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1. Introduction

The purpose of the present paper is to illustrate a new point of
view in the discussion of discrete programming problems by demonstrating
a theorem concerning the maximum number of binding constraints in an in-
teger programming problem with # variables. The arguments are a blend
of those used in fixed point computations and in the geometry of numbers,
without the symmetry assumptions which are characteristic of the latter
field. Subsequent papers will discuss the ramifications of this point
of view in greater detail.

Consider an integer programming problem of the following form:

max a lhl + ... +a. h

0 on'n

allhl * oo F alnhn > b,

(1.1)

am1h1 F oo +amhn3bm,

*I am extremely grateful to Professor Roger Howe of the Department of
Mathematics at Yale University for many sympathetic discussions of the
material in this paper, and to Professor J. W. S. Cassels of Cambridge
University for the basic idea used in Section 5. This research was sup-
ported by a grant from the National Science Foundaticn.



with the variables hl, veur hn restricted to integral values. Any re-
quirement that some or all of the variables be non-negative will be incor-
porated in the constraints, so that typically the number of inequalities,
m , will be greater than or equal to the number of variables, 7 . The

following assumptions will be made throughout the discussion.

1.2. [assumptions] We assume that for any vector ¢ in Rm+1 the set
of integral h satisfying A4k > e is finite. In addition the constraints
are assumed to have at least one feasible integral solution for the given

right hand side b .

It is an immediate consequence of these assumptions that problem

(1.1) has a finite maximum.

1.3. [definition] Let S be a subset of (I, 2, ..., m) . The con-

straints I aijhj z-bi , for 7 €5, are said to be binding if the in-
d

teger programming problem

max ¥ a_.h,
J 0 g

E.aijhjibi’ for 7 in S,

d
has an optimal solution in which the remaining constraints are all satis-
fied, and which is therefore optimal for the original problem.

The primary result of the present paper is the following theorem.

1.4. [theorem] The integer programming problem (1.1) has a set of bind-
ing constraints whose cardinality is less than or equal to 21 . More-

over this bound is sharp in the sense that there exist integer programming



problems with #n variables which have no sets of binding constraints of

n
cardinality less than 2 -1

The situation described in theorem 1.4 is distressing when compared
to that arising in ordinary linear programming in which a set of binding
constraints of cardinality # can always be found. The simplex method
may, in fact, be viewed as a systematic algorithm which searches through
sets of # constraints in order to determine whether or not they are
binding and concludes by exhibiting a specific set of such constraints.
Theorem 1.4 will also be demonstrated by means of an algorithm--whose pro-
perties will be explored in subsequent papers--which terminates with the
appropriate set of binding constraints. The theorem indicates the intrinsic
complexity of some programming problems imposed by the requirement that

the variables take on integral values.

2. The Production Set Associated with the Integer Programming Problem
The study of linear programming problems is greatly facilitated

by introducing an associated production possibility set, i.e., the convex

cone of production plans obtained by varying the activity levels in an

arbitrary fashion. We shall introduce a similar construction for integer

programming.

2.1. [definition] We define X to consist of the set of vectors

Cmo, cees xm) given by



. =L a,.h.
) g 053 °J
mm =%ta h. .,
J ™ J
as hl’ vees hn vary over the integers.

In order to avoid certain technical difficulties the following regu-
larity assumption will be made about the matrix 4 and then removed in

section 6 of the paper.

2.2. [assumption]) The entries in A are independent over the integers
in the sense that if % is an integral vector other than the zero vector,

) ai'h' # 0 for every row 1 .
J

The set X may be shown to lie on an m dimensional hyperplane
with a non-negative normal. Any bounded subset of the hyperplane contains
a finite number of vectors in X , and no two vectors in X have their
ith coordinates equal for any coordinate.

