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NONCOOPERATIVE EXCHANGE WITH A CONTINUUM OF TRADERS™

by

P, Dubey™™ and L, §. Shapley***

1. Introduction

The noncooperative "market games" that we will study were originated
by M. Shubik in {1]). Ue constructed a market mechanism for trade using
a commodity as 2 means of payment (a 'commodity money")}, This led to the
view of trade in a2 market as a noncooperative game in strategic form,
For an example involving two types of traders and two commedities, Shubik
showed that, if there is enough of commodity money in an appropriately
defined sense, the prices and allocations at type-symmetric noncooperative
equilibria of the market games converge under replication to the competi-
tive prices and allocations of the market, He conjectured that this re-
sult would hold true in general, which was indeed subsequently proved by
L. S. Shapley and him in [2]., Several variants of this model were outlined
and discugsed in [3] and {4]; see also [3]. In this paper, we do not
go into the modelling considerations that lie behind these models. These
have been amply spelled out in [1], [3], and (4]. Our purpose is to exa-
mine a continuum version of the model in [l1]. We also look at a variant
of a model due to M, Shubik and C. Wilson [6] in which fiat money is used
for trade with bankruptcy penalties for traders who go bankrupt, We have

called this variant the "Unbounded Credit' Model,
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2. The Non-Atomic Market

let {T,&, ul be a non-atomic measure space of traders, where
T = the set of traders, (, :: the og-algebra of coalitions, u = a non-
atomlc measure on {T,C;1 . Trade occurs in m commodities. We will
denote by " the non-negative orthant of the Euclidean space of dimen-
sion m . Vectors in (I represent commodity bundles. For any v ¢ a ’
vj is the jth component of v . 0O denotes the origin of a s and
also the number zero (the meaning is clear from the context)., A set
S e C: is called nuil if u(S) = 0 ; otherwise it is called non-null.
We will use the term 'almost all traders" to mean all traders except for
a null set,

The data of the market consists of an initial endowment of the
traders, a : T = cf" , 4and their utility functions {ut tt eTl, a
is a measurable function, and a(t) --also written a® --stands for the

endowment of trader t . We assume that f agdu >0 for j=1, ,,., m.
T

The function ut . " - Ql describes the preferences of t on commodity
bundles. We assume that each u' 1is continuous, concave, and strictly
increasing in each variable,

An allocation is a measurable function x : T = O such that

P xdy = r ady . It describes a redistribution of the commodities among

T T

the traders. A competitive equilibrium (C.E.) of the market 1is a pair
(p,x) where p ¢ (I'\M{0} is a price vector, and x is an allocation such

that, for almost all t , x' is optimal on t's budget set
t m t
B(p)={yel :py<pal,

i.e.,



ot (x") = maxfut(y) 1y e B°()Y, and x e 8Y(p) .

An allocation x [a price p' ¢ GP\{O? ] 1is called competitive
if there is a p ¢ dm\{01 [an allocation x' |} such that (p,x)
[(p',x')] 1s a C.E. Let us also recall the notion of "shadow prices of
income'* at a C,E. Suppose (p,x) 1is a C,E, Then each trader t maxi-
mizes ut(y) subject to vy e ok s Py - p-at <0, and the maximum is
ohtained at xt ] Bt(p) « By the Ruhn-Tucker theorem there exists a number
At > 0 such that xt is also a solution of the following unconstrained

problem;

max[ut(y) + }\t(p-at -p*y)] , subject to y ¢ ol .

The set [ht :t €T} constitutes the shadow prices at the C.E. (p,x) .
Note that if (p,x) 1is & C.E. with shadow prices (A" : t e T}, then

for any K> 0, (Kp,x) 1s also a C,E. with shadow prices {% AF it et
We will call a C.E, (p,x) normalized if |p| =1, where | | denotes

the Fuclidean norm, Finally define an economy to be competitively bounded

if, for almost all t ¢ T,

Sup{ht . AY 1s a shadow price for t at a normalized C,E.}

is finite. Observe that an economy is competitively bounded if it has

a only finite number of (normalized) C,E.'s, for then the sup is taken
over a finite set for each t , and is clearly finite, Conditions which
guarantee that the number of normalized C.E.'s is finite may be found

in [7].

