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VARIABLES AND (RDINARY LEAST SQUARES ESTIMATORS FOR

A DYNAMIC EQUATION WITH CORRELATED ERRORS"

by

Jon K., Peck

This paper presents an analysis of some finite-sample properties
of the instrumental variables (IV) and ordinary least squares (OLS) esti-
mators for a single equation that includes the lagged dependent variable
as a regressor. The disturbances in the equation are assumed to be nor-
mally distributed with an arbitrary nonsingular covariance matrix. Ap-
proximations are found for the mean and mean squared error of the esti-
mators. The approximations improve in accuracy as the disturbance vari-
ance becomes small, Comparisons are presented with the conventional
large-sample-asymptotic approximations for this model; some comparisons
of IV and QLS are presented,

The model Lo be estimated is

(1) y =y,0* X B +ou

Tx1 Txl TxK Kxl Tx1

where y = (yl, veey YT)' s Y4, 7 (YO: Yir oo yT-l)' ’

*The research described in this paper was undertaken by grants from the
National Science Foundation and Ford Foundation. The author would like
to thank without implicating David F. Hendry and J. Kadane for their
assistance.



X= (xl, Koy eves xK) ) X = (xil’ voey xiT)' , and u = (ul, coey uT) .

The disturbances, u , are assumed to be normally distributed indepen-

dently of X with mean zero and a normalized nonsingular covariance matrix

{0 . The regressors are of full rank, and X is assumed to be nonstochastic.
Since finite-sample results are to be obtained, some assumption

must be made about the initial observation on vy, Yo Perhaps the

most natural assumption would be that it is stochastic and drawn from

the same distribution as the other observations, ¥y but this is a con-

t)
ditional distribution depending on the regressor values in the pre-sample
period. These values are unknown by assumption. If a distribution were
assumed for the exopgenous variables, a marginal distribution could be
computed for Yo if the equation were stable, but this is not consistent
with the assumptions made about the exogenous variables. It is, there-

fore assumed that is fixed and the results obtained below are thus

Y0
conditional on the value of Yo ¢

The approach taken In this paper is to determine the approximate
bias and mean squared error of the estimators where the approximation is
accurate up to terms of order 02k , the disturbance variance, rather
than the customary approximation up to terms of order Tk y Where T
is the sample size, T 1is a parameter in the sigma expansions. This
approach has been applied in Brown [2], Kadane [4], and Peck [6].

The approximations to be presented are referred to as the (small-
sigma)-asymptotic moments of the estimator, but it is not guaranteed
that these approximations converge to the exact finite-sample moments
any more than the moments of a large-sample limiting distribution are

necessarily the limits of the finite-sample moments. Indeed, the exact

finite sample moments of IV do not even exist. (See e.g. Hatanaka [3])



Even in such a case it can be argued that the (finite) limiting distribution
moments are a useful approximate characterization of the behavior of the
distribution in finite samples and are indications of where probability

is concentrated. They are, perhaps, more useful than the infinite “exact"
moments. The validity of this type of expansion is analyzed further in
Ramage [8] and Sargan {11].

The calculation of the small-sigma moments is performed by express-
o=
ing the error and squared error of the estimator, e =| ; as
B-p

infinite series in powers of ¢ . Expectations of these series are taken
term by term until sufficient accuracy of the approximation has been
achieved. These approximations, then, are more accurate as the distur-
bance variance is smaller.1

In deriving the small disturbance moments of the estimators it is
useful to distinguish between the original equation (1) and the "final
form'" of that equation in which Y1 does not appeér. The final form

is given by

(2) W+ oV) + XB + ou

o
(Z+ oV*)( ) + ou
B

where W and V are Txl column vectors:

<
]

W= Cwo, Wis vesy wT_l)' and

<3
i

= (vo, Vis eees VT~1)'

lln the dynamic model, the error variance relative to the dispersion of
X 1is relevant, i.e., the noise-signal ratio. This method cannot be used
to study the case where the equation contains no exogenous variables (an
infinite ratio).



with elements

’;z:lat'jxjﬁ +ozty0 , t=1,2, ..., T-1
(3) w o= (7

Yo , t=0
and

t5::oct'juJ , t=1,2 ..., T-1
@) v, = (7}

0 , t=0,

Z and V* are Tx(k+l) matrices, Z = (W X ) and V" = (v 0) .2
Txl Txk Tx1l Txk

Z 1is the nonstochastic part of the regressors including the systematic
component of y_l and V* 1is the remaining stochastic component. It
should be noted that W amd V correspond to the fixed and random parts
of Y., 3 motto y itself.

