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A THEORY OF MONEY AND FINANCIAL INSTITUTIONS
PART 35
BANKRUPTCY AND OPTIMALITY IN A CLOSED TRADING MASS ECONOMY

MODELLED AS A NONCOOPERATIVE GAME*

by .

Pradeep Dubey and Martin Shubik

1. INTRODUCTION

In this paper we establish the existence of an optimal bankruptey
rule which enables us to describe the Walrasian trading economy as a game
with trade in fiat money and noncooperative equilibrium points which {(in
the sense specified belowj include Fhe competitive equilibria of the trad-
ing economy,

The construction suggested here raises several questions concern-
ing the uniqueness of competitive equilibria, the role of a money rate of
interest in providing reserves against bankruptcy and the information needed
by a banking system to influence a market economy. Hopefully an understand-
ing of the answers to these questions may lead to the formulation of some

fruitful dynamic models,

*This work relates to Department of the Navy Contract N0OOO14-76-¢-0085
issued by the Office of Naval Research under Contract Authority NR 047-006.
However, the content does not necessarily reflect the position or the policy
of the Department of the Navy or the Government, and no official endorse-
ment should be inferred.

The United States Government has at least a royalty-free, nonexclu-
sive and irrevocable license throughout the world for Government purposes
to publish, translate, reproduce, deliver, perform, dispose of, and to
authorize others so to do, all or any portion of this work.



In a previous paper1 a simple model of a trading economy with two
types of traders, two goods, an outside bank, borrowing and bankruptcy
rules; has been studied exhaustively., 1In that paper a specific example
was used to illustrate the effect of varying the bankruptcy conditions.

It was shown that there were essentially four cases to be distinguished.
They are when no firm goes bankrupt, some go bankrupt and all go bankrupt,
and also when no one goes bankrupt but some or all hoard woney,

The details of the case distinctions can best be appreciated by
working through a specific example in full, However this is both time
consuming and lengthy hence rather than provide a new examwple here, the
reader who wants an example is referred éo the other paper.

In this paper we establish in general for a trading ecﬁnomy a series
of results concerning games with penalties against those who fail to repay
loans. In particular:

(1) We can define a class of games related to the origimal trading
economy for which we can prove the existence of non-trivial noncooperative
equilibria.

(2) These equilibria can be compared with and related to the com-
petitive equilibria of the original trading economy.

(3) The severity of the penalty for each individual can be charac-
terized by a single parameter hi for each trader i . If the penalties
are sufficiently high then the game we can define has among its equilfbria
all of the competitive equilibria of the original trading economy, in the
sense'that the distribution of goods and prices associated with any com-
petitive equilibrium (C.E.) are also associated with a noncooperative equi-

librium (N.E.).



(4) With high penalties, the money rate of interest will be zero
at equilibrium and hoarding may take place.” The money rate of interest
in the context of these models is a loss reserve premium to recoup bank-
ruptcy losses rather than a price for the financing of intertemporal trade,
(5) If the penalties xi are picked to be sufficiently small and
if they are not in the ratio of some set of lagrangian multipliers at a
C.E, then there will be a positive rate of interest and the distribution
of goods at an N.E. will not coincide with that at a C.E,
(6) If the original trading economy has K competitive equilibria,
associated with each C,E, for a given utility function representation of

preferences will be a set of lagrangian multipliers. For the kth c.E.

we may have (kkl, vesy kkp) . These multipliers will vary along with
any order preserving transformation of the utility functions. If it is
possible to find some utility function representation of the preferences
of the traders such that there 1is no pair of C,E.'s for which jhi > kki
for 1i=1, ..., n then we may construct K trading games such that each
of these pames has a specific C.E. as its unique N.E, with a zero interest
rate,

In the previous paper of Shubik and Wilson a market with a finite
number of traders was considered. It appears to be considerably easier
to work with a nonatomic trading model to establish the general results
noted here. The recent work of Dubey and Shapleyzenables ug to adopt this
approach in Section 3 and subsequently.

These rather informally stated assertions are made precise and the

appropriate theorems are proved in the subsequent sections.

*This possibility is illustrated by Shubik and Wilsonl but is ruled out
in our analysis here by a simplification of the strategy spaces.



2. MODELS AND MODELLING PROBLEMS

In several previous papers3’ é’ > trade in an economy using a commo-
dity money has been studied. The conditions under which trade is hampered
by a shortage of money have been noted. A shortage of commodity money can
be overcome by the introduction of credit, However if the economy is re-
garded as even implicitly dynamic we must take into account the possibility
that individuals may not be able to pay back that which they have borrowed.
When this happens, rules must be given concerning the treatment of default.

