here. It is an open question how
good an approximation this assumption of a constant mean is likely to
be.

The method proposed in this paper can now be summarized as follows.
1. Compute values for aék . {(These computations need not be done each

time a new forecast is made since they are not forecast specific.)
2. For a forecast period of, say, quarters 101-110, estimate the model
through quarter 100, and then stochastically simulate for the 101-110

period. This stochastic simulation should be based on: (1) the latest



(i.e., through quarter 100) estimated variance-covariance matrices of
the error terms and coefficient estimates, (2) actual values through
quarter 100 as initial conditions, (3) prior forecasts of the means

of the exogenous variables for the 101-110 period, and (4) some esti-
mate or assumption about the degree of uncertainty of the exogenous-
variable forecasts. Let 8% denote the stochastic-simulation esti-

1t

mate of the variance of the forecast error for variable < for quarter

t . (For ¢

101 this is a one—quarter-ahead forecast-error vari-

ance, for ¢ 102 this is a two-quarter-ahead forecast-error vari-

ance, and so omn.)

82
101

~2 R . .
a%z to O:yg9 o and so on.) This sum is then the final estimate

— . ,\2 —_—
3. Add dik to the appropriate o, - (E.g., add dil to

of the variance for the forecast error.
This completes the outline of the method. Before proceeding to

a discussion of its application to the two models, mention should be made
as to how this paper relates to the previous literature. No method simi-
lar to the present one appears to have been proposed in the literature.
There has in fact been relatively little stochastic simulation of macro-
econometric models of any kind. In the following studies stochastic simu-
lation with respect to the error terms only has been performed: Nagar
[18] for the condensed version of the Brookings model; Evans, Klein, and
Saito [6] for the Wharton model; Fromm, Klein, énd Schink [12] for the
Brookings model; Green, Liebenberg, and Hirsch [14] for the OBE model;
Sowey [19] for the RBAl model of Australia; Cooper and Fischer [4] for
the FMP and St. Louis models; Cooper [3] for the FMP model; Garbade [13]
for his model; and Bianchi, Calzolari, and Corsi f{1] and Calzolari and

Corsi [2] for the ISPE model of Italy. For all these studies except the
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last two, the number of replications was 50 or less.

There appears to be only one previous study in which stochastic
gimulation with respect to both the error terms and coefficient estimates
was performed. Cooper and Fischer [5] performed nine stochastic-simulation
experiments of this type for the St. Louis model, where each experiment
was based on 20 replications. Given that the Cooper-Fischer experiments
were all within-sample simulations, the present study thus appears to be
the first case of the use of stochastic simulation to estimate the outside-
sample forecasting accuracy of a macroeconometric model, even with respect
to just the error terms and coefficient estimates.

One final comment on the previcus literature. It is a common prac-
tice to compute root mean squared errors (RMSEs) for econometric models.

A typical procedure, for example, is to compute for a particular variable
a series of, say, one-quarter-ahead forecast errors, square them, sum the
squares, divide the sum by the number of observatiomns, and take the square
root of the resulting number. This is the RMSE of the one-quarter-ahead
forecast of the variable, and it is typically taken as a measure of the
model's forecasting accuracy with respect to this variable. One of the
problems with this procedure is that the variances of the forecast errors
are not constant acrogss time. They are a function, among other things,

of the exogenous—variable values. Although RMSEs are in some loose sense
estimates of the averages of the variances across time, no rigorous statis-—
tical interpretation can be placed on them. The method proposed in this
study does not suffer from this problem: account is always taken of the

fact that the variances are not constant across time.
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III. The Two Models and Their Forecasts

The two models examined in this study are the model in Fair [8]
and a naive model. The naive model is simply one in which each variable
is regressed on a constant, a linear time trend, and its first eight lagged
values (i.e., each variable Yy is regressed on a constant, % , and
Ypo1> ***» Ye_g }. It is to be used for benchmark purposes. The model
in [8] has been changed slightly and updated since [8] was published, and
this updated version has been used for purposes of this study. The main
change that has been made to the original model is the addition of an equa-
tion explaining the behavior of the Federal Reserve. This addition is
discussed in Fair [9]. A few definitional changes have also been made to
correspond to the 1976 revision of the national income accounts. The up-
dated version of the model consists of 95 equations, 28 of which are sto-
chastic, and has 180 unknown coefficients to estimate (including 14 serial
correlation coefficients). The complete list of the equations of this
version is presented in [10], which is available from the author upon re-
quest.5 In the following discussion this model will be called Model I,
and the naive model will be called Model IIL.

At the time of this writing (January 1978) I have made two forecasts
using Model I, the first issued on July 23, 1977, and the second issued
on October 24, 1977. The second forecast is the one whose uncertainty
is estimated in this study. For this forecast the model was estimated

through 197711 on the basis of data available as of October 1, 1977. (The

5A tape of the program that solves the model and the latest data set is
also available from the author for a cost of $25.00, payable to Yale Uni-
versity. The program is written in FORTRAN-IV and has a user's manual

to go with it. With this program one can perform within-sample simula-
tions and make actual outside-sample forecasts.
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first quarter of the estimation period was 1954I.) The actual forecast
was based on data avallable as of October 19, 1977, including the prelimi-
nary national-income-accounts data for 1977III that were released on this
date. The forecast period was 1977IV-1980IV, a total of 13 quarters.

For a few variables, primarily exogenous variables, data for 1977111 were
not available as of October 19, 1977, and for these variables guessed
values were used. Guessed values of the exogenous variables for the fore-
cast period also, of course, had to be used. The important hard-to-
forecast exogenous variables in the model are the import price index

(PIM) , the real value of exports (EX) , and various fiscal-policy var-
iables. TFor the fiscal-policy variables, planned government budget numbers
were used whenever possible, and for PIM and EX , the simple assumption
of a constant future growth rate was used.

The naive model was also used to make a forecast for the 1977IV-19801IV
period. The model was estimated through 1977II on the data available as
of October 1, 1977,6 and the actual forecast was based on data available
as of October 19, 1977. The naive model has no exogenous variables (except
the constant term and the time trend), and so no guessed values of exog-
enous varlables had to be used for this forecast.

The equations of the naive model were estimated by ordinary least
squares., The equations of Model I were estimated by two-stage least squares,
with account taken, whenever necessary, of first order serial correlation
of the error terms. The techniéue that was used for this purpose is

described in Fair [7], and the variables that were used as regressors in

6The first quarter of the estimation period for the naive model was 1954II.

Because of data requirements due to lags, the beginning quarter for the
naive model had to be one quarter later than the beginning quarter for
Model I.
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the first-stage regressions for each equation are listed in [10]. This
technique yields an estimate of the first-order serial correlation coef-
ficient for each equation in addition to the estimates of the structural
coefficients.

By treating the serial correlation coefficient as a structural coef-
ficient, it is possible to transform an equation with a serially correlated
error into an equation without one. This introduces nonlinear restrictions
on the coefficients, but otherwise the equation is like any other equation
with a non-serially correlated error.7 Therefore, even though some of
the equations of Model I have been estimated under the assumption of first
order serial correlation of the error terms, the model should be thought
of as a model with nonlinear coefficient restrictions and no serially cor-
related errors. All references to the variance-covariance matrices of
the error terms for Model I, for example, are for the non-serially corre-
lated ("transformed") errors. Likewise, all references to the variance-
covariance matrices of the coefficient estimates are for the coefficient

) . . R . \ . . 8
estimates trnelugive of the estimates of the serial correlation coefficients.

7See, for example, the discussion in Chapter 3 in [8].