The following definitions of expectations are used below. Euu' = Q,
EuV' =C, and EW' =G . (1 is given by assumption. C and G depend
in turn on O . The theorems to be presented are valid for any nonsingular
1 provided that C and G are appropriately computed., From expres-
sion (4) above it is clear that V = Au where A 1is the lower triangular

matrix

] 0 0 ... 0O T

2A derivation of this form is given in Peck [6].



Therefore, for any (1, C = EuV' = Euu'A' = (&' and
G = EWW' = FAuu'A = A" = AC .

The difficulty in the estimation of equation (1) is that the lagged
dependent variable is correlated with u unless O = I . Thus ordinary
least squares is an inconsistent estimator. IV is consistent in this case
for appropriately chosen instruments although biased but is asymptotically
inefficient compared with estimators which take the covariance structure
into account (See Sargan [10].)} 1IV is the simpiest consistent estima-
tor to compute and can be used even when (= I, therefore, a prelimi-
nary test for autocorrelation or other nonrandomness in the disturbances
is not required although it may be beneficial (see Peck [7]). We compute
firast the small disturbance moments of IV and then compute the small dis-
turbance moments of (inconsistent) OLS for comparison.

It is assumed that a Txr matrix, N, of r nonstochastic in-
struments for Y_y is available. Let D = (N EX). The instruments N
are assumed to satisfy E(u|N) =0 and D'Z isg of full rank k+l, N
is thus correlated with W , the nonstochastic part of Y. and un-
correlated with Vv , the stochastic part. Lagged values of the exogenous
variables X will generally satisfy these assumptions (except for the
constant term and a time trend). The exogenous variables are their own
instruments.

Define P as the orthogonal projector into the space spanned by

R

the columns of R , PR = R(R’R)wlR' and Fk =T - PR + Then the instru-

mental variables estimator is

3This formulation rules out IV procedures not using all variables in X
as instruments.



P
™ -1
= ' 1
(5) 6) [ 0By 01 (v 0By
el\
Since (y_lx) =2+ ov* s the error of the estimator e = e /) can
W 2

be written as

6) of (Z+ ov*)'PD(z+ov*)]'1(z+nv*)'PUu .

]
4

It is assumed that the matrix inverted in expressions (5) and (6) is non-
singular. The presence of the random quantity Yy.q of V¥ in these
expressions means that this is not always true. However, Z'PDZ is non-
singular by assumption. The bracketed matrix can be written as

Z'PDZ + OM, where M contains the ramdom components. This is a con-
tinuous function of o, and, therefore, there exists a neighborhood

for o around zerc in which the bracketed matrix is nonsingular. Then
for o sufficiently small the necessary inverse matrix will exist.

Writing the inverse matrix in (6) as
Q[I+ a(s+ ov*'P V)Q) .

where Q = (.?.'PD.?.)-1 and § = Z'PDV* + V*'PDZ , and expanding the inverse
as a power series in o gives an approximate expression for the error

of IV as
Lemma 1.

e =o0qQ{ Z'u+o (-SQZ'u+V*'e u)

- cz(v*'PDv*Qi'u - SQSQZ'u+ SQV¥'P u) + & (SQV*'PDv*Qi'u+ v*'PDv*qui'u)

- 5QSQ8QZ'u - v* 'PDV*QV*'PDu+ SQSQV*'PDU )1+ op (cv5 )



where £ = P2 = (8 X) since X<bD .,

Lemma 1 will be used to find the small disturbance bias and mean squared

error of IV, The bias is found in the Appendix as

Theorem 1.

