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The present paper is concerned with the development of a model of
industry equilibrium in which consumers are imperfectly informed as to
firms' current prices, and in which firms choose their optimal price
strategies in the knowledge that this is the case. A difficulty asso-
ciated with certain earlier models of this kind has been, to quote
Rothschild /4],

Variety and volatility of prices, the commonplace

of our experience. . . disappear from the scene once

equilibrium has been established. This is unfortunate,

for they do not seem to be disappearing from the world.

It is generally agreed that the appropriate equilibrium concept in
such models is a stochastic one. Such an equilibrium may be obtained by
assuming, for example as in Green and Majumdar [3] , that the economy
15 subject to random shocks. A more natural line of approach is to look
for an endogeneous explanation of persistent price differences. One way
of doing this is to suppose that firms may charge different prices because,
dLe to imperfect information, at least some of them set a "wrong"
(suboptimal) price [%/.

The present paper describes a stochastic model of industry equilibrium
in which consumers move randomly between firms, in such a manner that low
price firms have a higher probability of increasing their sales. It is
shown that the optimal strategy of firms is to lower their price as sales
fall, and vice versa. Steady state distributions of sales, and prices,
result, which correspond to the stationary state of the underlying stochastic
process. Thus price differences persist for purely endogeneous reasons
{even though firms do not make mistakes).

Little work of an analytical kind has as yet been directed towards

the effect on prices of an improvement in the quality of price information



available to consumers. The scope of such action however, by both private
and public agencies, has, in many economies, been widening in recent years.
(In the U.K., for example, many local authorities now publicize centrally
the prices charged by major local retailers for a wide range of branded
goods.) It might plausibly be conjectured that such an improvement in
information might reduce the dispersion of prices: what is of interest
however, is rather, whether it can affect average price, and it is by no
means clear a priori whether this is so. The latter question is examined
in the final section. We consider two technically identical industries,
with the same level of aggregate demand, but in which the degree of respon-
siveness by consumers to price differences is allowed to differ. The
analysis suggests that an improvement in price information tends not only to
éffect the dispersion of prices, but also to reduce the average price

set by profit maximizing firms. Thus increasing information to consumers
increases consumer welfare not only insofar as their atility maximizing
purchases at prevailing prices may better be determined, but also, via its
effects on the optimal price strategy of firms, exerts a redistributive

effect in favor of consumers which is tantamount to a lowering of the degree

of monopoly.



1. THE DYNAMICS OF CONSUMER FLOW

We will be coneerned throughout with an industry consisting of many
identical firms sellinq a homogenecus product to a large number of consumers.
We consider a firm whose output x 1s a random variable defined over a
set of (equally spaced) valves lying in the range o £ x £ M, where we
identifv M with "full capacity".
Tf output takes the value j in the current period, it takes wvalues (j + 1),

4 and (4§ - 1) with probabilities Bj, 1~ Bj - ¢j and ¢, respectively in the

3
next peried; the upper and lower bounds to output are then characterised simply
by eM =  and ¢o = O respectively. |

The process thus described is a random walk between reflecting barriers
at o and M, Given any initial value, the probability distribution of output
after a time lapse of n periods is readily calculated,

Irrespecitve of its initial value, the probability distribution of output
converges over time to a stationary distribution; it is this stationary
distributicn, as will be seen in Section II, which is relevant to the present
study. It is easily shown that this distribution is given by

Proh({l) = C, Prob(j+l) = Prob(j) . (pj/qj+l) j=l,M~1 {la)

where C is a nermalising constant.