81n [7], p. 514, I suggested that the variance-covariance matrix of the
coefficient estimates inclusive of the estimate of the serial correlation
coefficient be estimated by ignoring the correlation between the latter
estimate and the other coefficient estimates. Fisher, Cootner, and Baily
[11], p. 575, fn. 6, however, have pointed out that one need not ignore
this correlation. In computing the estimates of the variance-covariance
matrices for use in this study, I have followed the Fisher, Cootner, and
Baily advice. 1In terms of the notation in [7], p. 514, I have estimated
the variance-covariance matrix of the coefficient estimates inclusive of
the estimate of the serial correlation coefficient as:

s or anr YL

4% Ql”l_l

a

ul s oa o '
“p 9 ¥



14

Results for 6 of the 95 endogenous variables of Model I are presented
in this study. These six variables are: (1} real GNP, (2) the GNP deflator,
(3) the unemployment rate, (4) the wage rate, (5) the bill rate, and (6) the
money supply. Results for these six variables are also presented for the
naive model., The forecasts of these variables for the 1977IV-1980IV period
that are based on setting the error terms in the models equal to zero are
presented in the "0" rows in Table 2. Although this procedure of solving
models by setting the error terms equal to zero is the one that is followed
in practice, it is well known that for a nonlinear model the procedure
leads to biased estimates of the true means of the endogenous variables.9
By comparing the numbers in the O rows in Table 2 with the numbers computed
by means of stochastic simulation, it is possible to gauge the size of

this bias. The results in Table 2 are discussed in Section VI.

IV. Estimated Uncertainty for the Model I Forecast
From the Error Terms

Given an estimate of the probability distribution of the error terms
in a model, the uncertainty due to these error terms can be estimated by
means of stochastic simulation, The exact procedure that was followed in this
study in estimating this uncertainty for the Model I forecast is as follows:

1. For the estimation period of 94 observations, 19541-1977I1I, consistent
estimates of the 28 error terms are available {from the consistent
two-stage least squares coefficient estimates). Let F denote the
28 x 94 matrix of values of these estimated error terms, Given & ,

the variance-covariance matrix of the 28 error terms was estimated

9See, for example, Howrey and Kelejian [17].
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as (1/94)EE’ . Call this matrix 5 .

2. Let et denote the 28x1 wvector of values of the error terms for

quarter ¢ . The assumption was made that for each ¢ , eLL is nor-

mally distributed with mean zero and variance-covariance matrix S5 :
1) e, ~ N(o,5} , all ¢ .

3. Given assumption (1), the uncertainty due to the error terms was esti-
mated by means of stochastic simulation. For the forecast period of

13 quarters, each '"trial" corresponds to drawing 13 values of e,

(28 x 13 numbers in all) and computing the forecast using these values.ll

In this first case, where only the uncertainty due to the error terms

is being estimated, the coefficient estimates and exogenous-variable

loNote that EE' was divided by 94, not 94 less some correction for the

number of coefficients estimated per equation. No degrees—of-freedom cor-
rections were in fact made for any of the variances and variance-covariance
matrices estimated in this study, including those for the naive model.

For the naive model, which was estimated by ordinary least squares, there
are well defined degrees-of-freedom corrections that could have been made,
but this is not the case for Model I. It thus seemed best to put both
models on a comparable basis by not adjusting for degrees of freedom in
elther model. With 94 or 93 observations and at most 10 estimated coeffi-
clents per equation, the following results would not have been much differ-
ent had some adjustment for degrees of freedom been made.

1
lThe draws were performed as follows, First, a matrix F was computed

such that PP' =5 , This was done using the LUDECP subroutine in the
IMSL library. Then for each of the 13 quarters, 28 values of a standard
normal random variable with mean (0 and variance 1 were drawn. This
was done using the function RNOR, which is part of the SUPER DUPER random
number generator package at Yale. Let wu, denote the 28 x1 vector of

t
these draws for quarter ¢ . Then e, was computed as Put . Since
Eutu' =TI , then Ee+e; = EPutuiP' =5, which is as desired for the

distribution of ey -
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values are kept the same for all the trials. The coefficient estimates
and exogenous-variable values that were used for this purpose are the
same as those used to make the actual forecast.

4. TFor each trial, one obtains a prediction of each endogenous variable
for each quarter. Let ygt denote the predicted value of variable
7 for quarter ¢ on the jth trial. If the number of trials is

N
N , then an estimate of the expected value of Yie is (1/N) L Q%t 3
J=1

which will be denoted An estimate of the variance of the

Yie
N ..

forecast error for y., is (1/N} & (ygt"yit) ., which will be de-

J=1

~2 2

noted Oit . The number of trials used for these estimates was 500.l

The results of estimating th for the six selected variables and

the thirteen quarters are presented in the "a' rows of Table 1. TFor four
of the variables, values of ait/g%t are presented in the table, and for

the other two, values of @ are presented. The values of y;t for the

it
six variables and thirteen quarters are presented in the "a" rows of Table
2. These results are discussed in Section VI. Note that estimated standard

~ . , ~2 .
errors (Uit) , not estimated variances (Git) , are presented in Table 1.

121 could see no obvious way to use any of the tricks in, for example,

Hammersley and Handscomb [15] to increase the efficiency of the stochas-
tie simulation, and so each trial was merely an independent random draw.
Each trial, which consists of solving the model once for 13 quarters,
takes about 1.6 seconds on the IBM 370-158 at Yale, so the total time
for 500 trials is about 13.3 minutes.
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From the Coefficient Estimates
Given an estimate of the probability distribution of the coefficient
estimates, the uncertainty due to these estimates can be estimated by means
of stochastic simulation. The exact procedure that was followed in this
case is as follows:
1. For each of the 28 stochastic equations, an estimate of the variance-
covariance matrix of the coefficient estimates is available. Let
éi denote the vector of coefficient estimates for equation % , let
Vi denote the estimated variance-covariance matrix of these estimates,
and let BE denote the vector of coefficient values for equation <
actually used in a given trial. The assumption was made that B;
is normally distributed with mean Ei and variance-covariance matrix
13

Vi :

* ~ .
(2) By ~H(B, V), i=1,2, ..., 28 .

2. Given assumption (2), the uncertainty due to the coefficient estimates
was estimated by means of stochastic simulation. The procedure followed
here was actually to estimate the combined uncertainty due to both
the error terms and the coefficient estimates. Given this combined
estimate for each variable, the uncertainty due only to the coefficient
estimates can be estimated as the difference between the combined esti-
mate and the estimate due only to the error terms. In the combined

case each trial corresponds to drawing 13 values of e, (28 x 13 numbers

13With reference to the discussion in Section II, assumption {(2) means

that the variance-covariance matrix of all the coefficient estimates is
taken to be block diagonal. Note also, with reference to the discussion
in Section III, that the estimates of the serial correlation coefficients
are included in the Bi vectors.
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in all) and a value of B; for each of the 28 equations (180 numbers
in all).la Aside from drawing 180 extra numbers for each trial, the
combined case is the same as the first case. The number of trials
used in the combined case was 625,

The results for this case are presented in the "b" rows in Tables

1 and 2.

From the Exogenous-Variable Forecasts
Not counting variables like the constant term, the time trend, and

various dummy variables, there are 61 exogenous variables in Model I.

The uncertainty due to the fact that these 61 variables must also be fore-

cast was estimated as follows:

1. For the 1954T11-1977I1 period, each of the 61 exogenous variables was
regressed on a constant, a linear time trend, and its first eight
lagged values. This is the same procedure that was followed for the
six endogenous variables of the naive model. For each of these equa-

tions, the variance of the error term was estimated as the sum of

14The draws for the Bg vectors were performed as follows. First, for

each Vi a matrix PE was computed such that P%Pé = V{ . Then for each

T , n; values of a standard normal randomvariable withmean 0 and variance
1 were drawn, where ", is the number of coefficients in equation 7

Let ui denote the nintl vector of these draws. Then B; was computed
as éi + Piui . Since Euiué =1, then EYBE"gi){BE"éi)'::EPiuiuéPé:=Vi R
which is as desired for the distribution of BE .  Subroutine LUDECP and

function RNOR were used for these calculations (see footnote 11),

One other point about these calculations should be noted. 1In the
version of Model I used in this study, the coefficient on the lagged de-
pendent variable in the wage-rate equation is constrained to be 0.85.