2 ,‘ 1 ,
Be y = w'cle L—(X'x)-lxlw trP,C - QZ'c'plw
4
+ "’ 7Q {[Er P,C tr(P) - P,)G+ 2t P,C(P, ~P,)G+ 2 €r P CEx PoG
AT
,’ 1
+ 4tr PCP,G] L:(x'x)-lx'w

1 6
] - LI ] -
+ 20" [Gtr By C+G(P, - P, )C" -5C" T (P, - P))G+CP,C+C P,GIR WY + 0()

h = P = PP . i
where P1 PNPXPw and P2 PNPXPW Roughly, the Pl space contains

the useful contribution of the instruments and the P2 space the instru-

mental variation uncorrelated with the systematic part of Yog *

Cohaidering only terms of order 02 s the bias can be written as

' -
- 02 tr{ (W PIW)P2 P1
2 -1 = -1
' ' 1 p oyt -1t 5. L
(W PIW) (x*'x) "X'w tr(PlWW Pl W P1WP2)C W PIW(X PWX) X'c le

WW'P. ]C
1 +-0(04]

where the first line gives the bias for & and the second line is the bias
for B . The size of the bias depends not only on the number of instru-

mental variables, but on their statistical characteristics and the parameters

of the model as well,

An immediate corollary of the theorem is



Corellary 1. The IV estimator will be unbiased to order 04 if PVC =0,
)

i.e., the instruments are orthogonal to the columns of C = (a' .

This condition can be met in principle if only one instrument is used
gince the rank of € is at most T-1 and the null space of PN is
then of dimension T-1 . For a larger number of instruments this condi-
tion would be satisfied only by chance.

The sign of the bias generally depends on several factors. Con-
sidering only the bias in « and making the simplifying assumptions that

4
N and X are orthogonal, expression (7) becomes

2 1

(8) EGa) = o 5
(WP, W)

-— /
' - ' + 0(5') .
tr[(WB WP, - P W' IR C + 0(c)

Since C 1is indefinite, the bias can have either sign. If W were
used as an instrument, expression (8) becomes

(9) EG-) = o —W'—QF—Z
w'w

+ 0(04) .

Ignoring the initial value of ¥y, yo , expression (9) is
-oza'x'A'QA'Axﬁ . Thus the bilas can be either positive or negative even
if O0=1, since A 1is indefinite.

From formula (8), the effect of adding an instrument uncorrelated
with W, X and N can be found. The change in bias from adding such

an instrument, n , to N is

2 tr P C

(10) o 4

+ 0(c) .

(W'PNW)2

This is true if X 1is serially uncorrelated and X_l is used as instru-
ments.



In a case where the sign of the bias is known, it may be possible teo add
a random instrument which will reduce the finite sample bias of the IV
estimator. Of course, this may not improve the overall performance of
the estimator.

The next corollary gives the bilas of & when the most obvious set

of instruments, X is used.

-1 7

Corollary 2. If X is not autocorrelated and N = X . , the bias of

-1
d is
o = 4
(11) E(@~Q) = =jep———ctr (P, P_-P_ )C + 0(C)
(B'XL X B) VX WO W,

assuming X

0 is known and Yo is zero,

Progf: This corollary follows from the observation that Px W= x_lﬁ 2
=1

if X 1is serially independent,

Using the same procedure the bilas of & when a subset of the lagged
exogenous variables is used is found. Assume for simplicity that X is

serially independent and X_l = (X.,. Xlz) where X is the set of

1i. 11

instruments for v - Correspondingly W = (Wl. W ) = A(x . X )(T i)
B
2-

Suppose x1 and x2 are orthogonal and W . = (wII: le) « Then for

~1

these instruments

(12) E{@a) = ﬁ-{-llﬁ-l-—l-tr(pxu - P, )c + 0(0‘*)

The difference between the expectations in (11) and (12) is the change in

bias due to reducing the set of instruments. This difference is
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1 = PIT: <
(13) ———ftr(p, P, -P, 6 )C-mp——=tr(P, P_-~P_  )C} .
WW.) Xig W W7 WpW X WOWy

We consider now the mean squared error of the IV estimator. The

mean squared error is found in the appendix as
Theorem 2

| V= mlnBid 4 T 71 1y 6
Eee' = o“Q2'¢ZQ + © qlqusll b-b'+2 (B2+B2)Z}Q + 0(0)

0
_f 1l _ -1
where B11 _(bo 0> , bll = qll(tr P2C tr P2C+tr P20P2C+_ tr P2GPZQ) s

- AI ) .

1
" '
by, = CP,C + CP,C' + Ctr P,C + GP,Q + 30tr PG ,
1
= - 1 - -
B, = C(P -P,)C + C'P,C - CtrP,C + Q(P, - P,)G + 3Gtr B0,

and  q; = (w'lefl .