*Henceforth abbreviated "shadow prices."



3. Trade with Unbounded Credit

To recast the market In the form of a noncooperative game we must
describe the strategy sets and payoff functions of the traders. As in
[3] or [4] we will suppose that there are m trading-posts, one for each
commodity. A trader is now permitted to put up commodities for sale in
the tradingposts. At the same time he can bid fiat money for purchasing
them; this must be borrowed from a bank {which we imagine in the background,
even though it has no strategic role in the game), There is no limit
on the amount he can bid. However if at the end of the trade he has a
deficit in money, i.e., did not receive in trade enough to repay to the
bank the amount he borrowed in order to bid, then he is bankrupt and must
pay a "bankrupecy penalty," which we will model as a digutility suffered
by him depending on the amount of his debt., On the other hand, if a trader
ends up with a surplus of fiat money, it has no utility for him.

The formal treatment is as follows. The strategy set of trader t {is

m

t t ot t t t t
s ={(b,q):b 0, q e(')m,qjgaj].

Here b'J:, is the bid of trader t in the jth tradingpost, and q;: is

the quantity of commodity j that he offers for sale, Givena choice of strategies
by the traders, how are the tradingposts cleared? We are beset by a fundamental
difficulty in the nonatomic case when we cons ider the mechanism in {3] or {4].

This is because the mechanism calls for aggregating the bids and offers

t

jdu . But the

t
in each trading-post. These would be VP b.dy and \P q
T T
integrals make sense only if the functions b : T - d" and q:T-= "

are assumed to be measurable. It is not clear how we would justify this

assumption heuristically, Why should independent decision-makers behave



in a jolntly measurable way? We will deal with this problem in Section 5,
where a model of noncooperative behavior is suggested which leads to mea-
surable strategles. For the moment let us assume measurability.

Then the price of the jth commod ity is obtained as the ratio of

th
bids to offers in the j trading-post:

tdu/P q; dy  if [‘qtdu >0
T j " 3
®3
r t
0 if ! q-dl.’o O .
NT J

The commodities and money are disbursed to the traders in proportion to
their bids and offers. Letting xt € d“+l stand for the vector that t

t
obtains, where x

;1 18 his final holding of money,we have®

t t t t
= 8 - + b f = 1 R
m m
t t t
p's = - ¥%b,+ T p,q, .
mt1 j=1 ] j=1 3

We must define the utility of xt ¢ Cw+1 to trader t . Let Et be the
. t ' «t .
projection of x on a , 1l.e., x denotes the vector of commodities
obtained by t , The utility of this is ut (§F) . To this we add a
term which represents the bankruptcy penalty. We will take this at the

t
moment to be of the form Kt min[O, xt where A > 0 . (Later we

m+1] ?
shall see that any '"harsher' penalty will also suffice,) Thus the utility

of xt , or the final payoff to trader t , 1is

ﬂt(xt) = ut(it) + ht min[O, xt

m+1] '

*

0, we define bS/p, tobe 0.

Py 1Py



We now have a game 1in strategic (or normal) form. With the rest of
the data fixed, it depends on the choice of A : T = ' , and hence we

willl denote it by fi + A non-cooperative equilibrium (N.E.) of this game

is a measurable 8, €8 = X St such that, for almost all t ,
teT

t t t
M (s,) = max (s, |s") ,
t t
s eS

t

except that st is replaced by s .

where (s*[st) is the same as s %

*
There exists a trivial N,E, of Fh , hamely the collection of
strategies in which each trader bids and offers nothing., We will focus

our attention on active N,E,'s, i.,e., those which produce positive prices

in each trading-post, An active N.E, allocation of FK is an alliocation

produced at an active N.,E, of Fh .