Figure 2.1 represents a finite subset of the vectors in X for
m=n= 2 . The set consists of seven vectors mo, seay m6 . I have drawn
through each of these vectors that translate of the negative orthant in
Rm+1 having its vertex at the particular vector in question. This pro-

vides us with an intuitive picture of the "upper surface” of this portion

of the production possibility set X .
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FIGURE 2.1

We shall now introduce an infinite simplicial complex ( ., whose

vertices are the vectors in X . The first step is to define those col-

d, d J
lections of m+1 vertices (x 0, X 1, cees & m) forming the m~simplices
. . .. , Rm+1
of the complex. We begin by translating the positive orthant in
parallel to itself until its vertex lies above the plane containing X .
We then translate the orthant downwards, passing through no vectors in

X , until no further reduction in any of the coordinates of this vertex

is possible. The orthant will typically be stopped by a collection of

jO jl jm
(m+l) vectors x , & T, ..., & one on each coordinate hyperplane of

the translated orthant. (Assumption 2.2 implies that a coordinate hyper-




plane of the translated orthant cannot contain more than one vector in
X .) These collections of (m+l1) vectors, which have elsewhere been given

the name of primitive sets, will be the m-simplices in C .

In Figure 2.1 the vectors (mo, xg, x3) form a primitive set with
. a 1 3 e s .
the corresponding vertex at o ; (x, &, £°) a primitive set with the
vertex at B . Of course o = min[mo, mg, xS] ; 1in each coordinate, and

as a consequence of the construction there is no vector & in X with
oo .
We have the following general definition.

jO jl J.m)

2.3. [definition] A set of vectors (& , & , ve.y X in X is de-

fined to be a primitive set if there is no vector « in X with

J J J
x> mnle 0, x 1, R S T

It should be remarked that the question of whether a given set of
jO jl J.m s s ,
(m+l1) vectors & ", & 7, i, X form a primitive set is a local ques-
tion in the sense that there are a finite number of vectors in XY contained
in any specific translate of the positive orthant.

If n is sufficiently small compared to m , then it is possible
that no collections of (m+7) vectors satisfy the definition 2.3. 1In
Figure 2.2 either the lst or 2nd coordinates of the vertex of the trans-

lated positive orthant can be decreased indefinitely without passing through

a vector in X .



FIGURE 2.2

In order to overcome this difficulty we shall adjoin to the set X

1
m+1 "ideal" vectors 50, E, eun, Em , which we shall refer to as slack

veotorg because of an analogy with linear programming. The ith of these

.

vectors, gt , will be assumed to have its ith coordinate very negative,
and its remaining coordinates very positive. Definition 2.3 is applied
to this extended set and primitive sets will now consist of (m+1) vec-
tors some of which come from the original set X , and the remainder of

which are slack vectors. In Figure 2.2 xl ' xz and gl form a primi-

tive set, as do xl . x2 and 52 .

jO jl J-m
Consider a set of vectors o , & , ..., & arranged in such

a way that



J.
for 2 =0, 1, ..., m . Let {x Y} for 7 € T be the non-glack vectors

in this set. In order to test whether this set of vectors forms a primi-

tive set it is sufficient to verify that there is no vector in X with

r. > a. for 7 € T .

The simplicial complex ¢ obtained by taking the collection of
primitive sets as m-simplices and all proper subsets as lower dimensional
simplices is a basic tool in the analysis of production sets with indivi-
sibilities and will be discussed in detail in subsequent publications.

As an example of the relevance of this construction I quote the following
theorem, whose proof will not be given here, since the theorem will not

be used in developing the arguments cf the present paper.

2.4, [theorem] Let & £ X and define the neighborhood of x to be the
set of vectors in X which are contained in some primitive set which also

contains &x . Let & satisfy the constraints of the integer program

xﬂ Z-bi for 4 =1, ...,
Then a necessary and sufficient condition that x» be an optimal sclution
to the programming problem is that &* be a local coptimum, in the sense
that every neighbor of & either violates one of the constraints or yields

a smaller value of the objective.



3. Sperner's Lemma

In this section we consider an arbitrary finite subset of X , say

m

X' , augmented as before by the (m#1) slack vectors Eo, EI, ceey E
Primitive sets are defined to be those collections of (m+1) vectors

J J
x 0, ssey & m {either slack vectors or members of X' )} such that there

is no vector in X' satisfying
do, J J
x > mnlx 0, T 1, ceey & .
1f, for example, X' consists of the seven vectors illustrated by Figure

2.1, then the following triples are included among the primitive sets:

1
0, %, %, &0 S, @0 e, @0 el e, @l e
The following theorem, whose proof may be found in [1], is a version

of Sperner's lemma appropriate to the present setting.