We may regard an economy which uses fiat money as one in which a
form of credit system is used. An outside bank issues a supply of money
to all traders in return for their promissory notes. After trade has taken
place the traders are required to redeem their promissory notes. Thus we
model the economy as a two stage game where stage one is used to get the

fiat money into the system and stage two is used for trade.

2.1, The Extensive Form

In Figures la and lb two alternative forms of the extensive form
of the two stage game are suggested, 1In Figure la all traders bid simul-
tanecusly for fiat money, then all are completely informed, In the second
stage they then bid in the market for goods. The trees have been drawn
as though the set of moves is finite.

In Figure 1b individuals are not informed of the outcome of the
first stage prior to having to make their plans for the second stage,
These represent two extremes in information conditions and imply extremely
different strategy sets. The strategy sets are discussed in detail in

2.4 below,
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2.2, Endowments and Utility Functions

Although in Section 3 we restrict our interest to the nonatomic
game; for convenience in discussion modeling problems prior to setting
up this game we consider an economy with a finite number of traders.
Let there be n traders trading m commodities. Trader i has
an Initial endowment of (a; cney ai) where a? > 0 and a, (=§fa§) >0,

J i
The preferences of a trader i for any vector of resources

- .

(xi, x;, ...,_xi) can be represented by a utility function ui(xi, veey x;) .

2.3, Moves, Outcomes and Modified Utility Functions
Let a move by trader i in the fiat money market be a bid (of a
personal I,0,U. note) of size wi .

Suppose™ that the total fiat supply is M . He will obtain:

C2IfE
=

*The case where there is no bound on the total fiat supply is analyzed
in [2].



A move by a trader 1 1in the second stage consists of a set of
numbers bi', 0wy bi which in one model described in 2.4 can be inter-
preted as actual expenditures subject to the condition
mo wi
5 bj <=M
1 w

J=

in another model a move will be a set of numbers 'ﬂi‘, 0oy 11; , which

will be interpreted as a percentage allocation of funds™ thus actual ex-

. i i i i, 1=
penditures will be a set of numbers bl’ “eey bm where bj = ‘!‘]j W M,
J =1, suey, m .,

We define a set of pemalties A" >0, 1=1, ,.., n and a pay-

off function for each:**

1, _ i i

1,1 i i
T (xl, coes X me) u (xl, aeay X_) for X2 0
e i i 4 1
2 (xl,.,.,x, xm+1) for xm+1<0
i1 i i i, 1 i i i
where ft (xl, veey X, xm+1) <u (xl, .sey xm) + ).xm_l ;

\ m m
where x;‘ﬂ_1="-@~ Eb{'-i— Tp.2 -wi :
W j=1 J i=1 3]
where . =b,/a, .
Py j/ i

*In this formulation hoarding is ruled out,

**For the second model the b; are replaced by *b;'



2.4, Strategies, Rationing Mechanisms and Payoffs

In a game where all players move without information, moves and
strategles coincide. when information is available to the plavers in the
process of making a sequence of moves then strategies can be clearly dif-
ferentiated from moves,

Figures la and 1b show two extreme cases of full information or no
information after the bids for money. In the Model 1 a strategy is des-

cribed by a number and m functions of n wvariables (wi, fi(w1

ceoy fi(wl, wz,..., w")) . This means that because each individual knows

2 n
’W,...,W),

precisely how much money all others have obtained he may base his selec-

i

tion of the bj S upon every wi . In the Model 2 a strategy and a move

i i
1’ s ey bm) .

The most realistic model of the information structure Is one in which

i
coincide, A move or strategy consists of o+l numbers (W, b

each individual knows the amount of money he has obtained from the bids
in the first stage and the aggregate amount for all others. In this game

a strategy is described by a number and m functions of two variables

+ _ n s
(Wi: fji(wly Wl): cwvy f:{,("m: ‘_ﬂf.m)) where w = ;“wJ .
J¥#L

Model 2 has the least information, and hence the simplest strategies.
The price paid for the simplicity of the strategies and the lack of infor-
mation {s the necessity to introduce an extra rationing device, described
in 2.3 which guarantees that all bids are feasible, The device suggested
here calls for a simple scaling up or down of bids. One could argue that
this ad hoc rule is noﬁ "realistic," it is however simple and well defined
and is probably one of a large class of rules which lead to models with

the same limit noncooperative equilibria.