We are now ready for our result,

Theorem 1. Active N,E. allocations of FK are competitive, for every A >0,

Moreover, 1f the economy is competitively bounded, then every competitive

allocation is also an active N.E. allocation of Fi, where Xt z.sup{AF :ht

is a shadow price for t at a normalized C,E.)} .

Proof, Let (p,x) be the price and allocation at an active N,E, It is

directly verified that E x = fa , and r xt ldu = 0 , Suppose xt >0

T T T ™ mt1

for t 1in a non-null set 5 , Then each trader t ¢ § could improve
his payoff by increasing his bids, contradicting that (p,x) occurs at

< 0 for a,a,t, This implies that xt = 0 for

t
an N,E., Hence x ot 1

-1
almost all t . It is now immediate that (p,x) 1s a C.E.
Suppose that the economy is competitively bounded, and that x is

a competitive allocation., Then there is a normalized p such that (p,x)



t
is a C.E. Since each u is strictly increasing in each vari ble, we
must have p > 0, and p-xt = p-at for almost all t ,

Let A : T —= Q" be the shadow prices at this C.E. Note that kF < it

for almost all

t L]
t t t
Define s, = (b, q ), for each t ¢ T, as follows:

t t t
b, = max{p,x, - p,a,, O
i in j T PRy ]

t t t
qj = maxfa, - x

j j,O]'

It is obvious that the collection of strategies {si ct e T produces the
price p and the allocation x . We claim that {si :t ¢eT} is an N.E.
of Fi .
First observe that since (p,x) 1is a C,E. with shadow prices A ,
we have
t, t t t t
u (x7) = max [u (y) + A (pea - psy)]

In

yvell

for all t . But iF > Lt and p-at - p-xt = 0, hence

t, t t ~t t t
u (x ) = max[u (y) + A (pea -pey) : y e (I, pea” - pry < 0]

» t t
Moreover, since At min[0, p-at -p*y] < A (pra - p+y) whenever

p-at - py >0, we get

t t t t t
ut (%) > maxfut(y) + A" (peat - pey) 1y e O, peat - pey > 0]

> max[u® (y) + A" min[0, pra®-pey] : y e ", peat-pey > 0] .



Combining the two we obtain

t t t ~ ' .
u (x) = max[u (y) + X° win[0, pat-pey] : y ¢ O

for almost all t , which translates easily into:

T (sg) = max T (s5|s®)
stest

for almost all ¢t .

Q.E.D.

Remark 1, Theorem 1 holds 1if we replace the linear penalties A by any
set of "harsher" pemalties. Precisely, given Xx, let & = {%z: t ¢ T}

t t t
where 3 : " xR =R , ¢ (xl, cees X 5 X )= (xl, .ony xm) if

mt1

t t t

Let F@ be the game where the payoff to t 1is @t(xt) « Theorem 1 clearly

holds 1f we replace T, by T

S -

4, Trade Using a Commodity Money

The market mechanism and the rules of the game in our second model are
essentially the same as in the previous one, with two differences: a com-
modity is singled out as money and used for bidding, and every trader is
required to put up all of his other commodities for sale. For convenience
we will call the distinguished commodity the (m+1)® commodity. The
initial endowment of the traders is given by a measurable function
a ;T =~ d“+1 , and their utility functions are [ut :t ¢ T) 3

t

u d“+l - Q' . Besides the previous assumptions on ut , we will re-

quire an additional one, which says that the (m+1)st commodity is



sufficiently desired by all traders in comparison with the other commodities.

Precisely, we require: for any K > 0, there is a B_ > 0 such that

K
u?(x)
(A) ~EL--—<BK, for all j =1, ..., m, and for all ¢t ,
Uy )
whenever xj > K,
T .th t
where "u,' denotes the j partial derivative of u .

J

Under assumption (A), we will show that when there is a "large"
amount of commodity money in the market, distributed in a 'non-skewed"
manner among the traders, theactive N,E, allocations are "nearly" competitive.

First let us define the non-cooperative game. The strategy-set

t

§ of t consists of bids in the m trading-posts, but he is constrained

. . t
to bid within am+1

m
t _ t m t t
s =0 ¢ jzlbj <a V.