Rather than work with a discrete formulation, however, we allow the
spacing ¥ between succegsive output states, and the time interval between
transitions A, to vanigsh. In order to guarantee a sensible result, it
is noecoessary that

. . ) . 2
v 0o, At o, while {(Ax)T = AAL

where A is a constant. (/1] Chap. 5.5)
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We may now define the instantaneous mean, or drift, of the process, as

lim E{x (t + At} - x{(t) Ix(t) = x}
At+o At

ui{x) =

The instantaneous variance of the process 02(x), is defined in an exactly
similar manner. In what follows, we will take this variance to be a constant,
02, independent of the value of x. We will be concerned primarily with the
behaviour of the drift, which we shall take to be dependent both on current
output x, and on the price set by the firm,

The process thus described as a Wiener process between reflecting barriers.
From the above definitions of p and 02, the probability distribution function
of x over time may be shown to be described by the so called forward differential
equation of the process; it will be shown in Section II below, by reference to
this equation that the stationary distribution of the process is given by

Prob (x} =C exp.{g2 f: 1 (w) dw'} (1b)
being the continuous analogue of {(la) above,

We now turn to the determination of the value of drift, We assume
that any given consumer may, or may not, search for a lower price during
any time interval, Such consumers as do seek a new supplier may choose
any firm, including their previous supplier. Thus we may conveniently
decampose the drift p at any level of sales x into two contributiens.

The first, Hor is associated with the departure of existing consumers, We
assume that some fraction y of sales is lost, per unit period, so that

u (x}) = -y x (1



If all firms charged the same price, consumers might choose their
new supplier at random. If, however, this is not the case, consumers
are taken to he partiallvy informed as to prices, so that a firm which
charges a lower price enjoys a greater expected rate of increase of sales to
new customers. We will assume, in general, that returns to price reductions
are diminishing, in the sense that the associated contribution te drift,
wiich we will label My rises as price falls, but at a diminishing rate.
As price rises, conversely, we assume that the higher the price, P, the more
l1ikely a given increase in price is to be noticed by consumers, so that p
falls at an increasing vate as p rises. In fact, as might be anticipated
intuitively, the analysis which follows indicates that since, as firm's
output level appruaches full capacity, the benefit - in terms of possible
increases in sales - associated with charging a lower price than one's
competitors ("buyving goodwill") declines towards zero. It follows that the
optimal strategyv Involves increasing price indefinitely as full capacity
is reached, so long as the rate of résponse of drift to price remains
finite, We thus vequire the assumption thaﬁ our regpounse curve bécomes

vertical at some "ceiling price," P, » as shown in Fig. 1.

l\i (P)

e b

Pq

Fip. L: Drife associated with the arrival of new
custoners, as a function of price.



The simplest relationship which embodies the characteristics just discussed
is the quadratic, which may, moreover, be regarded as an approximation to

any curve of this tvpe. “I= tals,

() = » P < PO (2)

We assume that : goes te minus infinity for all p exceeding po

-

Combining (1), (2) we have

p(x,p) = u (3a)
= - (3b)
or eyguivalently
2
p=po-aly- uo(x)) (3e)

The loss of generality implied by our choice of a particular
(quadratic) form for the response function should, of course, be bhorne
in mind in irtorpreting the results which follow.

It should perhaps be stressed that the above formulation has been
developed in terms of the absolute price, rather than a price relative
PR YT ;/:U or Vp/; . This underlines the fact that our present model
ia o directed teowards the gunalvasis of industry eqﬁilibrium, ratiier than
acyrerate anatvsis.,  The aggregate price level depends on the prices
provailing in all industries. and it is this which determines the value
A a piven absclute change dn the price of the product of our industry:
thie amount of searcn warranted in sceking a 5% reduction in the price of
i tube of toothpaste is very much less than that warranted for a similar
fractional Teduvetion in rthe price of a house.