In attempting to define trade as a process, apparently arbitrary
allocation rules are called for. They may be regarded as the elemental
description of the way trading and financial institutions ration resources

when systems are in disequilibrium,

2.5. Noncooperative Equilibria

The solution concept employed in this paper is that of the Nash
noncooperative equilibrium (N.E.). Although this solution concept can
be formally defined with ease for a multistage game, frequently even for
games as specially structured as game models of economic exchange, the
extreme multiplicity of equilibrium points makes the solution concept less
attractive.

In spite of the aesthetic appeal of the competitive equilibrium
theory and the formal extension of the equilibrium concept to a multiperiod
economy, it provides nelther an adequate description of the economy in all
states of disequilibrium nor a sufficiently comprehensive description of
strategy in a multiperiod model., In particular because the Walrasian
analysis has concentrated primarily upon equilibrium it has been vapue
about the information conditions, the specifics of price generation and
the details of individual selection of strategy. The reformulation of
multistage economic trade as a noncodperative game forces a specificity
in describing information conditions and the details of process. Although
it may be possible to identify classes of noncooperative equilibria which
appear to be naturally related to the competitive equilibria, it is also
possible that other classes of noncooperative equilibria exist which re-
flect more complex strategies and communicatiog than are implicitly or
explicitly assumed in the study of competitiveléquilibria or related non-

cooperative equilibria,



Even though we regard the general equilibrium analysis to be vague
in its treatﬁent of information we may give an interpretation of the C.E.s
in a class of multistage games In terms of N.E.s. Consider the class of
multistage economies where individuals are equally informed. This class
of games contains at one extreme the game where all know everything fas in
Figure la) and at the other extreme the game where no one obtains further
information during the play of the game (Figure 1b). As the amount of in-
formation is increased so is the size and complexity of the sets of stra-
tegies available to each trader. However the games with more information
contain the strategy sets of the games with less information as subsets.
In particular for large trading games which have the C.E.s as N.E.s (or
limit N,E.s) given complete ignorance during trade, there will be related
games with more Information which also have the C.E.s as N,E.s., More spe-
cifically the C.E.s will be the only N.E.s belonging to all games which
can be constructed from an original game with trade under no information,
by the symmetric increase of information.

The replacement of the Walrasian model by the game formulation pro-
vides a far more '"open or loosely coupled" model than previously. The use
of noncocperative equilibrium solution provides a more general class of
solutions which contains the competitive equilibria as a special case.

It must be stressed that we regard the emphasis laid here upon the non-
cooperative equilibrium as merely a preliminary to the construction of a

truly dynamic theory.
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3. THE NONCOOPERATIVE MARKET GAMES

3.1, Notation and Definitions

For a positive integer k , Ok denotes the non-negative orthant

h
of Euclidean space of dimension k . For any x ¢ Qk , xj is the jt
- k
component of x, and x 18 I x,. | || stands for the maximum norm,
j=1

i.e., ||x|| = max{|xj[ :j=1, ..., k} ., For any x and y in Qk ,
x>y [> =] means xj > yj [>, =] for j=1, ..., k., 0 denotes
both the number zero and the origin of CF y but the meaning will be clear
from the context, ej is the vector whose jth component is 1 and all
other components are 0 , Hk is the unit simplex in Ok , 1il.e.,
Hk = [x € Qk t X = 11 .

Let {I,dB,B} be a measure space, If f and g are measurable
functions from I to C# s wewrite f>g [> =] 1f f(x) > gx)
[>, =] for all x e I except perhaps those x that belong to a null set

i.e. 2 set § ¢ B for which B(8) = 0, Also we denote f(x) often

by £ .

3.2, The Nomatomic Market

Let {T,C,ul be the measure space of traders, where T is the
closed unit interval {0,1] and corresponds to the set of traders, C
is the Borel o-algebra of coalitions, and u 1is a finite, positive, non-
atomic, complete measure on {T,C;] . W.l,0.g. we set u(T) =1 . The
phrase "all traders" (or "each trader") will mean all traders (or each
trader) except perhaps those that belong to a null set, For a measurable

function f : T - Rk ; we abbreviate F f(t)du(t) to ff , and
T

Fe(t)du(e) to £,

5 8



i1

Trade occurs in m commodities, A commodity bundle is represented
by a vector imn 0" . The initial endowment of the traders is riven by
an integrable function a : T - " where at is the endowment of trader
t . Ehj is denoted by ;5 . & is the vector (;1, ceny Zﬁ) . We assume
that &£ > 0, i.e., there is a positive net amount of each commodity in
the market.