Prices are formed and the markets cleared as before. Let p e " denote

the prices in the m trading-posts, and x" € d“+l denote the final bundle
of t after trade, We have®
.= b, /3,
Ps D)j i
t
b./p. if p, >0
t J ] ]
X, =
! 0 0
if =
P
*We will write f " for ldy; and a, for (a.dy.
- T i o
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for 3 =1, ..., m ; and
- m [t .
t t. t t
Xpbl = 81 - TPy T Epia..

=1 =1 I

The payoff to t 1is the utility of his final bundle, u®(x") . N.E.'s
and active N,E,'s of this game are defined exactly as before.

We wish to study those markets in which there is a large amount
of commodity money distributed in a non-skewed manner among the traders.
For this purpose we keep all the other data of the market fixed, and vary

only the money endowment a T -0, a will be called admissible

mt1 mt1

if, for all non-null s,

pt
Jsam+1du(t)

u(S)Era;+1du(t)

>L>0

where 1 1s a fixed comstant. This makes precise the idea that a 1

is not too skewed. We shall say that a:rl-l is of level M if

t

e e 2

u(8)=0
which says that all traders--except perhaps those in a null set--have at
least the amount M of money.

Let éM denote the collection of markets' in which the money en-

dowment is Vadmissible and of level M , For any E’M eéM ; we will
represent by F(@M) the noncooperative game corresponding to 5;M that

is constructed in the manner described earlier. Our aim is to study prices

and allocations at active N,E.'s of I’(@M) for large M , and to compare

T, a, anmd u are still fixed, of course,
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them with competitive prices and allocations, Givena p ¢ " at an

active N,E,, denote by p the m+l dimensional vector obtained by

setting ol 1, and p_1 = pj for i =1, ,.., m , At an active
N.E. {b° : t ¢T}, define a trader t to be interior if
m
t t
Ybh, < a .
jop 4wl

Lemma 1, Suppose (p,x) a4are the prices and allocation at an active N.E.

of I“(QM) . If t 1s interior, then xt is optimal on Bt('f;) for t .

Proof, Let b: T - d" be the N.E., and let ut(xt(bt)) be the payoff
to t , regarded as a function of his strategy bt , keeping others' stra-

tegies fixed according to b . Then Gt is the solution to

m
Max{ut(xt(bt)) : b% o P, Y.bg < a;+11 .
j=1

By the Kuhn-Tucker theorem there is a ot > 0 such that (a) bY  solves

m
Max{ut(xt(bt)) + ot(a;+1- b5 : bt e d™M
‘ j=1 J

and

m
(b) at(a;1+1 - sb%y=0.
j=1

t

m
At t
Since t dis interior, a ., - T bj >0, hence o =0, But then

L3 j=1

t
b gsolves

Max{ut(xt(ﬁb) : pt e O
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which implies x°(5Y) is optimal on B (P) for t .

Q.E,D.

At an active N.E. b of F(g}p , with prices p and allocation
x , let Sﬁ(ﬁ) denote the set™ of traders t who are not optimal on
their budget sets Bt(s) . If u(Sﬁ(B)) =0, then (p,x) 1is a C.E.
Thus one can think of u(S;(S)) as a measure of the deviation of (p,x)
from competitive prices and allocaticn., We will show that for large M

u(Sﬁ(B)) becomes small,

Theorem 2, Let b be any active N.E, of F(EWQ . Then u(s;(ﬁ)) < R/M ,

where R 1is a positive constant independent of M and b .