The respoanas carve, writiten above as r{x,p) , depends, of course,

on thwe enderlying prranetbers o, v, v 2 and P, - All bui the last of



these will be suppressed throughout; where it is important to stress the
identity of a particular response curve, parameterized by P, > however, it
will be written ase

ulp 3x,p) .
We will see below that increases in ceiling pricé, P, » are
associated with increases in average price, 5-, and average output, X .
Thus the family of curves may alternatively be parameterized by P, or x.
The ceiling price P, is more appropriately regarded as a derived
parameter, indeed, for given '; or ;-, soc that the latter parameteriza-
tion will be used below (Section III). In studying the optimal price policy

of the firm, however, in which we take the response curve as a given, it

will be more convenjent to work in terms of P, *



1I. THE OPTIMAL PRICING POLICY

The expectations of the firm regarding the probability distribution
of sales after any time lapse T in the above model, depend only on
current sales, being independent of present time, i.e., the process is
Markovian. Hence, the optimal price depends only on x , and is time
independent. We may therefore describe a price strategy as a function
p(x) defined on o - x <M ; our problem is to find the function which
maximizes expected per period profits. We are thus assuming the firm to
be a risk neutral, long run, profit maximizer, with zero discount rate.

We will confine ourselves to the case where marginal cost is constant
up to full capacify; without further loss of generality we may then take
marginal cost to be zerv over the range o < x <M, and maximlze expected
revenue. The optimal price strategy for any nonzero level of marginal cost
is then obtained by simply adding that value to the price described below,
at each x .

We now consider the probability distribution of sales associated
with any price strategy. Let vy (xo,x;t) be the conditional probability
that sales lie in the interval (x,x+Ax) at time ¢t , given that x = X,

at t = o . Then ¥ (xo,x;t) is described by the forward differential

equation of the Wiener process

: 3
L3y = X (ba)
A% at

with boundary conditions for reflecting barriers at x = o, M,

2 9
‘:}__;. £y _ py o= 0% X = O,M (‘f‘b)

JxK
whers the latter equation corresponds to the requirement that x takes values

in the inftorval o € x & M only ({17, p.223).



To obtaln the statlonary distribution, which is independent of the
initial condition, we set the time derivative to zero; it is then readily

verified that, &8 noted earlier (equation 1b},
2
y(x) = C exp{Zz[ n(w)dw} (5)

is a solution of (5), where C is a normalizing constant. For constant
u , the expression (5) reduces to the well known result that the stationary
distribution is a uniform distribution if x = o , and a truncated exponential

distribution otherwise,

The optimal price strategy may now be obtained as follows. We choose

as our independent variable

géfﬁu(W)dw
y(x) =Ce (6)

so that, on differentiating,

y.2
v ajz.u(x) {7

Our problem is to choose y(x) , such that expected per period profits are

maximized, viz
M
max foxp(x)y(x)dx
M .
subject to foy(x)dx = 1

where p(x) depends on our choice of y{x) as specified by (3c) and (7).

Substituting for p(x) we obtain the maximand in explicit form as:
fM x {p -« Flici - (x)]z}ydx »
o o 2y o o

This is an isoperimetric problem in the calculus of variations, with
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where the Lagrange multiplier X 1is a constant. The Euler-Lagrange

condition for an optimum is

d
&y " Gy | (9)

By differentiating (8), and using (7), and its first order derivative,
2
2 L3
i) = 2 (3 1)) 10
b =3 (L-(3 (10)

to transform the resulting expressions, we obtain

b6 - -4 {-2a(u-p_) - 2ax(i-ft )}
dx 'y 2 ) o
and

2
Gy = x{p_-alu-u,) }+ 2oxu(u-u ) - A .

The Euler-Lagrange equation may then be written in the form

N S 2 A,
x(u*ub) + 7 x{u -uo) + (u-uo) =7 5 (11)

The natural boundary condition,
G.=p at x = o,M
¥y

takes the form

2
- %*-. Zax(u-uo) =0 3} X = o,M \ - (12)



L B

This conditien is satisfied identically at x = o f{for any solution

nensingular at the origin; for any such solution, moreover, we obtain on

L]

substituting x o in (12), the inltlal conditions

i A
ulo) = u + 5o (13)

and, by taking the limit of (11) as x approaches zero, and applying
2'lopitals Rule,
2
1 A
¥ = e o, AN
k' () {202??(2a) )
For x =M , we have immediately from (12),

b = 00 (14)

The selurion p(x) is then completely specified as the solution to
the first ordér differential equation (11}, with initial condition (13},
where A 1is determined bv the requirement that equation (14) be satisfied.