To complete the data of the market we must alsc speclfy the preferences
of the traders on commodity bundles. This is given (not uniquely) by a
function u : T x (" ~ Ql , where u(t,-) --also written ut(-) --1s
the utility function of t . Our assumptions on u are as follows (com-

pare with the assumptions in [6]):

(Al) u 1s measurable in the product space T x " (where d" 1is the

standard Borel space).

t . .
(A2) u is continuous, concave, and nondecreasing for each ¢t ,

(A3) There is an integrable function v : T - ok , v >a, such that:

(i) if xj > V; , then ut(x+-bej) = ut(x) for all A >0 ;
th
(ii) 1if xj < vg , then ut is strictly increasing in the j

variable at x .

an allocation is a measurable function x : T = 0" such that
jkdu,= jhdu . It describes a redistribution of the commodities among the
traders. A competitive equilibrium (C.E.) of the market is a palr (p,x)
where p ¢ CF\[Ol is a price vector, and x 1is an allocation such that,

for all ¢t , xt is optimal in t's budget set,

t
BE(p) = {y e O : pey <pea },

i.e.,

ub (xt) = max{ut(y) : y e BE(t)}, and xt e BE(p) .
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An allocation x [a price p' ¢ dm\{O] ] 1is called competitive
if there is a p ¢ dn\[O} [an allocation x' ] such that (p,x) [(p',x')]
is a C.E.

It is easy to check that, under our assumptions, if p {s competi-

tive then p > 0 . For suppose =0 for some j . Let xt be any

F3
t
optimal vector in Bp(t) « We must have xj

it

vg + So if x 1is any

L}

allocation such that (p,x) 1is a C,E., ij

f¥j > Ihj s @& contradic-
tion.
Let us also recall the notion of "shadow prices of income"® at a
C.E. Suppose (p,x) 1s a C.E, Then each trader t maximizes ut(y)
subject to y ¢ o s Py - p-at < 0, and the maximum is obtained at
t

X € Bt(p) . By the Kuhn-Tucker theorem there exists a number kt >0

such that xt is also a solution of the following unconstrained problem:

max[ut(y) + kt(p-at “pry)] , subject to ¥y ¢ a .

The function A : T = C} constitutes a choice of shadow prices at the
C.E. (p,x) . We show in Appendix A that for any C,E. a measur able choice
of shadow prices exists, i,e. A can be picked to be measurable. Note
that if (p,x) is a C.E. with shadow prices N, then for any K >0 s
(Kp,x} 1s also a C.E. with shadow prices %A « For any B> 0 we will

call a C,E. (p,x) B-normalized if p+<§d =B .

*Henceforth abbreviated "shadow prices,"
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3.3, Trade Using Fiat Money

To recast the market in the form of a noncooperative game we must
describe the strategy sets and payoff functions of the traders. We will
consider the continuum version of the finite game described earlier.
Thus a strategy of trader t is to announce a bid mt of promissory
notes, and a vector ﬂt ¢ H' which constitutes a decision as to how he

will divide the fiat money he obtains from the bank into bids on the m

trading-posts. Denoting t's strategy set by st s we then have

r

st = {fof, MVt e, M e H™ .

Given a choice of strategies by the traders, how are the trading-posts
and the outside bank cleared? We are beset by a fundamental difficulty
when we consider the mechanism of Section 2., This is because the mechanism
calls for aggregating the bids in the bank and in each trading-post. These
would be En and jbj . But the integrals make sense only if the func-
tions w and b are assumed to be measurable. It is not clear how we
would justify this assumption heuristically. Why should independent de-
cision-makers behave in a jointly measurable way? We refer to Section 5
of [2], where a model of noncooperative behavior is suggested which leads
to measurable strategies.

Assuming then that w and T are measurable, and letting M stand
for the fiat money in the bank, we define

Lt o= g2,

M

The amount of fiat money obtained by ¢t is”™ -mt/(L+c) , and thus his bid

*pivision by 0 1is defined to yield O throughout this paper.
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b; on the jth trading-post is ﬂgmt/(1+0) . The price pj is ijlgs s
t 1

and the final holding (of commodities) of t is: x ¢ O , where
t
x? = bj/pj +« His credit at the bank is given by
m m
xt = -wt + T p,a? = -(1+o)bt + Tp aE .
mt-1 =1 13 j=1 3 4

Hence, given a preassigned choice of bankruptcy penalties X\ : T = Ql ,
the payoff to t is: ut(xt) + ht min[0, x;+1] .