This coefficient clearly has some uncertainty attached to it, and this
uncertainty was accounted for in this study by using for Vi for the wage-

rate equation the estimated variance-covariance matrix of the unconstrained
estimates.
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squared residuals divided by the number of observations. Let this

estimated varilance for equation 7 be denoted sg . Also, let
Uje be a normally distributed random variable with mean zero and var-

2
iance Si :
(3 usp ~ N0, sﬁ) , all ¢ .

2. Regarding the uncertainty in forecasting the exogenous variables, the
assumption was made that the error in forecasting the change in exog-

where u.

enous variable < from period ¢-1 to ¢ is u 1t

it *?
is distributed as in (3). Given this assumption, the uncertainty due
to the exogenous-variable forecasts can be estimated by stochastic

simulation, as will now be described.

3. Let ﬁit be the value of exogenous variable i for quarter f that

was used for the actual forecast, and let xzt be the value of Lop

actually used in a given trial. Also, let » denote the first quarter

of the forecast period (1977IV). Then from the assumption in 2,

zy (t = r, r+1, ..., p+12) is:

i1t
* _ ~
(4.1) Tip = Lip T YUip
X -
(4.2) Liptl = Fiprtl T ¥ip T Hipyg o

% ~

(4.13) Tip#12 T Fipa12 T e Ty T P Mg -
Equation (4.1} states that the value of Lo used in a given trial
deviates from the base value by Usy, - Equation (4.2), on the other

hand, states that the value of .

il used in a given trial deviates

from the base value by u. + Because of the assumption that

. .
r 1r+1
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the forecast errors pertain to the change in the exogenous variables,
the error term U is carried along from quarter to quarter. Simi-

larly, u is carried along from quarter r+l on, and se on,

tr+l
4. Given equations (4.1)-(4.13), the uncertainty due to the exogenous-
variable forecasts was estimated by means of stochastic simulation.
Again, the procedure followed here was to estimate the combined uncer-
tainty, where in this case 'combined uncertainty'" means uncertainty
from the error terms, the coefficient estimates, and the exogenous-
variable forecasts. 1In this case each trial corresponds to drawing
28 x 13 numbers for the error terms, 180 numbers for the coefficients,
and 61 x 13 values of Uy for the exogenous variables.15 Aside from
drawing 61 x 13 extra numbers, this case is the same as the previous.
case. The number of trials used in this case was also 625.
The results for this case are presented in the "¢" rows in Tables
1 and 2. As mentioned in Section II, the assumption in 2 regarding the
uncertainty of the exogenous-variable forecasts is clearly not the only
possible assumption that one could make. My feeling is that the present
procedure probably overestimates the uncertainty in forecasting the fiscal-
policy variables (because govermment-budget data are usually quite useful
for this purpose, at least up to about six or eight quarter ahead) and
underestimates the uncertainty in forecasting variables like the price

of imports and the real value of exports (because, among other things,

no account is taken of uncertainty due to the coefficient estimates in

15Drawing the 61 x13 values of Usy

13 values of a standard normal random variable with mean 0 and variance
1 are drawn, and then each of these values is multiplied by Si .

is straightforward. For each < ,
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the equations). An alternative procedure to the one used here, which would
exacerbate the first problem but alleviate the second, would be to add the
61 exogenous-variable equations to the model and then stochastically simu-
late this expanded version of the model. This expanded version would be
one in which there were no exogenous variables. In future work it may

be of interest to try this, although it does seem likely to overstate the
uncertainty in the model from the exogenous-variable forecasts.

The assumption that the u.

;4 ©TToTrs pertain to forecasting the

change in the exogenous variables perhaps requires some discussion. Given
the way that many exogenous variables are forecast, by extrapolating past
trends or taking variables to be unchanged from their last observed values,
it seems likely that any error made in forecasting the level of a variable
in, say, the first gquarter will persist throughout the forecast period.

If this is true, then the present assumption seems better than the assump-
tion that the U,, errors pertain to forecasting the level of the exog-

enous variables. Again, however, this is clearly not the only assumption

that can be made.

From the Possible Misspecification of the Model

The procedure for estimating the degree of misspecification of a
model has been discussed in Section 1I, and this discussion will not be
repeated here. For present purposes, values of Eék were computed for the
one—throuéh eight-quarter-ahead forecasts for each of the 95 endogenous
variables in the model. 1In other words, 95x 8 values of Eék were computed
in all. These computations were based on 33 sets of estimates of the model.
For all sets of estimates the first quarter of the sample period was 19541,

The last quarter of the sample period was 1968IV for the first set of esti-
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mates, 19691 for the sccond set of estimates, and so on through 19761V
for the 33rd set of estimates.

For each set of estimates the model was stochastically simulated
for eight quarters beginning with the second quarter after the end of the
estimation period. The second quarter after the end of the estimation period
was chosen to begin the simulation rather than the first quarter because,
as indicated in Section III, in the actual use of Model I for forecasting
purposes there is a one quarter gap between the end of the estimation period
and the beginning of the forecast period. (This procedure thus differs
slightly from the procedure discussed in Section I1I, where there was no
gap.)

In computing the actual forecast errors, data on the endogenous
variables through 197711 were used. (The preliminary data for 1977111
were not used.) This meant that for each variable < , 33 values of
dit (as defined in Section II) could be computed for the one-quarter-
ahead forecast, 32 values for the two-quarter-ahead forecast, and so on
through 26 values for the eight:quarter—ahead forecast. The estimates
Eél are thus based on 33 observations, the estimates Eéz on 32 observa-
tions, and so on.

The 33 stochastic simulations were performed in the same was as
described above for the stochastic simulationwith respect to the error terms
and coefficient estimates. The only difference in this case is that the
simulations were for 8 quarters rather than 13 and the number of trials

was 100 rather than 625.16

16For the eight-quarter simulations each trial takes about 1.0 seconds of

computer time, so the total time for the 3300 trials was about 55 minutes,
Two points about these computations should be noted. First, subroutine
LUDECP (see footnote 11) was unable to factor 26 of the 924 (28 x33) esti-
mated variance-covariance matrices of the coefficient estimates. This
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For four of the six selected variables (real GNP, the GNP deflator,
the wage rate, and the money supply) the Eék values were computed in
percentage terms. To be more precise about what this means, consider the
k-quarter-ahead forecasts for variable < . As in Section II, let éét
denote the stochastic-simulation estimate of the k-quarter-ahead expected
value of Yip o and let GEt denote the stochastic-simulation estimate
of the variance of the k-quarter-ahead forecast error. In absolute terms,
the actual forecast error is y., - ﬁit , which is denoted éit .
In percentage terms, the actual forecast error as a percent of the estimated
mean of Yt is Eit/gét , and the stochastic-simulation estimate of
the standard deviation of the forecast error as a percent of the estimated
mean of y. 1is ait/éét . Now, instead of defining d., to be Eit - ait
it can be defined to be (Eit/éétjz - {ait/;%t)z . These values of dit
can then be used to compute a%k . For variables that have trends, as the
above four do, it seems better to define the degree of misspecification

in percentage terms rather than In absolute terms, and so this was done

for these four variables.

problem appeared to be due to rounding error in the estimation program,
In these 26 cases, the last "good" estimate of the variance-covariance
matrix was used instead. In other words, if V£ was good for the sample

period ending in 19721 and bad for the sample period ending in 197211, the
good estimate was used for both periods. The actual coefficient estimates
for the second period were, however, still used.