Choogsing different instruments affects the MSE through z s P1

and P2 . The term of order 02- in this formula agrees with the large
sample result for fixed regressors except for the use of only Z , the
nonstochastic part qf the regressors (y_l, X) a difference which is T-
asymptotically zero. The first three elements of the 04 term contri-
bute only to the variance and covariances of d while the remaining terms

affect the entire covariance matrix. Using the same method employed for

theorems 1 and 2, the bias and MSE for OLS are found.



Theorem 3,

1

—

E = 72
“®0LS ~ WP W

b
+ 0(0“)
~
a (x
where ®OLS is 6 - 5 .
OLS )
Proof : e g = Ol(Z+ove) @+ ov )1 Lz + ove)yty
= I=-ag(peiZ+ 2y Z+ oW*)'u + O 03
o0, [ 1 - o 3Qy] ¢ ) NCe!
= o0 2'ut 07Qy vty - (V*'Z+Z'V*)Qoz'u]+0p(0'3) , where Q)= (2'2)"
EQ.Z2'u = 0 and EV*¥'u = E (v'u\ tr C
0 .0 0 ’
‘tr PZC r c
EV*'ZQOZ'u = and EV*QOZ'U = EVqOZ'u = C'Zq0 ,
~ 0 '
where qr is the first row of and qc the first column, Collect-
0 % 0

{ -1
- x0T xe

—— — l
tr P P C+—.—-—(
l;) Xw W Pkw

ing terms gives the result:

. t
Theorem 4. EeOLSeOLS

Proof:

The terms of order oﬁ

= GZQOZ'CEQO + O(Ua) .

and are, therefore, omitted.

From Theorems 2 and 4 we find:

7

-U'P Cp
W PXCPXW

2 2 4
' = ! ' = 1
Eee Eo QOZ uu ZQ0 o QOZ CEQO + 0(a) .

11

in these two expressions are exceedingly lengthy

“( (x'X)'lx'ww' -w'_?xw (x'?WX) Ly )c‘?xD_]
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Corollary 3: If 0= 1 the difference of the covariance matrices of

OLS and IV is

v . I NP
BegLs®oLs " Eepyery = O KEE' 4 o(s")
where
r 1
£ = .
~(X'X) X'
= = -1 e Tk
= 1yt 1
and k=W PDW(W PNPXW) (W P W) (W*'P o )("W* W‘*)

] 1 - 1
Proof: EEOLSEOLS ereIV

Lt

Fe'n M- e arn ™ + o6

I

-02(2'2)“12'51)2(2'%2)"1 +0(a%).

- - -1 -1 1 I'W'X(X'X)-l l—l |-ﬁ'X(X'X)_1
1 1 t — e e | s s ] | e —
WP W(W'B.P W) (W' W) J [_ |

i

using the formula for a partitioned inverse. Since W'X = W'PDX = W'X,
the result follows.

Since the difference of MSE matrices is negative definite unless
D contains W , e.g. W 1is its own instrument, OLS is always superior
in the dynamic model as long as the errors satisfy classical assumptions.
Thus this result holds not only asymptotically in T (see e.g. Theil
(12, p. 412]) but in finite samples for o small, Since k is the only
element in this difference which is affected by the choice of instruments,

more valid instruments correlated with W always lead to an improvement
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in the IV estimator, or at least no deterioratiom, for o sufficiently

small,
Comparing the bias of OLS and IV for the estimate of « we find
- 2 - = -
5 ' tr(W'P -P WW')P C
qo  ms (SEGEN e Bk g,
= 1 T o J
EeIV tr PRWW ) tr (W PNPkWPh xPNWW ) xPNC

assuming that the denominator is nonzero. Thus the relative bias of the
two estimators depends on the relationship of the instruments to W and
to C = EuV' .