3.1. [theorem] For each x ¢ X' let g(x) be an integer in the set
(0, 1, -v., m) » and let 2(e¥) =41 for ¢ =20, 1, ..., m . Then there

J J
exists a primitive set x 0, ey X m (including possibly some slack

7

vectors) whose labels g(x 0)

, ..., 4(x ™) are all different.

Theorem 3.1 is a fundamental tool in numerical techniques for the
approximation of fixed points of a continuous mapping, when the underly-
ing combinatorial objects are given by primitive sets rather than a sim-
plicial decomposition of the simplex. The proof of Theorem 3.1 depends

on the following lemma, which is illustrated in Figure 3.1.



10

|
1
t 1
| * T
i
2
3 ' Y
T e |
1 o
< |
|
.xo
FIGURE 3.1
d, J,
3.2, [lemma] Let x 7, ..., & be a primitive set (including possibly

some slack vectors). Consider an m-1 dimensional face of this simplex
obtained by deleting a specific vector in the primitive set. Then, aside
from the special case in whicn the m vectors on the face are all slack
vectors, there is a umnique other primitive set with the same m-I1 dimen-
sional face. 1In the special case there is neo other primitive set with
this property.

2

In Figure 3.1 (xl, X, mg) form a primitive set with vertex o

We have named the vectors so that @, = mz for ¢ =0, 1, 2 . To remove
xl , we locate the vector in the primitive set with the second smallest
first coordinate; in this case xZ . We then locate that unique vector

in X' (or possibly a slack vector) with the largest second coordinate,

. 0 . . 3
subject to xO > xo . ml > m? ; in this case x .
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The special case referred to in lemma 3.2 cccurs when the primitive

set consists of m slack vectors-=-say all of the slack vectors except

Ei* --and that particular vector in X' with the largest i*th coordi-
nate. The lemma may be rephrased as saying that every m-7 face in the
complex appears in precisely two m-simplices, excepting those m-I faces
consisting entirely of slacks; these appear in precisely one m-simplex.

The algorithm for determining a simplex with distinct labels begins
with one of the special simplices--say the m-simplex ﬁm*, EI, cery Em)
with z & that vector in X' with largest oth coordinate. 1I1f &(z%) =0,
the algorithm terminates, since Q(Ei) =1 for 1 =1, «e., m . 1If
2(x*) # 0, then we remove that unique vector in the primitive set, other
than m* . whose label agrees with 2lx”) . and continue.

At each iteration of the algorithm, prior to termination, we are
faced with a primitive set whose vectors contain all of the labels in the
set (I, 2, ..., m) . A single pair of vectors, one of which has just
been introduced intc the primitive set, have the same labels. The algorithm
continues by removing the other member of this pair. A simple graph the-
oretic argument demonstrates that the algorithm never returns to a primi-
set previously encountered. Since X' is a finite set, the algorithm

must terminate after a finite number of iterations by introducing a vector

with the label ¢ resulting in an m-simplex with distinct labels.

4. The Labeling Procedure for Integer Programming

In this section we use a particular labeling procedure for the vec-
tors in X' . When a completely labeled primitive set is found by the
arguments of the preceding section, that vector in the primitive set with

the label (¢ will solve the problem
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. . 0
and also x £ X' . If the vector with the label ¢ is £ , then there

will be no vectors in X' satisfying the constraints.

4.1. [labeling rule] Let x € X' . We define &(x) =1 (i =1, 2, ..., m)
if <1 is the first coordinate for which xi < bi . If xiflbi for all

1=1, 2, .., m, then &{x) =0 .

m -
Let xo, xl, P be the vectors in a completely labeled primi-

tive set (including possibly some slack vectors) arranged in such a way

that min[xg, xi, cens x?} = m; . I claim that because of the particular

labeling rule being used we must have efxt) =1 .

This is certainly true for < = 1 , since x% j_mg, m?, seey mq .