We now have a game in strategic (or normal) form, With the rest
of the data fixed, it depends on the choice of A : T - Ql , and hence
we will denote it by TK . A non-cooperative equilibrium (N,E.) of this

t

game is a measurable s, : T “'f}!(Hm y B, € St ; such that, for all ¢t ,

If(s*) = max T (s,|s%),

t .t
s eS8

t

where (s*lst) is the same as s is replaced by s .

%

t
except that S,

There exists a trivial N.E. of Fh , mnamely the collection of stra-
tegies in which each trader bids nothing, i.e., m =0 . We will focus
our attention on active N.E.'s, namely those which produce positive prices
in each trading post. This implies that 1+ ¢ >0, and in fact (as is
easily checked) o >0 .

We wish to investigate the N.E.'s of Fk as A varies. For this
purpose it will be useful to demarcate certain regions in which X may
lie. Let

A={N:T=- b : A 1is measurable?

Ac = {Neh : A 1s a choice of shadow prices at some M-normalized

C.E. of the market} .
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For any *A ¢ A ’
A= e d o x>+

N N e A (o) A = )

AY = A\[Ac U {Aey e AU (A tNeh, a>0}].

(O]

In the following when we say that an W.E. coincides with a C,E., we mean

coincidence in prices and allocation.

Propesition 1. If A ¢ AC , there is an (active) N,E. of Fh with o=20,

which coincides with the C,E. associated with A .

Proof, Let (p,x) be the C.E. associated with A . Define s : T —~ Y}J{Hm s

t
st eSS , as follows:

t t
W = p*xX

t t, t
N, = p.x./w .
B pJ J/

It is clear that, at s , o= 0 and the prices and allocation produced
are p and x . The proof will be finished by showing that s 1is an
N.E. Denote, for any b ¢ ok , the vector (bllpl, vons bm/pm) by x(b) .
We must show that, for all ¢t , -max{ut(x(b)) + A min{0, -b + p-at1}

1s achieved at b = MtTf + This follows‘by noting that, since A 1is a
choice of shadow prices at (p,x) , max{ut(x(b)) + 25 (b + praD)l s
achieved at b = M = (p x> p x%) , and that

1712 **** Tp™n’ ?

t t t t ) t - t Qm
u (x(b)) + A (-b+pea”) > u (x(b)) + A~ min[0, -b+pra ]V for all b ¢ s
with "=" when b = T'|tmt .

Q.E.D,
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Proposition 2. If %A ¢ A)\ for some Ne !\C s there exists an N.E.

of T‘*k with o =0, which coimcides with the C.E, associated with A .
Proof. Let s be as in the previous proof, and observe that since *\ = A
ut (x(b)) + *J\.t min[O, b+ p-atT < ut(x(b)) + A.t min{0, ~b+ p-atl
. t t
with "=" when b = Tm . Q.E,D,

Proposition 3. Suppose there is an (active) NWN.E, of I“*)\ with o=10,

Then this N.E. coincides with some M-normalized C,E. (p,x) . Moreover,

there exists a set of shadow prices A for (p,x) such that *a ¢ Al .

Proof, Let s be the N.E., (p,x) the prices and allocation produced

at s, 4dnd X 1 the credit, It is directly verified that [x = [a .
t t
Next mnote that xm+1-<-0 for all t . For suppose that Xy >0 for t in

a non-null set §. Then each trader t €S could improve his payoff by in-

creasing his bids, contradicting that s 1is an N.E. But since o=0

Frgy =0

is a C.E. Let A eA be achoice of shadow prices associated with (p,x), i.e.,

’

t
Hence x

m+1=0 for all t . It follows immediately that (p,x)

max {ut(x(b)) + it[-g+ p-at]]
ngm

occurs at bb = (plxi, “vey pmx;) . 1If *ht < it , and *pt solves

max {u(x(b)) + "\ [T+ peat]d

bel"

-gt +» Suppose -*E" < -'B-t

-—

it can be verified that we must have -*Et <
St

for t 1in a non-null set. L , Then is also a sclution of
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t *, t - t
max{u (x(b))+ "\ min[0, b+p.a ]} for t eL , because
t t, = t b
w (x(®)) + *AT[B+peat] > ut(x®)) + AL min[0, F+peal] with n=w
t St
when b = *p (since -"b < bt = p-at ). But then x;+1 < 0 for
wt ot
t elL, a contradiction. Hence -"b = -b  for all t such that

t ~t ~
*M <X . let §' be the set t eT: *ht < ht1 + Define A as follows:

A if t ¢ 8"

*ht if t ¢ 85' .

Then A 1is a choice of shadow prices for (p,x) , and it is clear that
AN .

QIEQD.