Second, for a few of the 3300 trials the program that solves the
model (by the Gauss-Seidel method) failed. The maximum number of times
this happened for a given set of estimates was 15, and the total number
of failures was 99. 1In all, or nearly all, of these cases it is likely
that a solution could have been found by fiddling with the solution program.
This, however, was not done, and instead the trials that failed were merely
not counted. Since many of the trials that failed are likely to have been
extreme draws, this procedure probably results in somewhat smaller estimates
of the forecast—-error variances than would be the case had all the solu-
tions been found. This bias will then be translated into values of aék

that are too large. Given the small number of failures, however, it seems
unlikely that this bias is very large. The problem of failures was not

at all serious for the three stochastic-simulation runs for the 1977IV-1980IV
period. No failures occurred for the first run (of 500 trials), and only
one each occurred for the other two runs (of 625 trials each).
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The results of the misspecification calculations are presented imn
the following manner in Table 1. First, each number in row d is the
square root of the sum of Eék and the respective number in row & squared.
The numbers in row d are the estimates of the total uncertainty of the
forecasts, the estimates being presented in terms of standard errors rather
than variances. Each number in row ¢ 1s then the difference between
the respective numbers inrows ¢ and 4 . The numbers in row e are one
way of presenting estimates of the degree of misspecification of the model.
Note that these numbers are not the Eik values. The Eék values are of
less interest to present because they are in the units of the variables
squared.

Two other tables of results are presented in this paper for reference
purposes. The 33 sets of stochastic-simulation estimates of the standard
errors (in percentage terms) for real GNP are presented in Table 3. These
are the numbers that were used in computing the Eék values for real GNP
(i.e., they are the Sit/iét numbers). The root mean squared errors of
the outside-sample forecasts are presented in Table 4. As noted in Section
II, RMSEs are often computed for models, although they have no rigorous

statistical interpretation.

V. Estimated Uncertainty for the Model II Forecast

The procedure followed for the naive model is quite similar to the
procedure followed for Model I, and so the discussion of the naive model
can be brief. Each of the six equations of the model was treated indivi-
dually: no attempt was made to estimate and account for the possible cor-
relation of the error terms across equations. The model thus consists of

s1x completely unrelated equations.
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The variance of the error term in each equation was estimated as
the sum of squared residuals divided by the number of observations. For
purposes of the stochastic simulation, the error term in each equation
was then assumed to be normally distributed with mean zerc and variance
as estimated. The coefficient estimates were treated in the same way as
they were for Model I, The number of trials for both the simulation with
respect to the error terms and the simulation with respect to the error
terms and coefficient estimates was 2000.17 There are no exogenous vVar-—
jables in the naive model, and so no stochastic simulation regarding the
exogenous-variable forecasts was needed. For the misspecification estimates,
the naive model was also estimated 33 times, and the same periods were
used here as were used for Model I. The number of trials for each of the

8

33 stochastic simulations was 500.1 The results for the naive model are

also presented in Tables 1-4.

VI. The Results
Model I

The results for Model I will be discussed first in this section and
then they will be compared to the results for the naive model.

The results in Table 2 should provide some encouragement to model
builders. They show that the forecast values computed by setting the error

terms equal to zero and solving once are quite close to the forecast values

17The cost of one trial for the naive model was quite small, and so a large

number of trials could be taken.

In one case out of the 33 x6 estimates, the estimated variance-covariance
matrix failed to factor, and this case was skipped for the computations.
No other problems were encountered for any of the naive-model computations.
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computed by means of stochastic simulation. Although, as noted in Section
1I, it is well known that the common practice of setting the error terms
to zero and solving once produces biased estimates of the true means of
the endogenous variables for nonlinear models, this bias does not appear
to be very large, at least for Model I.19 The results in Table 2 thus
provide some justification for model builders to continue to do what they
have been doing all along.

Consider now Table 1. The results in the a , b5 , and ¢ rows
are fairly self explanatory. As might be expected, the sensitivity of the
standard errors of the forecasts to exogenous-variable uncertainty (rows
@ versus b ) 1is greater for some variables than for others. This sen~
sitivity is small for the unemployment rate, the wage rate, and the bill
rate and fairly large for the money supply. Although in most cases these
sensitivity differences can be explained, given a knowledge of the struc-
ture of the model, this kind of discussion is unnecessary for purposes
of this paper. Suffice it to say that I did gain some insights about the
model from trying to find explanations for the various sensitivity differ-
ences. Estimates of this kind are likely to be of interest to model builders,
and they are another example of a useful by-product of the method.

The numbers in the ¢ rows in Table 1 are the estimates of the
degree of misspecification of the model. These numbers are fairly small

for real GNP, the GNP deflator, and the bill rate. The model does not

appear to be very badly misspecified with respect to these variables.

Remember, however, that the stochastic-simulation estimates themselves
are not quite right in that they are based on a limited number of trials
and on only estimated varilance-covariance matrices. The results in Table
2 thus do not provide a completely accurate estimate of the bias that re-
sults from setting the error terms equal to zero. The conclusion reached
here that the bias is small has also been reached by Nagar [18], Sowey
[19], Cooper [3], Bianchi, Colzolani, and Corsi [1], and Colzolani and

Corsi [2] for their stochastic simulations with respect to the error terms
only.
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TABLE 1. Estimated Standard Errorvs of Forecasts

uncertainty due to error terms.

uncertainty due to error terms and coefficient estimates.

uncertainty due to error terms, coefficient estimates, and exogenous-variable forecasts.
uncertainty due to error terms, coefficient estimates, exogenous-variable forecasts, and
possible misspecifications of the model.

e = estimate of the degree of misspecification of the model (e = d-c¢)

Forecast Period = 1977IV-1980IV.

Model I = model in [8].
Model II = naive model. For the naive model there are no exogenous variables, so ¢ = b
for this model.

L0 o8

For the unemployment rate and the bill rate, the errors are in the natural units of the var-
iables. For the other variables, the errors are expressed as percentages of the forecast
means (in percentage points).

19771V 19781 19781 1978IIT 19781V 189797 1879IT 1979117 19791V 13801 1980IT 1880II1 13801V
Model I. Real GNP

a 0.64 0,92 1.13 1.21 1.30 1.31 1.34 1.36 1.39 1.39 1.37 1.39 1.42
b 0.65 0.98 1.24 1.45 1.58 1.65 1,71 1.71 1.77 1.77 1,77 1.81 1.82
e 0.75 1.09 1.40 1.57 1.77 1.90 1.99 2.11 2 2.11 2.14 2,17 2.21 2.15
d 0.91 1.47 1.87 2,20 2.56 2.70 2,51 2.11
e (0.16) (0.38)(0.47) (0.63) (O 79) (0.80)(0.52) (0.00)

Model II. Real GNP
a 0.63 1.03 1.34 62 .81 .89 1.95 . 03 2.04 2.05 2.07 2.06 2.05

1 1 1 2 .
b,e 0.67 1.13 1.51 1 2 2.38 2.51 2.60 2.68 2.73 2.80 2.87 2,94
4 1.12  1.96 2.71  3.43 4.00 4.36 4.66 4.85
e (0.45) (0.83)(1.20) (1. 2 1.98)(2.15) (2.25)