The differential equation (11) is of the Generalized Riccati type, and

may, by means of the substitution
u =Yy

be transformed into a seccond order linear equatiom, which can then be
solved in serieg form.l it 1ls more convenlent in the present instance
however to proceed directly from {(11), We note. at this point, that the

Lagrange multiplier A , which equals‘the expected per-period profit2
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corresponding to the optimal choice of u(x) , is strictly positive for

any p_ > o . This follows from the fact that the strategy
o}
plx) = p, » o<ix<HM

is feasible, and is readily shown to yield a positive profit. The nature
of the solutions to the differential equation (11) may conveniently be
examined by rearranging the terms of the equation as follows:

2 P

' __1 2_‘2 i{ .)ﬁ._._ - }_2._9. 1
-t ;-z(u “o)+x'?2a (u uo) v (11)

The initial conditions (13) ensure that u 1s positive, and declining, at
x =0 . Of the three terms in (11)', the first is negative for u2 > ug .
The second is initially positive, as is readily established by application
of %'Hopital's Rule, and appeal to the initial conditions (13). As u
declines, an upper bound to the value of this term in the region
u(o) < u < uo(x) is given by '%‘%I"%; . The third term is constant,
and negative.

The form of the solutions to the equation are illustrated in Figs 2,3.
As noted above u 1s declining initially; the first and third terms in
(11)' are negative; while the second is positive. We may easily establish,
moreover, that u 1s decreasing throughout the region u(e) <H< -uo(x)
For, if | Iincreases to zerc at any point X, s it is readily established
that the second derivative of u ‘is negative, since, at such a point, the
first and second terms are stationary, while the second - pogitive - term
is strictly decreasing, due to the appearance of the factor 1/x .

In the region u < My all three terms are negative and p 1is

strictly decreasing.

We now turn to the behavior of u 1n the region
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pix) > "‘Ho(x) /-;‘(x)
(x) ul °
HiX —
=
X
™~
~
u .(x) <, (x) S~ ‘fo(")

Figure 2

Now u is declining initially in this region, and it will continue

to decline throughout unless the terms

2.2
a2 20

E ]

_1 2_,.2
P (u uo) +

which are positive, exceed the remaining termsg

Ly -2 2o
x ¥, o? 2
in absolute value,
We consider the family of solutions parameterized by A as shown in

Figure 3. For X = o , we have from our initial condition that wu(o) = o
so that u(x) 1s strictly decreasing, since it remains in the region

u < uo(x) throughout. As A increases, the latter of our two positive
terms increases so that for sufficiently large A , the curve begins to
increase at some point; it is easily ghown that such a value of A exists.
We now consider the nature of the limiting case for which u(x) becomes

tangient to uo(x) at some point Mc. as shown in the diagram (Fig.3).



wi{x)

Fig 3

)=

M
Fig 41n

v{x)

14
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This implies that

and so, from eqﬁation (11)',

1oz 2% e
x 0220 ¥ x> 2 .

or, equivalently,
A=p M°, (15)

Equation (15) corresponds in fact to the upper bound of X , associated
with the limiting case where the maximum price -po is always charged, and
output colncides always with the full capacity level. Before interpreting
(15) fully, we first consider the form of the solution for a value of M
lying in the range o < M < M® . Such a case is illustrated by the

capacity level M* sghown in Filg. 4a. The boundary condition
WOD = u_ (M) = - M

is used to identify the solution (heavy line) and the associated value of
expected per period profits A* , It is seen that drift falls, so that
price rises, with output, as shown in Fig; 4@, which illustrates the
associated price strategy P (x) , derived by substitution of our solution
pu(x) dinto the equation of the response curve (equation (3)). The
probability distribution of sales, y(x) , is obtained from wu(x) , using
equation (6). (Figure 4b)