1
If the vector xl did not receive the label 1 , we would have x g_b

and therefore xi Z'bi for all j , implying that no vector receives

the label 1 . We see therefore that xi < b1 andg mﬂ z_bl for all

2

J #1 . But then xz must receive the label 2 , since if it did not

we would have xz > bg and therefore x% z_bz for all 7 , implying

that no vector receives the label 2 . We see, as before, that xﬁ < b

P
and o’ i_bg for j # 1, 2 -

2
The argument, when continued, verifies that E(xJ) = 4 for
Jg=1, vovs m s and therefore g(xo) = ¢ . It follows that xo , if
it is not the Oth slack vector, must satisfy the constraints xq > b.

T
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for 4 =1, ..., m . But there can be no other vector & & X' which sa-

. o . t . .
tisfies the constraints and whose 0 h coordinate is larger than that of

0
& , for such a vector would have the property that

xo > xo = nin [mo .’L'I P
0 - 0: 03 LRI } 0 ’
i .01 m .
and x 3-bi > mzn[wi, Tis <res xi] , for 1 =1, ..., m.

violating the definition of a primitive set. It is also easy to verify
. o .
that if & is the Oth slack vector then no member of X' satisfies
the constraints x, > b, .
[

Assuming that the constraints are feasible for some & in X' ,
we define S to be the set of indices < (other than (0 ) for which
mz is not a slack vector. It follows from the definition of primitive

o . .
sets with slack vectors that x is the vector in X' with the largest

th . . X
0 coordinate subject only to the constraints

X 3'bi for Z¢ in § .
In other words, the constraints associated with slack vectors are not bind-
ing and can be discarded without introducing a new optimal solution.

The arguments of this section have been conducted in terms of an
arbitrary finite subset of X . We now take a more specific form by se-
lecting a large positive number M , and letting X' be the set of vec-
tors in X with mi >-M for <=0, 1, ..., m. If M is sufficiently
large X' will contain the optimal solution, say w* ;, of our original
integer programming problem (1.1). The primitive set exhibiting this fact

will have a set of indices S5 , corresponding to the non-slack vectors
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*
in this primitive set (other than & }. The activity levels associated

*
with & will therefore be the optimal solution to
max L a_ .h.
]

ra,.h.>b. for 1 e 8
3 9 — T

ra,h., > =M for 7 e S° .
td d

If M tends to infinity through a sequence of values for which the index
set S remains the same, we conclude that the constraints associated with
S form a binding set of constraints for (1.1). Our main theorem will
therefore be demonstrated if we can show that there are never more than

1 .. * . .

a non-slack vectors (this includes & ) 1in a primitive set when X'

is given by those vectors in X all of whose coordinates are greater than

or equal to =M .

5. The Maxtimum Number of Non-Slack Vectors in a Primitive Set

1 m e
Let xo, Xy weuy X be a primitive set based on vectors I e X

with x> -M for 1 =0, 1, ..., m, and arranged so that

xi - minl 0 "
= mnlE, ..., X
. , J oz
for ¢=9¢, 1, ..., m - Because of assumption 2.2 we have mi > xi for

Jd #1 . Let T be that set of indices < in (0, I, ..., m) for which
T
x is not a slack vector.
, i 1 . Z , n
For each %1 ¢ T we have x =4k , with & a vector in R
with integral coordinates. We define H to be the convex hull of hl R

for 1 e T .
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i
We shall demonstrate that each h is an extreme point of the con-
vex hull H , and moreover that there are no other lattice points in
H . TIf either of these situations were to occur there would be a lattice

i
point h (possibly cne of the # themselves) with
h =23 ath, z aj =1,

and at least two o _ strictly positive. But then x = 4h is in X'
dJ ; \ ;
7 ,
and satisfies . =L a.,xr, > x. for 1 ¢ 7 and trivially x. > x. for
1 Jd 1 7 7
s,
£ e T . This contradicts the definition of a primitive set.
The major conclusion of this paper--that part of theorem 1.3 assert-
- . . L] n
ing the existence of a set of binding constraints of cardinality & -1

--is an immediate consequence of the following result, which appears in

a letter to Roger Howe from J. W. S. Cassels.