Model I. GNP Deflator

a 0.28 0.40 0.50 .60 .69 .78 .87 .94 1.03 1.08 1.14 1.21 1.22
p 0.33 0.50 0.68 .88 .05 .21 .39 .58 1.72 1.88 2.05 2.22 2.36
2.19  2.41 2.56 2.69 2.82

d 0.59 0.95 1.37 . .86 .32
e (0.11) (0.24)(0.43) (0. L11) (1.39)

Model II. GNP Deflator

a 0.19 0.34 0.49 O 0. ¢.98 1,11 1.20 1.26 .31 1.33 .34 .33
b,e 0.25 0.49 0,78 1.13 1.52 1.92 2.33 2.69 3.02 3.30 3.53 3.74 3.91
2 3. 4
1. 2

0 0 0 0 0
0 1 1 1 1
e 0.48 0,71 0.94 1.15 1.34 1.53 1.75 1.93
1 2 2 2 3
0 0 0 1 1

[}
=
'—I

d 0.45 0.95 1.55 .31 .28 5.38 6.51
e (0.20) (0.46)(0.77) (1.18) ( .36)(3.05) (3.82)

Model I. Unemployment Rate (units of percentage points)
a 0.29 0.46 0.58 0.66 0.73 0.80 0.85 0.89 0.90 0.95 0.94 0.99 1.06
b 0.35 0.60 0.78 0.94 1.08 1.17 1.24 1.32 1.37 1.48 1.58 1.65 1.70
e 0.35 0.60 0.81 0.99 1.11 1.26 1.37 1.49 1.1 1.70 1,80 1.89 1.94
d 0.33 0.54 0.63 0.70 0.74 0.84 0.78 0.67
e (-0.02)(-0.06)(-0.18)(-0.29)(-0.37)(-0.42)(~0.59)(~0.82)

Model 1I. Unemployment Rate (units of percentage points)
a 0.29 0.56 0.79 0.95 1.04 1.08 1.11 1.13 .14 1.15 1.15 1.16 1.17
b,e 0.32 0.66 0.94 1.12 1.25 1.33 1.43 1.52 1.59 1.64 1.69 1.72 1.77
d 0.39 0.84 1.24 1.59 1.86 2,04 2.23 2.37
e (0.07) (0.18)(0.30) (0.47) (0.61) (0.71)(0.80) (0.85)

—
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TABLE 1 (aont.)

18771V 19781 1978IT 1978ITI 1878IV 19791 197811 1979IIT 18791V 19801 1980II 1980ITI 1980IV

Model I. Wage Rate
a 0.25 0.47 0.66
0.27 0.52 0.75

0.84 0.98 1.11 1l.19 1.26 1.30  1.35 1.41 1.46 1.50
b 0.97 1.16 1.37 1.55 1.71 .89 2.05 .22 2.38 .54
e 0.28 0.52 0.73 0.96 1.15 1.35 1.52 1.71 1.92 2.16 2.25 2.39 2,53
d 0.47 0.97 1.54 2.18 2.85 3.60 4, 5.26
e (0.20) (0.45)(0.79) (1.22) (1.70) (2.25)(2. 3.55)

Model II. Nage Rate

a 0.14 0.23 0.32 0.43 0.54 0.65 0.76 0.85 0.94 1.02 1.09 1.15 1.20
b,e 0.17 0.30 0.46 0.66 0.89 1.14 1.41 1.68 1.95 2.24 2,53 2.83 3.12
1. 3
1

[l
%]
%]

d 0.37 0.63 0.92 32 1.83 2.29 2.79 .21
e (0.20) (0.33)(0.46) (0.66) (0.94) (1.15)(1.38) (1.53)

Model I. Bill Rate (units of percentage points)

a 0.43 0.72 0.85 0.91 0.95 1.00 1.02 1.05 1.04 1.04 1.02 1.02 1.05
b 0.45 0.70 0.89 1.06 1.16 1.23 1.31 1.32 1,33 1.38 1.39 1.42 1.47
e 0.46  0.74 0.90 1,04 1.19 1.24 1.32 1.39 1.48 1.52 1.54 1.52 1.54
d 0.61 1.04 1.09 1.14 1.23 1.17 1.01 0.79
e (0.15) (0.30)(0.19) (0.10) (0.04)(-0.07)(-0.31)(-0.60)
Model II. Bill Rate (units of percentage pointe)
a 0.45 0.71 0.80 0.86 0.90 0.93 0.94 .94 0.95 0.96 0.98 1.01 1.01
b,ec 0.49 0.80 0.95 1.04 1.15 1.23 1.27 .28 1.25 1.22 1.22 1.23 1.21

0

1
d 0.73 1.18 1,38 1.51 1.62 1.71 1.79 1.90
e (0.24) (0.38)(0.43) (0.47) (0.47) (0.48)(0.52) (0.62)

Model I. Morney Supply

a 0.85> 1.14 1.38 1.54 1.66 1.81 1.84 1.86 1.99 2.06 2.16 2.24 2.26
b 0.86 1.28 1.65 1.98 2.20 2,47 2,80 2.97 3.22 3.45 3.67 3.91 4.10
e 0.94 1.47 1.79 2.18 2.58 3.03 3.43 3.80 4.21 4.58 4.96 5.34 5.74
d 1.50 2.41 3.26 4.31 5.36 6.39 7.54 8.68
g  (0.56) (0.94)(1.47) (2.13) (2.78) (3.36)(4.11) (4.88)
Model II. Money Supply
a 0.56 0.67 0.81 0.90 0.96 1.03 1.11 1.17 1.24 1.30 1.33 1.38 1.41
b,e 0.64 - 0.80 1.00 1.21 1.35 1.50 1.70 1.85 2.06 2,23 2,39 2,57 2,76
d 1.42 1,64 1,90 2,28 2.58 2,94 3.35 3.74
e (0.78) (0.84)(0.90) (1.07) (1.23) (1.44)(1.65) (1.89)



TABLE 2., Estimated Forecast Means

Qe o
BB

variables.

Model I = model in [8].
Model II naive model.

error terms set equal to zero (no stochastic simulation).
stochastic simulation with respect to error terms only.
stochastic simulation with respect to error terms and coefficient estimates,
stochastic simulation with respect to error terms, coefficient estimates, and exogenous

18771V 189781 197811 1978IIT 19781V 19791 1878917 1978111 19791V

Model I. Real GNP (billioms of 1872 dollars)
¢ 1356

b 1357
e 1356

Model II. Real GNP (billiomns of 1372 dollars)

0 1356.4 1368.4 1373.5 1376.7 1382.7 1388.2 1393.
a 1356.5 1368.5 1373.4 1376.4 1382.4 1387.6 1392,
b 1356.6 1368.6 1373.9 1377.7 1384.2 1389.8 1394.

g

del I. GNP Deflator (1872 = 1.0)

L4406 1.4574 1.4750 1.4935 1.5148 1.5341
L4405 1.4578 1.4751 1.4934 1.5145 1.5338
4403 1.4577 1.4756 1.4944 1.5162 1.5361
1

L4409 1.4580 1.4753 1.4942 1.5157 1.5353

II. GNP Deflator (1872 = 1.0}
4501 1.4822 1.5168 1.5556 1.5978 1.6426
4500 1.4821 1.5168 1.5557 1.5979
.4501 1.4822 1.5168 1.5556 1.5980

e

L ol i e I
'_l

=

TR o0 o a o
o,
©

=k

Model I. Unemployment Rate (percentage points)
0 7.10 7.07 6.94 6.80 6.74 6.72 6.72
a 7.10 7.10 6.98 6.83 6.77 6.75 6.76
b 7.11 7.08 6.93 6.77 6.73 6.73 6.72
e 7.11 7.08 6.95 6.80 6.72 6.74 6.71
Model II. Unemployment Rate (percentage points)
o0 7.21 7.59 7.74 7.64 7.50  7.41  7.41
a 71.21 7.58 7.73 7.62 7.48 7.38 7.39
b 7.21 7.60 7.77 7.68 7.55 7.47 7.49

.4 1376.2 1396.1 1415.5 1431.3 1446.9 1461,
a 1355.9 1375.5 1394.7 1414.3 1429.9 1445.8 1460.
.0 1376.4 1395.5 1413.8 1427.9 1443.2 1457.
.6 1375.9 1395.2 1414.7 1429.6 1444.7 1458,

~ = O N

0
5
6

.5538
.5534
.5567
.5551

.6892
.6428 1.6895
.6429 1.6897

1474,
1474,
1470,
1471.