Finally, we illustrate some bias calculations in detail for a spe-

cilal case. Consider the equation

(15) y = Qy_l + x+ 7+ u

containing one exogenous variable x with unit coefficient and a constant

termf Assume X, = hxt_l + v, and v, = oy + ﬂt with Ev = EM =0,
2 2 2 2

E(v|x, u, v )= E(Mix, v, M)=0, B =0, EW =0 . Using

X, as the instrument for AR the bias expressions for the QLS and

IV estimates of (@ can be written

2
= _-2—-—- - ! -1 ! - w_*.l'c__w'_: tl
(16} E(c?t—oz)OLs w*'w*ErC tr (X'X) "X'CX-2 S| + 0(9)
and
2 i : :,!
(17) B(@0) , = S tr(R'R) R'GR - 2 WG] | o(o*y
CRY W

n

wa s the residuals from the regression of W on x ,

= PPy

where W%

=}

W, the fitted values of the regression of W* on the
instruments,

and R = PXN , the fitted values of the instrument (here x_l) on x ,
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With autoregressive errors it is straightforward to show that

] T
tr C = -EL_!T -1 - Qﬁl-_glﬂl_! ,

1‘(10{ l-cp !

[T —d

which is O(T) .
All of the terms in square brackets in (16) and (17) are 0(1)
except tr C, and W<'W* and W'W are 0{Fr) , assuming (}{')-()*l

tends to a finite limit, |&f <1, and [p <1 . Therefore, the large

sample value of the small-sigma IV bias is zero and (16) tends to

2

g tr C
(18) lim we'iygs ?

which is nonzero unless p =0 . If further, A =0, (17) is T-

asymptotically

p(l - a2)02
(1 -apa(l - 6)

(19)

This differ from the T-asymptotic formula (Malinvaud [5], p. 560) which

is, in our notation,

2 02 o
(20) plim(c‘i-a)OLS - p;1+a§ . (1 -ao)(; - 0) _% ’
(1 -« (L-a) el

which includes the additional term (1+ao)/(1 -az) . As 02 becomes
small in (20) the second term predominates and (20) tends to (19). The
additional term in (20) is of higher order in 02 and appears in the
next term in the small-sigma bias approximation, which was not presented,

No such asymptotic disagreements occur with the IV expressions.
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APPENDIX

The derivation of the bias and mean squared error of the estimators

requires the following lemmas,

We record some relationships among projections as

Lemma Al.
a) M=gq,,(Ps~P,) = q..P where M = ZQch'f' and QC is the first
1172 °x 111’

column of Q ,

b) PZ = PX«+ P1 3
c) PD = Px + PXPN B
d} PD“P2=P2,

ey PP =P + P, .

Proof:

a) The matrix M is equal to (Pi-Px) . This follows from express-

91
1
ing QCQc as

q q 0 0 |
11 712 ;
(A‘l&) qll . q - 0 q } q21q12 !
21 722 22 91 J’
; . 921912 ron ™
Then, using the formula for the partitioned inverse, 9yo - T = (X'X)
11

Hence M = [ZQZ'-x(x'x)'lx'] = q;(P5-P,) . Since Zs @x),

91

Pz-Px is the projection operator Pﬁ where W is obtained by regress-

ing the residuals of the regression of W on X in turnon N, 1i.e,

W= PNPXW . Therefore M = q11PNPXPW = qllPl .
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AL A P Z[2'Z- z'FDZ]'lz'P

b P
) D

Z

Using an inversion formula from Rao ([{9], p. 33), this expression is

PDZ[(z'z)"1 -(z'z)'lz'ﬁbci PP - I)-lPDZ(Z'Z)_I]Z'P

DZD D

- . = = .-l _
= P P,P, - PP (BP, -I) RPP =PP

interpreting the inverse matrix as a generalized inverse. Using {c),

= P +_
PDPZ (Px%'PxPN)(PX PXPW)

= PX + PXPNPW = PX + Pl .

¢) PD = PX + PN - PXPN = PX + PXPN .

ad = + P - = B - = .
d) Py - By= B+ BB - (Bt Py) = BeR - FRP = P,
e) P, = BB (R +B) =P + 2.

Q.E.D.