5.1. [theorem] Let {hJ} be a set of distinct lattice points in Rn .

which are extreme points in their convex hull F , and such that 4 con-
. . . . I,

tains no other lattice points. Then the number of points in {k } is

less than or equal to 2n .

To prove 5.1, we demonstrate by induction on n , that any set of
more than 2” distinct lattice points in A' must contain a pair of lat-

tice points k and h' with
h. = h' mod(2) .
1 1

But then (h+Hh')/2 is a lattice point in H which differs from the vec-
tors generating H . This demonstrates the existence of a set of binding

constraints of cardinality M.
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Exhibiting an integer program with no set of binding constraints
. . #l . Lo .

of cardinality less than 2 -1 1is, of course, trivial. We simply take
. in B wi i 1 an

the unit cube in with vertices v, ..., vV .  Through each such

i . .
vertex we pass a hyperplane a which strictly separates that vertex from

FIGURE 5.1

the rest of the cube, i.e.,
Fok st for iAK.
The integer program
max al-h
ai-h gﬁai-vi +¢, for 1 #1,

1 , . X . . .
will have v as its soluticn, but if any particular constraint is dropped,

a superior scolution will be obtained.
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6. Removing Assumption 2.2

Assumption 2.2 guarantees that no two vectors in X have an iden-
tical first, second, ..., or mth coordinate. This is a non-degeneracy
assumption which plays two distinct roles in our arguments. First of all,
there is no ambiguity about which set of (m+1) vectors impedes the down-
ward translation of the positive orthant in the definition of primitive
sets since no two vectors in X lie on the same translated coordinate
hyperplane. Moreover, there will always be a unique replacement for a
given vector in a primitive set since this involves finding the vector
in X which maximizes a specific coordinate subject to inequalities on
the remaining coordinates.

This technical difficulty can easily be overcome if assumption 2.2
does not hold--as will be the case when the matrix A 1is composed entirely
of integers. We simply introduce some systematic rule which permits us

to decide, when x, = a%
1

for two different vectors, which of these two

numbers is to be considered the larger. For example, we can say that in
the event of a tie mi will be considered to be larger than mé if and

only if the vector & is lexicographically larger than ' .

If we adopt this rule, the only argument that requires some reexa-
mination is that of the last section, i.e., that no strictly convex com-
bination of two or more vectors hj will be in H . But this follows
from the observation that if 2 1is lexicographically larger than x' ,
then arxr + {I-o)x' 1is also lexicographically larger than x' for

0 <a <1 . This demonstrates the validity of our main theorem without

assumption 2.2.
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7. Comecluding Observations

The proof of theorem 1.4 is based on an algorithm for integer pro-
gramming problems. The algorithm may be shown to have sufficient monotoni-
city properties (under the labeling rule 4.1) so that finite convergence
to a unique completely labeled primitive set can be demonstrated without
the topological arguments of Sperner's lemma.

The major difficulty in implementing the algorithm is in the re-
placement operation described in Section 3. This would seem, at first
glance, to involve a search which is of the same order of difficulty as
the original integer programming problem itself. There is, however,
considerable structure in the problem, which may bhe capable of exploita-
tion. For example, there will typically be a finite number of distinct
simplices arising from primitive sets which form a fundamental region in
the sense that every primitive set is equivalent, by translation, to one
of these (see Figure 2.1). Each simplex in lattice space arising from
a primitive set will have an index (+I, (0, -1} associated with it in
such a way that the index sum, over the simplices covering any particular
point in lattice space, is unity. Moreover the sum of the algebraic volumes
of the distinct simplices in a fundamental region is also unity. These
and related observations permit us to describe the complete structure of
primitive sets for certain classes of problems, which can then be readily
solved by our algorithm.

The complexity of the integer programming problem seems to relate,
not only to the number of binding constraints, but also to the singulari-
ties of the embedding of the associated simplicial complex ( in Rn N

A step in understanding this complexity would be a complete description
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n
of the integral polyhedra with 2 vertices which appear in the arqument
in Secticon 5. At the present moment such a description is known only for

n<as.

REFERENCES

[11 Scarf, Herbert E. The Computation of Economic Equilibria (with the
collaboration of Terje Hansen). New Haven: Yale University Press,
1973.