Proposition 4. Suppose there is an N.E, of T}h with o> 0 which coin-

cides with a C.E. Then *A ¢ A where M 1is a choice of shadow prices

(n, 0)
for the C.E.

Proof. Let {p,x) be the C.E. with shadow prices A 3 *s the N,E, of

F*k y %P the bids made in the second stage at *s . Then

(1) max {u® (x(b)) + AT[-b+pea®]1 is attained at _b°
bedﬂ

) max {u®(x(b)) + *A* min[0, -(1+0)b+p-a1} 1is attained at b°
befp

Denote the functions in (1) and (2) by ét(b) and *Et(b) . We will find

i
it useful to define, for y ¢ O ,



]

max{gt(b) : b e CF; b =y}
mx{*ﬁt(b) :b e b=yl

%t *, 7L
¢ (y) + "xo,b

max {ut (x()) + (L+o)* A [-F+pa’]

:bed, b

18
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n

) = maxfutx®) s bed, b=yl

Note that, by (A3), Et becomes constant (say ¢ ) for large enough
y : also note the relations (where ;t ’ *7t R 7t , ?t are as in

Figure 1):

Let G , G , Ec and Gt denote the set of y ¢ f} on which the

max of 6t , *at ) at and Gt are obtained. WNote that these are closed
and convex sets since the functions are continuous and concave. It is

also easy to see that these sets must be compact as a consequence of the

saturation Assumption A3 (see Figure 1), Hence we may represent them by

~ ~t t ~ t
closed intervals [AF, B, [*at, *3°}, [A, B ], [A, Bt] . More-

over [*At, *Bt] = [At’ Bt] because *Gt differs from ﬂt by a constant.
let §; = {t eT: (l+c)*?ut > it} and S, = {t e N gt < *gt1 . We

will show that u(sz) =0, In the following let t be an element of 82 .

If ﬁt 2'*§t/1+c , then Bt = ﬁt because @t(y) > Gt(y) for all
-t
y, and P@) =05 if y> B /0. But, by (2), B = 8" > b

t
for all t . This contradicts that Bt = ﬁt < *b . Thus we see that

for all t ¢ Sy > ﬁt < *gt/(k+c) . Take a &> 0 such that

éf:+-(1-5)*gt = y' ¢ [*Et/L+c, *Et) . Since @t is concave

Fo > FE) + -0 . sur 85 < b5 implies FE) > T (I .
Hence at(y') > Gt(*Bt) . This shows that Ot(y') > ﬂt(*gt) because

at(y) = Gt(y) for y > *Et/(1+c) . Consequently Bt < *Et . By (2)

* —
however Bt = Bt > *bt . This proves that u(SZ) =0,
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e ~
Next let s3 = [t e T : (14+0) ?\t < ).t'i , and

_ R A -
s, =t es; : 4 > .71

* We show that U‘(S-‘h) = 0. Let t now refer

~C
to an element of S, - Clearly [A, 'ﬁt] = {At, Bt] because at(y) > Gt(y)
for all y , and Gt(y) = Qt (y) 1if y > *Ft/1+o . On the other hand,
for all t , At_= *At < *Bt . This proves that L!.(Sa) =0 .

Define A as follows:

A if t e T/(5,USy)

(o) A" if tes, Us,

Recalling that A 1s a shadow price choice for (p,x) and that
U’(SZ) = u,(sa) =0, we see that A 1s also a shadow price chaice for

{pr,x) . But clearly *?\. = (L+a)h .

Q.E.D,

Proposition 5, Suppose A ¢ A' . Then inf{o : ¢ occurs at an N.E.

Of FK}>0°

Proof. 1In the light of the previous propositions, it suffices to show
that if inf{.,, 1 = 0, then there exists an N,E. of 1"}\ for which
Suppose ks is .a sequence of N.E.'s of 1"7\ with rates of interest

ko‘ and prices I'cp s and suppose lim kc =0,
ko

Select a subsequence of ks such that 1lim kp exists and is,say,
k-2 '

P. By Lemma 1 below p >0 ., Also note that |[kp|[ < F for all k,

and hence |p|| < F, where F = {[max M/Ej ti=1, ..., mt.
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Let kb be the bids in fiat money made in stage 2 at ks « Clearly,
kb;: < Fv; + Therefore the functiouns lﬁ) are bounded from above (component-
wise) by the integrable function Fv . For each t let B(t) be the set
of limit points of kbt as k = o, Let 1(B(t) be the set consisting
of the single point lﬁ)t + Then B(t) = lim sup kB(t:) . Since all the

kB are bounded above by the integrable function Fv , by Lemma 5.3 in

[6], we have

L{‘p-a = lim 'rkp-a = lim E‘(b ¢ lim sup '[‘kB

le‘limsuplﬁ3=jB.