The group of lemmas below are derived from the following result
(see Anderson [l], p. 39). let X , i=1, «isy 4 be random variables
with a joint normal distribution N(0,Y¥) . Then
Exixjxkxﬁ = cijckﬁ + dikcjz + Gilqjk where T = (cij) . Recall that

v*=(V 0), and let D, F, and L be arbitrary conformable
Txl TxK

¢ be the first

constant matrices, the elements of D are dij . let d
r . . .. .
column and d the first row of D with similar definitions for F

and L .
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ftr GDtr CF + tr GFCD' + tr GFCD) .
Lemma A2: EVE'DV*V*'Fu = L |

0 d

V'DVV'Fu
Proof: VEIQyRykIpy = .
0

The expectation of V'DVV'Fu is

E T vd, vv £ ,u
ijkﬂ‘ii_]_]kkﬂﬂ

= T E(vyww,)E(u,v )d. .f. ,+ ¥ E(v,v )E(u,v, )d,. f
1jk4 173 Lk7ij ki 19k0 i1k L3713 ke

+ ¥ E(u

.y PRI E

I 5
Byt Saftadsy T cadiBitis

T
1k ik ijks

which is the element-by-element expression for the stated expectation.
The proofs of the remaining lemmas are similar to the proof of

Lemma A2 and are omitted but can be found in Peck [6].
[}

Lemma A3: EVXV:'DV#Fu = (GD+GD'+ I tr gD)C'E" .

Lemma A4 : EVEVEIDVEIFu = (G tr CF + CFC+ C'F'G)d” .

/a 0
Lemma AS:  EV#'Dun'rvs = where a = trCD tr C'F+tr COCF' + tr GDOF
: \0 O

f

' 1
Leama A6: EV#*Duu'FV* = (C'tr CF'+C'FC'+GF'O)[d” 0] .

1 [ ]
c't%a"c + ¢'d” £ ¢+ cer £5%75q

Lemma A7: EV*Duu'Fy*
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1

-~ L} [
Lerma A8: FRuu'DV*'FV*' = cf5d ¢ + crr £59% ¢ + dS¢€ g .
Lemma_AY%:  Euu'DV*'Fyv® = (Qtr GF'+-CFC'+-CF'C’)[dCO} .

Lemma AlQ: FEuu'Dy#y!

]

{DG + CD'C + CtrCD' .

1
Lemma Ail: Euu'DV¥FW = ((DG+CD'C+Ctx CD')[E 0] .

With the aid of these lemmas Theorem 1 is now proved.

Proof of Theorem 1

A1l odd power terms in the sigma power series expansion of e are products

of odd numbers of zero-mean normally distributed random variables and,

‘ . 2
therefore, have expectation zero. Ihe terms of order a° are

(A-1) -05Q2'u + QV*'Pu .
/45 XN tr pC’
The second of these is \\ - which has expectation D,
0 . 0

The first term can be written

tr V'Ps
(A-2) - {Z'vu'Z0" +-(j z :)
0

which gives for the expectation of (A-1)
(A-3) QIItr (P =Py ) C - 7'¢1230° .

Omitting the common leading factor of 04Q s the terms of order

4
o) are
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(A-4) -V*'pDV*QV*'PDu + SQSQVX'P u - $QSQSQ + SQV*'PDV*QE'u
+ V*'PDV*QSQ£ Ty

=-B1+B2_BB

+B4+B5.
Applying Lemma AZ,

/tr PG tr P C+2tr PDGPDC\

{(A-5) EB, = q,..i
1 11\‘ 0

Expanding B2 gives

= A 51 1 2 15 ust
BZ qllz VEQZ T yEYH PDu + qllz Ve T2V PDu
- 1pys ¥ *t“ T4 t
(A-6) + quv* PZV (e PDu + yetZQuktZQur PDu
- = 71 = 17 *1 L AYUse 1
(A-T7) qulz vaEvrtZQu PDU'+ Vv (M*—qlle)V v PDU .

Applying Lemma A2 and A4 gives

- = A r > AC
(A-B) EB qulz [Gtr PDC+CPDC+C PDG]ZQ

2

—_
. tr(M+-q11PZ)Gtr PDC+-2tr(M-+qlle)GPDCf
0 !

Multiplying out the terms in B, gives

3



(A-9) Ztvx0Z vz ' vrQZu + qllf'V*Qf'V*V*'Piu
+ qllz'Vkv*'sz*QZ'u + qllz'V*V‘-"'iQW'Piu
+ VETRAVRQZIWRQZ U + g VH BSVHVE ' Pou
+ V*'ZQV‘*'sz*Qf'u + v*'fqv*'EQV*'PZu'
= 2Vt (M+ qllpz)v*qﬁ'u + qulf'V*V*'fQV*'PZu

+ ZV*'PzV*V*'MU + VR (M4 qllpz)V*V*'qu .