The solutions for u{x) , p(x) and y(x) are readily obtained for

any particular values of M, a, o and vy by numerical methods. It has
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been found in practice that an efficient computational procedure is to
choese an arbltrary value of X  initially (say %—pOM) , and estimate
1(3;%x) by using the Runge-Kutta method tc solve equation (11). This
vields a value of u(M) which in general differs from =-yM. The value
of X is then increased or decreased according as u(M) 4is greater than,
or less than, -yM . It has been found that the value of )\ converges
rapidly to A% 3

We now return to the limiting case of the equation represented by
condition (15), corresponding to a value of cutput which always coincides
with full capacity, while price always remainsg at P, - It is readily
shown that for any a > ¢ , fhat A is always less than PoM » Since the
requirement that output be equal to the full capacity level on average
implies that yu =+ + = ., This can only cccur in the limit o >0 , ¢ + 0 ,
where consumers respond infinitely rapidly to price reductions. Thusg
equation (15) is satisfied only in the limiting case corresponding to
perfect competition, in which consumers respond infinitely rapidly, and
with certainty, to price reductions, Under these circumstances a (positive
output) equilibrium is possible only at full capacity operation, corres-
ponding to the elementary analysis of the L-shaped cost curve analyzed
here (Figure 5a). We see from our initial condition (13) that, in this
case, since o * o , and 0 + 0o , we have p(o) - » ., Under these cir-
cumsiances, and not otherwise, our solution may be characterized by

tanpieacy ag illustrated at x = M% in Figure 3. The behavior of the

of

probability distribution output as o »> o , ¢ + o 1is illustrated in

A

Figure 5b; v{x) converges pointwise to the Dirac delta function centered

on x = M , while the price function degenerates to the single point

(x=M.p=p0)-



i7
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Fig 5a

a=0o

€

t&-l.‘o.._-t-t
4

L]
-.-c

o~
=]

Fig 5b

¥ (x)
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III. THE INDUSTRY SUPPLY CURVE

We now consilder the effect of changing the value of p, on the
quantities

Average output, x = fg xy(x)dx
- M M
and Average price, p = fo xp{x)y(x}dx / fo xy(x)dx ,
=1 /x.

The parameters vy (describing the rate of turnover of consumers),

2 (the variance

& (their rate of response to price differences) and ¢
asgociated with that response), arefixed data in respect of any given
group of consumers. TFor such a group, we now consider the relationship
between maximum price p, » average price ;', and average output X .
In order to establish our theorem, we first need two preliminary

regults. The first of these establishes the relationship between the

drift function u(x) and the average values of x and p .

Lemma I

For two stratagies, such that ul(x) > uz(x) everywhere in [o,M],
except pessibly the endpoints, where ul(x) > uz(x) s then ;i > Eé .

Our second result provides us with a condition sufficient to
guarantee that the requirement of the above Lemma is met in the examples
which follow. Since an explicit solution of our differential equation in
closed form may not be obtalned the requirement ul(x) > uz(x) can not

be verified directly. The values of y(x) at the endpoints are however

known, so that the followingﬂcondition is easily applied.
We represent the value of the expression for the derivative
given by equation (l1), at any point in the u,x plane, by {(u,x).

We then have:
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Lemma II

Let two strategies be such that

ul(o) > uz(O) H ul(M) 2 uz(M)

and either ﬂl(x,u) > ﬁz(x,u) {15a)
or iy () <y (x,0) all wu,x, (15b)
then ul(x) > uz(x) all x, o< x <M,

The usefulness of Lemma II lies in the fact that the condition required
may be verified directly from the differential equation (11); the point
(x,u) 1n (15) may or may not lie on the curve u(x) .

We now apply the above results to establish the following theorem.

Theorem 1

For any two industries described by the same set of parameters

Gy O3 Yy U s but different insofar as p =P

1

o + Ap? ’ Apo > 0 ;.then

2
(1) %, > x

(11) P, > P,
(where bars denote expected values).