O U,

1400.
1399.4
1402.3

o

1.5737
1.5735
1.5772
1.5755

1.7358
L7362
.7364

e

.75
.78
.73
.73

NGOy O Oh

7.47
45
7.56

~J

1485.
1485,
1482.
1483.

O N~

1407.
1407.
1410.3

o~y

.5969
.5972
.6006
.5995

e

-

L7824
.7828
1.7832

=

.82
.81
77
.81

SO

W47
W47
7.57

~1 =~

19801

1497.
1497,
1494,
1494,

o Ok

1414.
1414,
1417.

[N R

.6169
.6178
L6211
L6202

e

P

.8286
1,8291
1.8292

.91
.89
.85
.89

f=al= AN o R o)

~J

.41
.41

~J

29

198017 1980111 19801V

1509,
1508.
1506.
1506.

(=R RV

1421.
1421.
1424,

[FS RN Iy 9L

.6370
.6386
L6415
. 6408

b

[

.8739
.8745
1.8744

-

.99
.97
.93
.99

(oo Rk e W=l

~d

.36
.36
7.47

]

1520.
1519.
1518,
1518.

= e~ e

1428,
1429.
1432,

oo mw

1.6572
1.6590
1.6623
1.6614

[ amd

.9186
.9193
.9188

=

.07
.07
.00
.09

sy~

~J

.33
.32
7.46

-~J

1531,
1530.
1529.
1529.

[P B N,

1435.
1436.
1439.0

— o0

.6803
.6828
L6864
.6854

S

.9630
.9638
.9628

e

.17
.19
.07
.18

e N N

~J

.35
.33
7.48

~
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TAELE £ {cont.)

19771V 19781 1978II 187811119781V 19791 187917 187811718791V 18801 1898011 1980111 19801V
Model I. Wage Rate (1367 = 100.0)

g 203.7 207.6 211.6 215.6 219.7 223.8 228.0 232.2 236.5 240,7 245.0 249.,4 253.7
a 203.7 207.6 211.6 215.6 219.7 223.7 227.9 232.2 236.5 240.8 245.3 249.7 254.1
b 203.7 207.6 211.6 215.7 219.8 223.9 228.2 232.4 236.7 241.0 245.4 249.8 254.2
e 203.7 207.6 211.6 215.6 219.7 223.8 228.1 232.4 236.6 241.0 245.3 249.7 254.2
Model II. Wage Rate (1967 = 100.0)
g 203.7 207.6 211.6 215.8 220.1 224.6 229.1 233.9 238.7 243.7 248.8 254.0 259.3
a 203.7 207.6 211.6 215.8 220.1 224.6 229.2 233.9 238.7 243.7 248.8 254.0 259.3
b 203.7 207.6 211.6 215.8 220.0 224.5 229.1 233.8 238.6 243.5 248.5 253.7 259.0
Model I. Bill Rate (percentage points)
¢ 5.80 6.07 6.38 6.69 6.93 7.15 7.34 7.50 7.61 7.71 7.79 7.87 7.92
a 5.82 6.07 6.33 6.63 6.84 7.10 7.30 7.46 7.59 7.70 7.77 7.83 7.85
b 5.82 6.11 6.40 6.69 6.90 7.12 7.27 7.45 7.58 7.72 7.87 7.95 7.99
e 5.80 6.07 6.39 6.68 6.91 7.09 7.29 7.46 7.58 7.70 7.82 7.91 7.97
Model II. Bill Rate (percentage points)
g 6.03 6.51 7.05 7.53 7.85 7.99 8.04 8.01 7.86 7.66 7.45 7.27 7.12
a 6.03 6.49 7.03 7.51 7.83 7.96 8.02 8.01 7.88 7.66 7.46 7.27 7.12
b 6.04 6.50 7.01 7.48 . 7.82 7.98 8.02 7.96 7.82 7.60 7.37 7.19 7.04

Model I. Money Supply (billions of current dollars)

0 359,2 367.0 374.7 382.6 390.5 398.5 406.5 414.6 422.8 431.1 439.4 447.7 456.2
a 359.2 367.1 374.7 382.5 390.3 398.3 406.6 414.9 423.2 431.3 439.6 447.9 456.5
b 359.2 366.8 374.4 382.2 390.0 398.1 406.2 414.2 422.6 431.1 439.3 447.6 456.3
e 359.2 367.0 374.5 382.5 390.4 398.2 406.3 414.5 422.4 430.6 439.1 447.3 456.0
Model II. Money Supply (billions of current dollars) ‘
0 354.7 360.7 365.2 369.3 375.4 380.4 385.4 391.0 396.0 401.3 406.9 412.2 417.8
a 354.6 360.6 365.1 369.3 375.4 380.4 385.4 390.9 395.9 401.3 406.9 412.2 417.7
b 354.7 360.7 365.4 369.5 375.7 380.8 385.8 391.4 396.4 401.7 407.5 412.9 418.6
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TABLE 3. Standard Errors Estimated by Stochastic Simulation for Real GNP for Use in Computing
the 3£k Values

The errors are expressed as percentages of the forecast means (in percentage points).