Proof., We will keep b fixed, and write S§ for S;(ﬁ) + Let SM =
the set® of traders t who are not interior at b . Note that, by Leuma

* t
1, sM o SM . For any R e {, , denote fRam+1du by «a(R) . Since

the traders in SM bid all their money, there is some § e¢ {1, ..., m}
such that pj Za(SM)/mEj . On the other hand, P S_Q(R)/Ej . Thus the
total amount of commodity j purchased by SM is at least

a(SM)Ej/ma(R) . Hence there exists a non-null subset S& of SM such
that each t ¢ sﬁ purchases at least a(SM)Zj/u(SM)ma(R) of j ; other-
wise the net amount of j purchased by SM is less than
a(SM)Eﬁu(SM)/u(SM)m](R) = a(sM)ES/my(R) , a contradiction, Since 2 1
is admissible, each t ¢ Sﬁ purchases at least Iﬁslm of j . Put

K = ng/m , and let B_ be as in the assumption (A) on the utility func-

K
tions. Consider any t ¢ §' , and suppose t were to decrease his bid
At

bj on j by a small amount A > 0 , Then the change in his utility

*This set is clearly measurable,
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function is

t

et~ ul, (x5 - u§(xt><zs/p ) .

i

Since b 1s an N.E., we must have 't <0 for all t e¢S' , This
implies

ut(xt)

S R

P, <
=t t
um_’_l(x)

for t e SD:I . But xg > K for t ¢ S}; » therefore by (a) ,

t -
Since a 1 is of level M, Of(SM) z Mu,(SM) . So pj ZO:(SM)/maj >

ZMu(SM)/r:Ej . We then have

MU‘(SM)

™y

S BK’

i.e.,

B ma,
u.(SM) < —"'*-J-M .

Note that m, a K and BK are all independent of M and b .

j s
Q.E.D.
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5. Noncooperative Games in 'Coalitional Strategic' Form

k
let Z : T ~>0 be a mapping of t into subsets of GF , where
Z(t) 1is the strategy set of t ., We will assume that (a) Z 1is measur-
able, and (b) the graph of Z is bounded from above (component wise) by

some integrable function b : T - Qk .

Imagine that each player t has an "intended strategy" g(t) e Z(t) ,

The map g : T - \JZ(t) may not be measurable, How are we to obtain a
tel

measurable choice f : T = lJZ(t) , f(t) ¢ Z(t) , starting from g ?
tel

Introduce the notion of a coalition's strategy. For any S in

(>, this is a measurable function mﬁ from § to l!zZ(t) , such that
tel

qﬁ(t) ¢ Z{(t) for t e S . We can represent it equivalently by a vector

measure @S on T, with carrier 8§, given by: @S(R) = r ros(t)du‘ ,
‘SMR
for any R ¢ G .

By a selection we will mean a choice of strategies, in the above
sense, by every coalition. . We will suppose that there is some sort of
decision process which arrives at a selection starting from the intended
strategies g . The exact description of this process is not needed, though
we give an example of one at the end of this gection: all we assume is
that the process gives rise to a selection,

Given a selection, we will he able to determine an outcome (and
payoffs) for the game for any partition of T into a finite collection
Different partitions will in gen-

of disjoint coalitions §,, ..., S

1’ k ©
eral give different outcomes., The "noncooperative' idea will be embodied
in our intention to look only at very fine partitions--passing to the
limit in a way that permits the "mesh': max[u(si) :1=1, ..., k] of

the partition go to zero.



i5

We may imagine that the referee can only "hear" measurable sets.
The players in effect band together in order to transmit their moves to
the referee, but they do not band together in order to play the game cooper-
atively in the usual sense.

it is natural now to ask under what circumgstances a selection will
lead to a measurable functiom b , and hence to a particular "mest non-
cooperative" outcome of the game.

Given a selection &= {63 :8e(3Y, anda R in (&, define
ER . G *-'ka by ﬁf(s) = ¢1;(T) . If "f is of bounded deviation® for
all R in (+, and all 1=1, ..., k, then we shall say that & fis
admissible, It turns out that if % 1is admissible we can ensure a2 mea-
surable noncooperative outcome "at the limit."

Let jb be the collection of (finite) partitions of T . If h

is any real-valued function defined on /°, we define the directed limit

—_
lim h(£)
Fe®

~

to be the number A such that, for every e > 0, there is J; e F

such that

[h(P) -n| < e

for every Peab that i{s a refinement of (PG . Since any two partitions
have a common refinement, the directed limit, if it exists, must be unique.
(See e.z. [B], p. 26.)