Proof

Let pz(x) be the price strategy optimal in II, and construct the

strategy pz(x) + Apo ; using this strategy in I éarns a profit of

A, + x, Ap

2 2 o

so that we have, for the strategy optimal in I,



20

A, > A, +x, Ap_ > A (16)

The relationship between the two optimal strategies is i1llustrated in

Figure 6.
J\1
—
ao
A2
-z
ag
. M X
‘M !
M= T Y™

Figure 6

Moreover, rearranging our differential equation (11), x(ﬁ—ﬁo) = - %E'

2 A~
x(uz-ug) - () + 57 *Ps .
2o

We now examine the final term of the equation; as shown 1n Figure 7, there

is at most one value x* where the two final terms are equal. Call this

M

Figure 7

xk
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Now

. .
My (od > K, (0}
and, to the left of x* |

ﬁl(x,u) > ﬁz(x,u)

from which we have immediately

where the strict inequality for the point x* follows from continuity.

We now consider the region x* < x <M . We have from the above argument
* *
by (%) > ou, (x%)

Moreover

ul(M) = uz(M) = -yM .,
Thus, since,

ﬂl(x,u) < ﬁz(x,u)
it follows that, by Lemma 2,

u>u2 x*f_x':M.

Thus we have established that ul > Ho for all x < M, s0 that we have

immediately from Lemma 1

>
7%

which establishes (i}, In order to establish (ii), we suppose the contrary,

il.e.,

Py 2Py -
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We bepin by establishing that the first relation in (16) above in fact

holds with the stroet invaaalicy, i.e.,

ARy TRy g

This fellows from the first part of the theorem; for

economy similar to the others except that

We then have, applying (16), and using the fact that

first part of the theorem,

which establishes (17).

We thus have,

We are assuming that Dy ‘< Py Write Py = pl as

51 = ﬁ?.w Ap  where Ap 1s positive,

- o

Thus

(17)

consider a third

Eé > x by the

2

A; so that
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We now proceed to construct an alternative price strategy for
industry II, by setting p(x) equal to the value optimal in I, less A4p,
at each x . This implies that u(x) , and ‘so x , coincide with the

values obtained in I using the optimal strategy. We then have, for our

alternative strategy, which we label "a",

a

=X - (p; - 2p) %,

= (p2 - Ap - Apo) (x, + Ax)

> PgXy = Ay

since _
— 4Ap + Ap
- —

X

4
o
[ ;%)

Thus our alternative strategy is superior to the optimal strategy, con-
tradicting our hypothesis. Hence ;i > ;é » which establishes the second
part of our theorem.

We may now apply Theorem I to investigate the supply curve of the
industry, and the ﬁature of industry equilibrium,

We assume throughout that the parameters ¥., describing the - level

of search activity of consumers, aﬁheir rate of response to price differencesand

g2 , the associated variance of the process, are fixed in respect of the
group of consumers in question. The family of response curves ui{x,p)
which firms may face are then conveniently parameterized by P, » @8 in
the earlier development. By virtue of Theorem I however, we have
egtablished that P, > ; and x all increase together, so that we may

paramcterize our curves equivalently in terms of average price, or average

output,
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We assume throughout that all learning has been done already by firms
and consumers in respect of o, y and 02 , which will be taken as known
with certainty by all agents.

We begin by defining the industry supply curve as the locus of all
points (p,Nx) traced out as P, goes from zero to infinity. Theorem I
encures that the supply curve is upward sloping, and that there is a 1:1
correspondence between values of P, and points on the supply curve.

A series of industry equilibria then exist which are characterised as
“follows: each firm anticipates correctly, via past learning, the response
curve V{p;x,p) which it faces. It sets an optimal price policy p{u;x)
and correctly anticipates average sales x (p), so that the price charged
is p (u). Moreover, given this price policy on the part of firms, average
aggregate démand by consumers coincides with average aggregate supply Nx (u).