Eﬁd of MODEL I MODEL 1T
Estimation Number of Quarters Ahead
Period 1 2 3 4 15} 6 7 8 1 2 3 4 Y g 7 g
19687y 0.66 1.10 1.37 1.71 2.12 2.57 3.42 3.98 0.59 1.04 1.39 1.66 1.89 2.09 2,24 2.42
186871 0.66 0.99 1.40 1.74 2.02 2.44 2,95 3,22 0.62 1.03 1.39 1.70 1.97 2,16 2,37 2.54
Ir 0.70 1.17 1.53 1.77 2.19 2.51 2.78 2.95 0.61 1.02 1,38 1,72 1.96 2.16 2.31 2.43
IIT 0.60 1.01 1.36 1.66 2.03 2.42 2.75 2.85 0.64 1.08 1.47 1.82 2,11 2.26 2.36 2.44
v 0.66 1,15 1.61 1.89 2.18 2.4 2,67 2.79 0.64 1.16 1.61 2.06 2.41 2.68 2,89 3.05
18701 0.70 1.09 1.46 1.75 2.11 2.17 2.42 2.68 0.63 1.18 1.66 2,07 2.38 2.64 2.82 2.98
II 0.76 1.21 1.531.88 2.18 2.43 2,70 2.88 0.63 1,20 1.69 2.18 2.57 2,80 2.95 3.12
IITr 0.84 1.21 1.51 1.81 1,97 2.22 2.52 2.79 0.64 1.14 1.65 2.09 2.42 2,63 2,80 2.98
I¥v  0.69 1.14 1.42 1.60 1,79 1.97 2.10 2.39 0.74 1.27 1.74 2,20 2.56 2.88 3.14 3.46
1971r 0.82 1.30 1.54 1.77 1.89 1.95 2.02 2.07 0.75 1.14 1.51 1.83 2,18 2,27 2.41 2.58
II 0.76 1,10 1.31 1.60 1.86 1.97 2.19 2,48 0.80 1.04 1.40 1.68 1.88 2.00 2,10 2.24
IIT 0.62 1.06 1.31 1.60 1.83 2.05 2.28 2.59 0.68 1.05 1.39 1.62 1.80 1.90 2.00 2.12
Iv 0.71 0.92 1.15 1.28 1.43 1.64 2,01 2.34 0.70 0.97 1.30 1.55 1.81 1.91 2.01 2.16
13721 0.76 1.11 1.35 1.54 1.69 1.90 2.27 2.86 0.71 1.03 1.36 1.62 1,91 2,07 2,21 2.32
ir 0.64 1.01 1.28 1,44 1.70 2.02 2.53 3.11 0.65 1.04 1.44 1.79 2.11 2,33 2.52 2.67
IIT 0.66 1.02 1.28 1.40 1.74 2,20 2.70 3.16 0.60 0.97 1.30 1.65 1.91 2.12 2.31 2.45
v 0.63 1.04 1.33 1.66 2.14 2,33 2.68 3.28 0.62 1.04 1.43 1.85 2,24 2.49 2,67 2.82
19731 0.66 1.11 1.54 1.86 2.21 2.63 3.14 3.77 0.64 1.11 1.55 1.98 2.38 2.69 2.92 3.13
i7 0.77 1.22 1.64 2.04 2,38 2,74 3.26 3.82 0.66 1.03 1.41 1.74 2,07 2,21 2.35 2.53
ITT (0,73 1.29 1.78 2.05 2,38 2.82 3.21 3.66 0.60 1.05 1.42 1.78 2.09 2.35 2.53 2.69
IV 0.69 1.19 1.58 2,01 2.41 2.84 3.07 3.55 0.69 1.07 1.43 1.79 2.06 2.27 2.49 2.66
15741 0.65 1,05 1.52 2.06 2.78 3.41 4,34 5.95 0.69 1.13 1.53 1.95 2.27 2.49 2,66 2,79
I 0.66 1.07 1.60 2.02 2.51 3.24 4.35 5,57 0.69 1.12 1.59 2,02 2.37 2.58 2.72 2,79
IIT 0.71 1.39 1.88 2.24 2,91 3.67 4.30 5.24 0.70 1.24 1.73 2.34 2.85 3.14 3.32 3.37
Iv 0.92 1.59 1.98 2.37 2.85 3.37 4.17 5.16 0.78 1.52 2.26 3.03 3.67 4.16 4.51 4.67
18761 0.80 1.41 2.02 2.55 2,91 3.38 3.92 4.47 0.86 1.51 2.26 3,02 3.78 4.42 4.87 5.30
Iir 0.76 1.24 1.71 2.23 2.65 3.13 3.57 0.85 1.44 1.90 2,49 2.96 3.13 3.19
ITI 0.91 1.60 2.12 2.39 2.75 2.94 0.85 1.48 2,01 2.51 2.85 2.95
Iv 0.68 1.11 1.64 2,09 2.46 0.86 1.48 1.87 2.25 2.62
19761 0.65 1.00 1.45 1.82 0.83 1.50 1.91 2.29
i7 0.75 1.29 1.57 0.77 1,24 1.59
IIf 0,72 1.08 0.76 1.23
I 0.67 0.72
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TABLE 4. Root Mean Squared Errors of Outside-Sample Forecasts

Number of Quarters Ahead
Variable Model 1 2 3 4 5 6 7 8

Real GNP I 0.88 1.54 1.99 2.43 2.91 3.23 3.42 3.57
(percent) Ir 1.15 1.99 2.77 3.53 4.12 4.50 4,83 5.05
GNP Deflator I 0.56 1.01 1.52 2.00 2.50 2.94 3.44 3.94
(percent) I 0.46 0.97 1.58 2.35 3.30 4.35 5.50 6.72
Unemployment
Hate e 0.37 0.58 0.68 0.73 0.80 0.86 0.85 0.82
(percentage II 0.37 0.78 1,16 1.53 1.80 1.97 2.12 2.23
points)
Wage Rate I 0.53 1.08 1.74 2.46 3.24 4,08 4.98 5.90
(percent) IT 0.38 0.66 0.97 1.42 1.95 2.54 3.18 3.82
(Biiieﬁiﬁeé 7 0.65 1.11 1.26 1.38 1.53 1.61 1.57 1.56
pere 9¢  rr 9.72 1.19 1.39 1.52 1.63 1.70 1.76 1.87
points)
Money Supply I 1.40 2.25 3.13  4.22 5.32 6.39 7.62 8.88
(percent) Ir 1.44 1.72 2.07 2.49 2.87 3.29 3.71 4.19

Note: For a given length of forecast, let g. = be the actual

it = Yip T ¥z
forecast error for variable < for quarter ¢ , where Yip is

the actual value and y;t is the expected value estimated by sto-

chastic simulation. (Stochastic simulation in this case is with
respect to the error terms and coefficient estimates only. The
exogenous-variable values are the actual values.) Then the RMSE
E-g :2 or
thl 1t

: T
1 ~ - 2 ,
Jﬁkil(eit/git) , where T 1is the number of observations. The

for this variable and length of forecast is either

former pertains to the unemployment rate and the bill rate, and the
latter pertains to the other variables. T 1is 33 for the one-quarter-
ahead forecasts, 32 for the two-quarter-ahead forecasts, and so on.
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For the unemployment rate the numbers are negative and grow progressively
larger in absolute value. For the eight-quarter-ahead forecast the estimate
of the degree of misspecification 1s -0.82 percentage points, which is

(in absolute value) 55.0 percent of the stochastic-simulation estimate of
1.49 percentage points of the standard error of the forecast in row ¢ .

The misspecification estimates are highest for the wage rate and
the money supply. The eight-quarter-ahead estimate of the degree of mis-
specification for the wage rate is 3.55 percent, which is slightly more
than double the stochastic-simulation estimate of 1.71 percent in row ¢ .
For the money supply the eight-quarter-ahead estimate is 4.88 percent,
which compares to the stochastic-simulation estimate of 3.80 percent in
row ¢ . . The model appears to be clearly misspecified with respect to
these two variables.

The numbers in the d rows are the estimates of the total uncer-
tainty of the forecasts. A brief summary of them is as follows. For the
four-quarter-ahead forecasts, the estimated standard errors are 2.20 per-
cent (31.1 billion dollars)20 for real GNP, 1.73 percent for the GNP de-
flator, 0.70 percentage points for the unemployment rate, 2.18 percent
for the wage rate, 1.14 percentage points for the bill rate, and 4.31 per-
cent (16.5 billion dollars) for the money supply. TFor the gight-quarter-
ahead forecasts, the estimated standard errors are 2,11 percent (31.1 bil-
lion' dollars) for real GNP, 3.32 percent for the GNP deflator, 0.67 per-
centage points for the unemployment rate, 5.26 percent for the wage rate,
0.79 percentage points for the bill rate, and 8.68 percent (36.0 billion
dollars) for the money supply.

2OAny dollar figure used in this section has been obtained by multiplying

the particular percent figure in Table 1 by the relevant number in the e
rows in Table 2.
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Model I versus Model II

The results for Model II, the naive model, are also presented in
Tables 1 and 2. Note first in Table 2 that the two models are projecting
quite different paths for real GNP and the GNP deflator. By 1980IV the
forecasts of real GNP differ by 90.5 billion dollars and the forecasts of
the GNP deflator differ by 16.5 percent.2l Relative to Model I, the naive
model is predicting less real GNP and more inflation.

