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Introduction

This paper follows the author's work in recent years on the opti-
mality problem in game theory [11, 12]. The general approach to the prob-
lem is supplemented by 1its new applications to most of the well known
solution concepts and by some preliminary definitions of a solution for
a coalitional game in an extensive form,

The purpose 18 to make more game theorists familiagr with the find-
ings made when the approach appeared in English as well as with the pos-
gibilities of its application to such economic phenomena as coalitional
dynamics, costly information, uncertainty, etc. These questions were
brought to the author's attention by Professor M. Shubik, to whom the
author is indebted for many helpful discussions and for his kind invita-

tion to vigit Yale.

*The research described in this paper was undertaken by grants from the
Ford Foundation and the National Science Foundation.

**The Institute of Physics and Mathematics of Lithuanian Academy of
Sciences, vilnius, U,5.S.R. This paper was written while E. Vilkas
was visiting the Cowles Foundation, whose gratefully acknowledged sup-
port made his trip to the United States possible.



1. Definition of a Game

To discuse a general problem of optimality we need an appropriately
general definition of a game. The following definition proved to be quite

convenlent for the purpose:

Definition 1. A game is the collection

<K, {xc}ocx’ {Sc(xc)wch,x )’ {>C1Cel?

where K 18 an arbitrary set of coalitions CC N, N being a set of

is

players, X, is a set of strategles of coalition C ¢ K, Sc(x

o’

a set of outcomes of the game when strategy x_. 1is used, and >C is a

c

preference of coalition C over all outcomes of the game,

= |
] ) Sc(xc) .
C,xc

This definition describes any known class of games In a natural
way of specifying the components of game. However, some further remarks
seem to be useful,

It is supposed that the game 18 over when collection of strategiles
x(P) = (xC)CcP is chosen, where P 18 any coalitional structure, i.e.
any maximal collectfon of nonintersecting coalitions C ¢ K . At the
same time there is no need to limit ourselves to this strategic form of
the game. Nevertheless, even when realization of the game is of no im-
portance, it is useful to keep the sets of strategies xc in the defini-
tion for explicit indication of the arguments of players and coalitions
taken into account, l.e. for specifying with extent of what arguments,

actions, etc. the outcome of the game is optimal or stable.



The set of strategies XC of coalition C need not be independent
of the information, coalition C possesses at the moment or, in more
narrow sense, of the situation appearing in the game. 1In a similar way,
a set of possible outcomes Sc(xc) may depend on the previous choices
by other coalitions and by itself. In this case, of course, appropriate
specification of sets Xe and SC is needed to keep the model logical.
An economic or social situation in any description can be treated
as an outcome of the game., But usually we do not need any description
other than the situation (xC)CcP when the coalitional structure is fixed,
or the coalitional structure P when any coalition has only one strategy,
or (P, (xc)) in the most general case. Anyway, the choice of the form
of outcome depends on the problem under consideration,

More discussions on Definition 1 one can find in the author's work

[11], but we will, in fact not need any of them here.

2. A Gemeral Approach to Optimality

Optimality is the notion to say what strategies and preferences

are given for., Strategy, of course, is a tool to achieve better outcomes
or to expel those undesirable. Therefore, informally, an outcome is

said to be optimal if no coalition objects to it (by certain strategy),
or, if someone does, then there is a coalition which neutralizes the ob-
jection making it impossible or defends the outcome unde; consideration
in one or another way. Unfortunately, because of multiplicity of goals,
the general meaning of optimality does not work properly without further
specification, which obviously is not unique.

Strategic concept of solution. Let us consider the strategic side

of the solution's concept first,



is gsald to be an ob-

Definition 2. A pair (C, xc) s C ek, Xc € XC

jection against the outcome s ¢S, 1if s! >C 8 for all &' ¢ S(xC) .