* *
Let b be such that b° e B(t) for all t and . .[*b = Ipoa .
%*

k
%
First we show that ‘Et = p-at for all t . Let bt = lim bt .
T —e00
k _t k ¢ kr
Now b > Tpea /(l+ 0o "), hence by letting r tend to e« , we get
% - *
gt > p-at . But [*b = .f'p-a , hence Et = p-at for all ¢ .
r ‘ kr kr ‘kr t
-Let “x(b) be the vector (bl/ Pps ases bm/ pm) . Now b
t t kr o k t 1'(1' t
maximizes u (x(b)) + A" min[0, (1+ “o)b - Tpea-] at b . Since
kr r
by Lemma 1 p—>p>0, x(b) = x(b) = (bl/pl’ veay bm/pm) for all
i kr k1.' t * t
b , Then recalling that c ~—>0, and b = b, we see that
=2
*
b° maximizes ub ) + At min[0, b - peat1 . Put s" = (€, M} where

*
eut = %Et , and T]'Jf = b;/mt . It is easy to verify that s 1s an N,E,

of 1"}\ with o= 0 ,

Q.E.D.

Lemma 1. Let kp be as in Proposition 5. Assume lim kp ——> p . Then

Tc=tes

p>0.



Proof, Let

L1

vy i,e., «(s) le .
[

fore for any & >0,

implies @(8) < ¢

et A

1

f"l -

to ensure that K +

We assert that

Then [lx Zr v
o 1 uT\Sx ]_

K + N* >

a contradiction,
From now on denote

Define h :

Bt =

By our assumptions on ut

measurable by Proposition 3 on page 60 in [7].

defined by:

Zn = {t eT:

there is a

N <a.

w(s) 2 &(K) ,

T—R as
min{ut(x+-el) - ut(x)

, h® >0 for all t .

& 1s absolutely continuous w.r.t. u .,

8(e) > 0 , such that

fa. >0 . K and an N¥

g Pick a

For any allocation x , define

for any allocation x ,

- N*u(T\Sx) >a(T) ~ K - N* , therefore,

. -
V1 jkl
fop - By >a,

B(K) by K .

follows:

T X <V§-“N*1o

1

- (sl .
Let Z1 22 .o

ht > l/n]’ @

**We are grateful to Gerard Debreu for this reference.

22

o be the measure generated by the indefinite integral of

There-~

n(s) < &(e)

small enocugh

Suppose not.

Furthermore** h is

be
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-]
Since h >0, UZ =T, Hence u(Z ) —> 1. Pick n. such that
n=1 n n — 1

u(an) >1 - K72, Then, for any allocation x ,

*
LL(Sx n an) > Kb .

Finally define V1 = V2 C ... by:

v, ={t er: b < K,

L= -]
Again LJVk =T, so uwV,) —> u(T) , and there exists a k, large
k=1 K" ke 1

encugh to guarantee that u(vk Yy >1- ®K/8 ., put Wx = Sx N Zn N Vk .
1 1 1

Observe that, for any allocation x s u(Wx} > K*/B ’

We are prepared to prove that p > 0 . Suppose not. W.l.o.g. let
L
P = 0 and assume™ that o< 1 for all 4 . For large enough £,

£
p; < 1/n1k1 . Consider the set WL + It is non-null (in fact its mea-
X

sure is at least K*/8 ). If any t ¢ W% increases his bid on commodity

1 by the amount 1/n1k1 the increase in his final holding is given by:

0 for j=2, vou, m

&=
A
i

Lt 2
> llnlk1 P, >1,

=
»
vV

Hence the increase in the utility of the fimal bundle of t {s greater
than 1/nl . On the other hand.the disutility for going bankrupt is at
most (1+—£0)ht/n1k1 < kl/nlkl = 1/n1 . Hence t can improve his payoff

by increasing his bid on 1 in the amount l/nlk Since each t e W

2
x

1 »

can do this, ié cannot be an N.E. of Tx s & contradiction, Q.E.D,

**Recall that we are assuming here that 1im t.=0.

feo
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Proposition 6. Let X ¢ A' . Suppose (p,x) are the prices and alloca-

tion at an active N.E. of FK . Then (p,x) 1is not a C.E,

Proof, Obvious from the previous pfopositions.