The expectation of B3 is found by applying Lemmas A2, A3, gnd A4 to be

(A-10) EB, = v+ q;Pg) + 1 tr(M+ qllPZ)G]C'ZQc
+2q 2'Ger P£C+CP£C+C'PiG]ch
["2 tr P5G T MC+4 tx PgGMC+ tr (M +q | Py)G tr Pyl

+ f + 2¢tr M+ qlle)GPZC

0
Expanding B4 gives
- 1 g t -7 ' ' A
B, qlli VEUR'R VPRQZL'u + Y Z2qur P v*itu ,

and EBA is found from Lemmas A2 and A3 as

GtrMC+2tr PDGMC_]

. c tr PD
- - L) 1 ]
(A-11) EB, = q,,2'[26P,C' +C" tr PDG]ZQ + . _j .

Finally, expanding B5 gives

= Yx! *x ! 1
B Vv PDV el M+ qllpz)u

5

which has expectation
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[ET P GtrM+q, P3)C+2¢tr P _G(M+ g, P2)C]
(A-12) IR = D 11°Z D 11z’
> 0

1
P

from an application of Lemma A2, Then collecting the cé scalar terms
in (A-3), (A-5), (A-8), (A-10), (Aa-11), and (A-12) and simplifying using

Lemma Al gives

(A-13) q [tr (Bp+ PP )CEr (P, -P,)G+tr P Ctr P

2G - tr Plc tr (PX+ PL)G

- + - ] P
tr Plc tr(Px P]‘ )C tr(PX+ Pl)G tr(PX-t- Pl)c +tr Plc tr(Px+ PXPN)G
+ tr(Pxi-PXPN)Gtr(Pxﬂ-Pl)C

_ . . - P -
+ 2Lr(PX+ PXPN)L(Pl P )G+ 2tr P CP,G 2¢tr P1C(Px+ P.)G
- + - + P.
Ztr(PX PI)CPIG 2t:r(PX Pl)C(Px+ Pl)G-i- 2tr (PX+ PXPN)GPlc

+ 2tr (P, + P, )C(P, + By P )G]

(A-14) = qll[tr(Pl-i- Pz)c tr(P1 - P2)G -tr Plc tr(Pl - PZ)G -tr P1C tr PlG
+ 2tr Plc tr(Pl + PZ)G
- - 4 - M
+ 2[tr Plc(Pl PZ)G+ tr PZC(Pl Pz)G Ftr PlcPZG tr Pl(,Plc
+ tr P1CPZG+ tr P1CPZG]
(A-15) = qy [tr ch tr (P1 - PZ)G-i- 2¢tr P1C tr P2G+ 2f{2¢tr P1CP2G+ tr PZC(Pl - PZ)G]] ,

using Lemma Al repeatedly.
A similar but simpler process gives the nonscalar terms. Explicit

evaluation of Q = (2'2)-1 shows that
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—

st e
(4~16) Q= (WP W | . i _ I R
X | = (X'X) 1x'w ﬁ'PVﬁ(X'PﬁX) L

L ——

Applyine (A-16) to (A-153) gives Theorem 1.

The proof of Theorem 2 procedes by couputing ee' from Lemma 1;
then taking expectations term by term in that expression, The term of
orders which are odd powers of O all consist of products of odd powers
of normally distributed zero-mean random variables which centribute nothing

te the expectation of ee' and they are, therefore, omitted throughout,

“

Fxcept for the o terms,
o ~ £ . 4
(A-17) ce' = o Qftuu'z0 + n‘Q1H1+-H24-H§}Q 4 op(oj)

where o= (-SQi’u1-V*'PDU)(-H'EQS4‘U'PDV*) , and

iy = ~£'u(u'ZQur'P vk - u'2050s+ u' B V*QS) .

2 D oml
(A-18) Ea g2 uu'2qQ = nzqz'QZQ .

Multip!-iny out Hl wives

{(n-19) SOt uu'Zos - SQﬁ'uu'PDV* - V*'PDHM'ﬁQS + V*'PUUU'PDV*

. - 1 . - 1 rysl : ] -
Let (A-19) be Jll le le + H13 + Then multiplving out Hll gives

(A-20) E'V*QZ'uu'P?V* + Zryxnftunt Sous'Z

+ V*'PEUU'P?V* + V*'Pfuu'fqv*'f .

the last term is the transpose of the first. Applying Lemmas A5, A6, and

A7, the expectation is computed as
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- = THOV by PaCk CTPLCT + 6P 1 1E0C
(8-21) TH [C'Lr PgC+ CTRGC" +GRp 1IE0°
- -t,, i -
QL ?A"\"\ a
4 L tr PoC+CPaC+ PeG) 2+ 21 (20"MC+ G er MO)Z +
. ) . 4 .