An increase in demand leads to a new equilibrium corresponding to an
upward movement along the supply curve, and vice versa. The learning process
by which firms discover the response curve which they face,. and adjust to
a change in demand, is outside our present scope, and will be the subject of
a separate pagper,

It is an important feature of the present model that prices do not
converge over time to adjust to a unique price; firms' salas fluctuate over
time, and price is sdjusted accordingly. The weak condition proposed by

Fisher [2] , which guarantees covergence to a unique price, does not hold.

-

t is not necessarily the case that if Firm A charges a lower price than
Firm B, then it will have sales no less than B's. It is, of course, true
that its expected sales after a time lapse At are greater; so long as the

variance of the process is finite, however,Fisher's condition will not hold.
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IV. THE EFFECT OF INCREASING INFORMATION

In the present section we examine the effect of a higher degree of
price responsiveness by consumers (a lower value of a ), due to improved
information concerning prides.

We wish to compare two economies with all paramefers except o equal,
and in which the (expected) levele of aggregate output - and so of average
output for each of our identical firms - coincide.

We begin by comparing two industries I, II with equal values of vy, ¢ ;

we wish to assume that industry II has a lower value of o . If both

uip,M)

TG E and

Figure 8

industries had the same value of P, » it is easily shown that the industry
with the lower value of a would have a larger value of X . We construct
an industry, II, with a value of P, such that I and II have equal values

of X ; using Theorem I, and noting that A = x S- by virtue of our defini-
tion of ;', this implies that industry II must have a lower value of

P, - (Figure 8)
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Thus:

B
ot
P
QIF?

?
N
[l

Figure 9

Hence uz(o) > ul(o) as shown in Figure 9. Referring to our differential equation

xR ) = = 2z x(ui-u’) - (-p ) + 77— (11)
A2
2(12
A

201 \ X* M

Figure 10
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We note that the third terms are equal at, at most, one point x* ; to the

left of x*
b, (uyx) > 1y (u,x)
so that
, 0 < x < x*

where the strict inequality at x%* follows from continuity. (Figure 10)

To the ;ight of x* , we have

iy (u,x) < ¥y (u,x) , x* < x < M
Moreover u, (x*) »> B, (x*)

M) =, OO

Hence

G) >uy k), x*<x <M,

Thus we have proved that My > ¥y for all x <M and so by Lemma I,

;é > xl
 But Ag ™ Py Xy m Py X =y
Thus Eé < ;i .

Hence, for two industries with o , vy equal, and earning equal profits,
the more competitive industry has a highér average level of output and
lower average price.

Qur theorem now follows easily; for if our hypothetical economy II,

with a lower value of o , produces more output at a lower price, X being
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fixed, then 1f we consider an economy with the same level of output as our
original economy, but with o = ¢y this clearly corresponds (by Theorem I)
to a lower value of P, » and so (again by Theorem I) to a value of p
which is lower stiil than that eof I. Formally, we define economy II as

follows:

But Py < pl

which establishes cur result, viz Theorem II: for any two industries I, II,
with equal values of vy , ¢ , but with a, < al s then, the average price
associated with a given value of average output is lower in the more

competitive4industry 1T,
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CONCLUSIONS

The above result suggests that in an economy in which perfect
information on prices 1s lacking, the degree of monopoly 1is closely
related tc the quality of price information. Specifically, ag information
improves, the aggregate supply curve shifts cdownwards , implying a
lower average price level for any level of aggregate demand. Thus the
quality of information affects not only the dispersion of prices in the
system -~ an effect generally recognized since Stigler's classic
study [6] - but affects also the average industry price level,

The reason for the existence of such an effect lies in the fact that the
payoff to firms associated with a given price reduction is enhanced, as
price responsiveness improves, while its cost, in terms of losses on unit
margins, remains fixed: thus firms choose to purchase more of the now

relatively cheaper "strategy' - lower prices, and higher sales.



30

APPENDIX

The present appendix provides proofs of the two Lemmata stated in

the text.