L%k
Proposition 7, Let A= (l+o)\ , where A ¢ AC « Let (p,x) be the
C.E, corresponding to X . Then there exists an N.E. of F*k coinciding

with the C.E. and with rate of interest equal teoe o,

Proof. The following s 1is easily verified to be the N.E.:

s = (o, 1)
where
m
mt = (I+g) T p xg
=11
m
t t t
m. =p xj/ TP.X, .

QnEoDo



25

4, CONCLUDING REMARKS

4.1, On Uniqueness

Suppose that the penalties have been set at some function A which
corresponds specifically to the choice of shadow prices at some C.E. Can
we deduce that thé N.E. for this game is unique?

There appear to be two different questions which must be answered
before such a conclusion could be drawn.

It is clear that for an economy with K C.E,'s if there is autility
function representation of preferences such that the shadow prices at any
one C,E, are never > (for each trader) the shadow prices at another C.E,
then there will only be one C.E. with o= 0 for any game with penalties

set this way. '

Question 1, We have not been able to establish that this will always be

the case. Lloyd Shapley has provided an example for specific utility func-

tions where the shadow prices at one C.E. strictly dominate those at another.

But there are concavity preserving transformations of the utility functions
for this case which get rid of the domination. We do not know, however,
if this can be done in general., (Figure 2 provided by Shapley shows the
example.)

Even supposing that we had an economy where the conditions for
Ab with a unique equilibrium with o = 0 were met,another question

remains.

Question 2, Given a game with a unique N.E. with o =0 1is it possible
that another N.E} with o > 0 exists?
We have not been able to prove this but we suspect that the answer

is nowithout too many qualifications beyond differentiability and perhaps
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strict concavity.

Figure 3 is drawn for a non-atomic economy with two types of traders.
We consider only those )\ which are type-symmetric, hence we may repre-
sent them by vectors in Q2 . Figure 3 shows that A-space. We assume
that there are a finite number of C,E.'s, and for any C.E. there is a
unique choice of (type-symmetric) shadow prices, represented by -« in
Figure 3.

From our propositions an intimate relationship emerges between the
bankruptcy penalties and optimality. Ignoring those A that lie in

uiA :heh, o> 0%, which is in any case a "small" set (see Figure

(A, 0)
3), the active N.,E,'s of I, contain at least one C.E. if and only if

A

Neh U {AK : he Ac1 . For such A inf{o : o occurs at an active N.E.
of Fhi = 0 ; indeed, those N.E.,'s with o = 0 are precisely the ones
that coincide with C,E.'s. For other A, this inf > 0, and the N.E.'s
do not contain any C,E. We can think of this inf as a measure of the
non-optimality (or deviation from a C.E,).

Another way of coensidering this is to conceive of all games defined
by taking MA's associated with every point on the Pareto optimal surface
of the trading economy. To each game there will be a smallest ¢ defined,

where o = 0 at the choice of A's associated with C.E.'s thus we have

a function of ¢ defined on the Pareto optimal surface,



Piecewise linear utility functions--can be made strictly concave and

differentiable
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I

FIGURE 2
Prices at El : (.8, .2)
Prices at Eq 1, .9)

1's marginal utility of imcome at E

T's marginal utility of income at E

IT's marginal utility of income at E4

T1's marginal utility of income at E,

~ 3:1

II is worse off at E but has greater m.u.i.

3 x

(I is better off at and has greater m.u.i.)

E3 )
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FIGURE 3

is A' , deleting the broken lines

is A

is U{AX g1 0> 0} . o increases as we move towards the
' ) '

origin.
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APPENDIX A*

Consider the map T x (" x & ——> ', where

F(t, y, w) = ut(y) + u(p-y-p-at) .

G

¢ is measurable, and therefore, by in s 60 18 T x C} —_ Ql

2

where

G(t,u) = max {F(t, Y, wyd o,
mm
ye®

Denoting the C.E. under consideration by (p,x) , now define subsets

L and R in T x (} b'e C} as follows:
1
L= {[t, u, G{t,u)] : (t,u) eTx O}
t, t 1
R={[t, vy, v (x)] :teT uel,

Clearly L and R are measurable, and so 18 S= LN R, Let P be
the projection of § on T x Ol . By Proposition 3 in [7] (p. 60), P
is measurable. Also for each t ¢ T, ({tT}(C}) NP¢ @ (by the Kuhn-
Tucker theorem), Now we invoke the measurable choice theorem® to claim
that there is a measurable function XN : T = Ql such that (t, AF) e P

for all t . This A clearly constitutes a set of shadow prices for

(P, x).

*We are grateful to Gerard Debreu for suggesting the outline of this argu-
ment .

**See, e.g., Proposition 36.5 in [8].
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