From the results in the e rows in Table 1 it can be seen
that the nalve model appears to be misspecified for all the wvari-
ables. With respect to the estimates of the total uncertainty
of the forecasts in the d rows, the naive model is less
accurate than Model I for real GNP, the GNP deflator, the unemployment
rate, and the bill rate, and it is more accurate for the wage rate and
the money supply. For the eight—quarter-ahead forecasts, the differences
in the estimated standard errors are 2.74 percent for real GNP, 3.19 per-
cent for the GNP deflator, 1.70 percentage points for the unemployment
rate, -2.05 percent for the wage rate, 1.11 percentage points for the bill
rate, and -4.94 percent for the moﬁey supply.

Given my wage rate, 1 would conclude from the results in Table 1
that Model I is enough of an improvement over the naive model to justify
the time that T have so far spent developing and working on it. The dif-
ferences in the standard errors for real GNP, the GNP deflator; the unem-
ployment rate, and the bill rate are substantial. It is, of course, some-

what embarrassing that Model I is less accurate with respect teo the fore-

2190.5 billion dollars = Model I row ¢ estimate - Model II row b esti-
mate, and 0.165 = Model II row £ estimate/Model I row ¢ estimate - 1.0.
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casts of the wage rate and the money supply than the naive model. There

is not too much that can be said about this except that I was aware before,
and even more so now, that the wage-rate equation and one of the demand-
for-money equations are two of the weakest equations in Model I, weakest
in the sense that the coefficient estimates of these two equations tend
to change more as the model is reestimated on the basis of new data than
do the coefficient estimates of most of the other equations. There are
clearly grounds for further work on these two equations.

Two further points about the negative results for the wage rate
and money supply should be noted. First, there is some evidence that in-
dicates that the demand-for-money equations in Model I are more accurate
than other demand-for-money equations. As discussed in footnote 5 in Fair
[9], the demand-for-money equations inModel I appear to be considerably
more accurate for the 1973I-19671 period than the demand-for-money equa-
tion in the MPS model. The problems noted here regarding the demand-for-
money equation in Model I are thus probably not unique to Model I.

Second, it is interesting to mote that the problems with the wage-
rate and demand-for money equations do not appear to have a serious effect
on the overall model. I think, however, that this is more the case for
the demand-for-money equation than it is for the wage-rate equation. From
other experiments that I have done, it seems quite likely that the overall
accuracy of the model would be considerably improved if a better wage-rate
equation were found, especially with respect to the accuracy of the fore-
casts of the GNP deflator. If, on the other hand, a more accurate demand-
for-money equation were found, this would probably not have much effect
on the overall accuracy of the model. The feedbacks from the errors in

predicting the demand for money to other errors in the model are not very
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large in the version of the model that includes the equation explaining
the behavior of the Federal Reserve.

Consider finally the RMSE results in Table 4. As noted in Section
IV, RMSEs are commonly used to judge a model's accuracy., Using the RMSEs
in Table 4 to compare the accuracy of Model I to that of Model II ignores,
however, the uncertainty due to the exogenous—variable forecasts and the
fact that the forecast-error variances are not constant across time. Sincea
comparison of the accuracy of the two models on the basis of the estimated standard
errors in the < rows inTable 1 does not ignore these twe problems, it seems
much better to use the results in Table 1 to compare the two models than
the results in Table 4. Comparing the numbers in the d rows in Table
1 to the respective numbers in Table 4, it can be seen that there are some
gsizeable differences, although the overall ranking of the accuracy of

the two models by variable is the same.

Vii. Summary and Conclusion
The primary purpose of this paper has been to propose a method
for estimating the combined uncertainty.of an econometric-model forecast
from the error terms, the coefficient estimates, the exogenous~variable
forecasts, and the possible misspecification of the model. The method
accounts for the fact that the forecast-error variances are not constant
across time, and it provides for each variable and length of forecast a
quantitative estimate of the degree of misspecification of a model.
Estimating the uncertainty from the first three sources is not very
expensive. It merely requires one stochastic-simulation over the forecast
period. This stochastic simulation is a straightforward procedure except

for the treatment of the exogenous-variable forecasts. Some estimate or
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assumption about the uncertainty of the latter must be made prior to the
stochastic simulation. Estimating the uncertainty from the possible mis-
specification of the model is much more costly, since it requires succes-
sive reestimation and stochastic simulation of the model. These calcula-
tions, however, are not forecast specific, and so they need not be done
each time a new forecast is made., The proposed estimates of the degree

of misspecification of a model are clearly only approximations, since they

rest on the fairly restrictive assumption that the degree of misspecifica-

tion of a model by wvariable and length of forecast is constant across time.
The main conclusions from the empirical work are the following:

1. The common practice of solving a model by setting the error terms equal
to zero does not appear to lead to serious biases in the estimates of
the expected wvalues af the endogenous variables. (Table 2)

2. The model in Fair [4], Model I, appears to be seriously misspecified
for the wage rate and the money supply. The naive model, Model II,
appears to be misspecified for all the variables, (Table 1)

3. Model I is more accurate than Model II for real GNP, the GNP deflator,
the unemployment rate, and the bill rate. It is less accurate for
the wage rate and the money supply. (Table 1)

4. There are some sizeable differences between the "incorrect' estimates
of uncertainty in Table 4 (the RMSE estimates) and the "correct" esti-
mates in the d rows in Table 1, although the overall ranking of the
accuracy of the two models by variable is the same in the two tables.

It is hoped that the method proposed in this paper will become used
by model builders. Results like those presented in Table 1 for other models
would be of considerable inteérest and would help in evaluating their rela-

tive strengths and weaknesses. The way that is proposed in this study
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for estimating the degree of misspecification of a model does require that a model
be reestimated each quarter, which isnot yet the common practice among model
builders. It would be possible to modify the method proposed here to accom-
modate a model that was, say, only reestimated once a year, but this would
require a stronger "constancy"” assumption than the one needed here. It
is not now, however, very expensive to estimate a model of even 100 sto-
chastic equations, and so the requirement that a model be reestimated once
a quarter does not seem too severe.

The method proposed in this paper is not relevant for forecasts
from models that are subjectively adjusted, Even for subjectively-adjusted
models, however, the following procedure could be followed. (1) Treat the
model mechanically and perform the calculations necessary for results like those
in Table 1. TFor people who are interested in the model qua model, this
would be useful information. (2) Over a period of a few years compile
an ex ante forecasting record for both the model used mechanically and the

model used subjectively. Let e? denote the error of the k-quarter-ahead

kt

forecast of variable < for quarter ¢ from the model used mechanically

(the forecast starting at the beginning of quarter <¢-k )} and let egkt
denote the similar error for the model used subjectively. Let 5ikt be
he diff in th d: 6., =(en )21, )% . after

the difference in the errors squared: ikr = Cine ) -

say, 12 values of 3§ have been compiled, take the average of these

ikt
values. Denote this average as Gik . aik

adjusting the model has on average improved its forecasting accuracy.

will be positive if subjectively

(3) If it is assumed that the degree to which subjectively adjusting a
model improves its forecasting accuracy with respect to a given variable
and length of forecast is constant across time, then the E;k values can

be subtracted in the appropriate way from the numbers in the 4 rows in
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Table 1 to get a final estimate of the uncertainty of the forecasts from
the subjectively-adjusted model.22

The constancy assumption in (3) is, of course, much stronger than
the constancy assumption needed for the results in Table 1, but the E;k
values would at least be rough approximations of the degree to which sub-
jectively adjusting a model improves its forecasting accuracy. Of more
scientific interest, however, would be the mechanical results themselves,
for only by observing results like those in Table 1 for models used mech-

anically can one hope to learn about the models in ways that are useful

for further scientific research.

22The appropriate way would be to subtract Eik from the square of the

respective number in row d of Table 1 and then to take the square root
of this difference. This number would then be the final estimate of the
standard error of the forecast from the subjectively-adjusted model.
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