Lemma 1

If y(x) = C exp fﬁu(w)dw is the probability demsity function of x ,

and if

vy w) > Mo (W) , all w,a<w<b (1)

My (@) 2 U, (W), we=ab (11)
then, .

x, > x, (i1i)
Proof

Let ¥y 0 ¥y be the p.d.f.'s of X; s %, respectively, Then,

from (1), we have immediately,

¥y (x) , ¥, (x) > o, all x (1v)
From (i1}, it follows that

[Ty G aw =[5, (W) dw
is a strictly increasing function of x . Thus,

vy &) [y, ) = (°1/°2) exp f: [u; W-u, (01 dw

is a strictly increasing function of x . Hence, there is some value of

X , say xc , such that

Yy (x) - ¥y (x) $ o a8 x3 X, - (v)
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Moreover, since the integral of each of Y1+ ¥, is unity, over the

interval [a,b] ,
b Iy, -y, )] =
a 7 (®-y,(0] =0
Ixc (v, -y, ] aw = [° [y (w) d
a -y, (W] dw x_ Yo W)=y, (w)] dw (vi)
Combining (iv), (vi) and (vil) we then have,
P wily,m-y. 1 de > x [P [y, )y, (0] d
X, Y2 Y1 ¢ Ux, \p) ¥, W v
X
= x [ [y, W)=y, (D)1 dw
xc
> [ W Iy, (w-y, )] dw
Thus, ueging (v), we have
fzw [yz(w)-yl(w)] dw > o ' (vii)
We then have,
Xy = [ vy (w) aw
= Py ) aw+ [P uly, (0-y, ()] dw
a v YW ATl Wiy, WITy,y

The first term here equals ;i however, while the second term is strictly

positive by (vii), so that our result, (iii), follows immediately.

Lemma 1T

Let Hysky be two functions of x , differentiable on {o,M], with
derivatives Fl(u,x) . thu,x) respectively. Then if ul(o) > “2(0) H

W M) >, (), and if
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either Fl(u,x) < Fz(u,x) (i)
or Fl(u,x) > Fz(u,X) (i1)
then

ul(x) > uz(x) s 0< X <M,

We will prove case (i); the proof follows in a similar manner for (ii).

Proof

Suppose 31 X, 5 0 <X < M, st ul(xo) < uz(xo). Constrﬁct the
{continuous) function ul(x) - uz(x) = f(x) , say, with derivative f'(x) < o
by (i). Now f(xo) <o, f(M) > o . Then, by the Mean Value Theorem, we
can find e s X, < ¢y < M , such that fj(cl) > o , contradicting the
negativity of fL(x) . Hence ul(x) > uz(x) » 0 <X <M,

We now extend this result to establish the strict inequality.

Suppose ul(xl) = uz(xl) » 0 < Xy < M . Then since My » W, are
continuous, and since Fl(u,x) < Fz(u,x) , 1t follows that there exists
some point X in the neighborhood of x. such that ul(xo) < uz(xo) .

1

The above proof then follows as before. Hence we have established that

ul(x) > uz(x) y 0 <X <M.
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It is in fact a gencralization of Sharpe's differential equation, and
reduces to the latter for certain values of the parameters, The
boundary condition (14) ensures that only the first branch of the
function, which has a ¢ountable number of singularities, appears in
our solution. '

In the iscperimetric problem, if the objective functional is linear,
Fiky(x)) = kF{y(x})

then it is easily shown i ha val o} agrange multiplier
h t 1y g n that th alue of the Lagrang ltipl
coincides with the ovtimal value of F. It follows immediately by
inspection of {8) that this condition holds in the present case.

For example, about five iterations were sufficient to estimate X
to within 2-3%,

This statement of Theorem IT assumes that the search parameter vy
remaing unaltaered. It might seem reasonable to define our "more
competitive” oconomy, IT, by a, < o., ¥, > v,. It may be shown
that our result continues to hofd for thi§ Formulation.