The noncooperative behavior of the selection & at the limit can

be now described at the set function 7 : C = ﬁ?k , where

*A get fiumetion 18 of bounded deviation 1f it is the difference of two
superadditive functions,
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5

> _
N R) = ;}qx {28 °®) : {5, ovus sp1 = Y,

e =1

By Theorem 10 in [9], this limit exists for all R ¢ C and all i,
provided only that § 1s admissible.

1t is obvious that T 1is finitely additive. We assert that it

is in fact countably additive, First recall that since b bounds the

graph of Z from above

S 1
3R) = o, (£)du < [ b (t)du
fsrm 1 ‘SR T

for all § and R in & , and all i=1, ..., k. Let P represent
the vector measure generated by the indefinite integral of b ., First

observe that, for any R ¢ (7 ,

B 8 p

i
T R) < WB (S, NR)
=11 g1 b
= 8, ®)

where (Sl’ sy Sp) is any partition of T . This immediately implies

-]
ﬂi(R) S.Bi(R) for any R and any 1 , Now suppose R = |JR
j=1

j? where
the Rj's are disjoint, For any k ,

k ®
- m = l\,l
ﬂi(R) ji?l ‘i(Rj) ni(wle)

since ﬂi is finltely additive.

o0
Now A is a finite measure, hence P,(R) = T E,(R,), Ll.e.,
i i j=1 13
o

lim ¥ B,{(R,) = 0, But
koo j=letl + I
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nC U R)<B (1] R
1 yekerr et
= ¥ B;(R,).
jekbr T
It follows that 1lim ni(1 IRj) =0, amnd thus ﬂi(R) = 3 ﬂi(R Y, show-
ke - ktl j=1 * 3

ing that T 1is countably additive.
Note that for i=1, ..., k, “i iz absolutely continuous with
respect to Bi , and each Bi is absolutely continucus with respect to
u . Therefore each ﬂi is absolutely continuous with respect to u ,
Let £ : R 4ﬁ?k be the Radon-Nikedymn of T with respect to u . We
then have M = ffdu . This f represents the measurable cholce of stra-
tegles of the players derived from the intended non-measurable choice g .
We now give an example of a process leading from a set of "intended"
strategies g(t) , t ¢T , to an admissible selection, 1In this method,
each coalition announces that its members all choose the same strategy,
given by the least bid in each commodity that any member of the coalition

"“intends." (This entails the assumption that the sets 2Z(t) are compre-

hengive in Qk .} Thus, we have, for any R e e,

©(R) = [ inf g(t)lu(s N R) ,
t SR

where the infinum is compnnentwise, and where it is most natural not to
exclude sets of measure O in taking the infinum, as g 1s In general

not & measurable function. Tt 1is easily verified that

Sm + @z TR

for all R, §, T ¢ C with 80 T =9, In other words, the functionms



18

ER defined above are subadditive and hence of finite deviation, making
the selection ¢ admissible as claimed.

To see how this might work, let k=1 and let there be a non-
meagurable set A C T of players who "intend" to play g(t) = a , while
the complementary set B = T\A 'intends' to play g(t) = b # a , Denote
the inner measures of these sets by p(A) , up(B) . Then we can measure
sets A, B, ¢ C such that A C A, B ©B, u(A;) = u(a), u(B;) = u(®) .
Let C, = T\(A1 U Bl) . Any measurable R < Cy having positive measure

must contain members of both A amd B, so for such R we have

B (s) = min(a,b)u(®RNS) .
From this it follows without difficulty that T is given by

T(s) = au(sNA)) + bu(sNB,;) + min(a,b)u(sNc,) .

In this example, a and b could be made (measurable) functions
of t and a similar argument would go through. Also, in the method it-
self, we could use "sup" in place of "iInf" with the aid of some additional
conditions on the 2Z{t) . In that case, the ﬁR would be guperadditive

rather than subadditive, but still of finite deviation.
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