0 0

2 o ,
= n + M wCP A o -
where a (tr PZC) + tr PZCIﬁ{ + tr PfGPsz le is

f'V*Qﬁ'uu'PDV* + v*'PEuu'PDV* which has expectation

. . o Svpat 1 ' ) o
(A-22) EH,, = Z'[C'tr P.C+C'PC +GPD£][2Q x
™ N =
. 3 r chtr PDC-ktr'PDCPZC-+tr PDGPZQ 0|
L 0 0_

{rom Lemmas A5 and A6. Then

Ttr P,CEr P C+tr P CP C+tr PGP O 01

(A-23) EH,, =

13 'L 0 0_‘
using Lermmg AS. Turning next te the second term H2 »
(524 H, = -2'uu'fQV*'PDV* + i'uu'fQSQS - z'uu'PDV*QS

. ~H21 + sz - H23 .

Using Lemma A9 we find
Aa-25 o = 71 ri{%0° o
( ) EH,, Zrivier P G+ 2CP,C 1LZq 0.
A-26 AL 07 Yy P a 15
( ) H,, AR Pgv 0Z'v* + qllz uu PZV*V* Z

+ Z'uu'fqv*'Piv* + Zruutfouetiourt?

1he expectation is found by applying Lemmas A8, A9, AlQ, and All to be



25

- ' = JVI a4 CPaC- 1 20° o
(#-27) B,y = Z'[ Bgl+ CPpC+ Cx PZ(,j!_fq 0;
. Tre : ) '

F quz [(BsG+ CPoC+C tr ch]f
+ 21 [Otr Pyt + ZCPZC'];;ZQC 0]

4+ ZV[CMC+ Ctr MC+ TMGIZ .

Finally, H23 = Z'Uu'PDV*Qf'V* + qlLZ'uu'PDV*V*'f which has expectation

] - ] " Cc
(A-28) EH,q 2'{ceG+Cp C+Ctr B C) 2Q O

1
+ qllﬁ (®,G+CPC+Cer PDG]Z .

from Lemmas A0 and All.

tollecting tle scalar terms of the expectations above sinplifies to

C+ tr PDC tr P,C ~ tr P£CP2C + tr PﬂCPZ(

(A-29) -trP2C1n7P2 9

- a 5 + 3
tr PZC?ZG Itr PDGPZQ
(A-30) = tr P, CtrP,C + tr PZCPZC + trPZGPZ .

2 2

The column vector terms (and ti:e transpose of the row vector terms) are

(A-31) Z'{ct ey PsC+ C'PsC! + GPsQ-C' tr P C - C'RLCY - GPO
- DEr P G- 2CP C'+ (PgG+ CPaC+ CLr Pyl
Ttr PaG+ 2CPsC' - (BG- CEC-Ctr PDc‘iﬁo_c
(A-32) = -Z'{[Ctr P,C+ CP,C+ GP,+ cpzc'+150cr?2c;]

1 A C
t t 1 : 1
+ [C'tr P2C+C P,C'+ P,G+ CP,C +-f22\ tr PZG]ZQ

Finally the full matrix terms are
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- 71 I - N ~ ', T S Da
(A-33) Z' (2C'MC+ Gtr MO+ qll(QPZG+ GPZQ+ CPZC+ C'PsCt + (C+ ") PZC)
+ CMC+ C'MC' + (C+ C')tr MC + MG + oM

- 1 1 L] 15
qll(@DG"i' GPDQ+ cPp C+C PDC + (C+CcV)tr PDC Z

D

(A-34) = qllz‘:'{ctr P, Q- TP,G - GP,7- CP,C = C'P,C' - (C+C')Er P,C

2 2 2 2

+ P .G+ GPIQ%- CcP

[ [ [ ~
1 C+c'P.C'+2C lez .

1

Theorem 2 now follows by collecting these expectations.