Definition 3. A palr (Q, xQ) s Qek, xQ € XQ is said to be a counter-
objection to an objection (C, xC) agalinst s 1if

(i) 8" >Q s' for all s" ¢ S(xQ) and some s' ¢ S(xC)

(i) Q NK# 9,
1.e. counter-objection is an objection of intersecting coalition against

an outcome from S(xC) .

Definition 4. An outcome 8 1is said to be optimal if to every objection

against it there 1s a counter-objection. Denote the set of all optimal
outcomes by ¢ .

It was shown in (11], that for all games (Definition 1) under purely
mathematical restrictions of compactness and continuity, with transitive
preferences >C » the solution set ¢ 1is non-empty. Even stronger
result is valid: one can put an additional restriction Q & C on counter-
objection [12].

We will return to the counter-objection and the solution o after
some remarks on non-strategic properties of an optimal solution.

Non-strategic properties of solution, The solution given in Defi-

nitions 2-4, is perhaps, the weakest possible. As we shall see in the
following discussion, even in zero-sum two-person games We need a certain
restriction of solution @ to get the usual optimal strategies, which
ig, Iin fact, non-strategic.

The most general mathematical description of needed properties
of a solution of the game can be made by means of some functional equa-

tions and of boundary conditions to them., Let £(I') be a solution of



the game I ¢ G, and let 0 : G =G, T:H-H » Where H 1is a set

of values (maybe, subsets of S ) of f on G . Then the equation,
f(oT) = ~£(T) (1)

will describe the change of the solution imposed by the change of a game.
Examples of such equations are well known: L. Shapley's additivity axiom,
axioms due to A. Sobolev [7], compositions for ven Neumari-Morgenstern
solution (L. Shapley [5]), and for the kernel and nucleoclus (M. Megiddo
(1, 2, 3], ¢. Simelis [8, 9, 10]). Despite mathematical attractiveness
and easiness to interpret the equation (1) the approach did not become
basic in game theory. It seems that not only mathematical difficulties
caused this, but the tradition of strategic investigation of economic
problems did as well,

One can notice that using continuity, monotonicity, symmetry, etc.
known functional conditions for a solution can be regarded as a part of

the described approach.

3, Solution for Non-Cooperative Game

in & non-cooperative game we have K = {1} N={l, ..., n},

feN
§= [(xl, ceny xn) :xy e Xy, 1 e N}, and x >i Yy, %, ¥ eS8 {ff

fi(x) > fi(y) ; Wwhere f is a payoff of player { .

i
Because there are no intersecting ccalitions, no counter-objections

can arise by Definition 3. It is easy to see that for a two-person zero-

sum game with a payoff of the 18t player f a

= [(xl, x2) : max min f(xl, xz) < f(xl, xz) < min max f(xl, x2)1
X X, X, X,



i.,e. a general solution coincides with the classical one in the sense of
the cutcome value. However, they differ quite a lot in the sense of
optimal behavior of players, because our notion simply does not say any-
thing about it. For a more complete comparison we need some definition
of optimal strategies. Naturally, we can call a strategy optimal, if it
gives not less than the optimal payoff whatever the behavior of the partners
would be. The definition leads to the classical optimality notion, but
still is ingufficient to get an equilibrium. This is not surprising, be-
cause the equilibrium is a special kind of behavior. The outcome

(x:, ceny x:) ¢ v 1s the equilibrium if it is still the optimal outcome
when the set of strategies Xi is reduced to only one strategy x: for
all players 1 # j and if it is true for all j ¢ N [11].

When players are not going to play a game and the realization of
strategies 1s transferred to the 'third" party, it does not matter, of
course, which gituation from ¢ 1is chosen. A general solution concerns
namely this case and the maxim or equilibrium strategies are possible, but
not unique, specifications of a general solution.

Kernel. Many of the known solution concepts even for cooperative
games may be rewritten in a strategic form. Generally, we can put into
the sets of strategies the primary definition, or part of it, or some
things, used by the authors to argue applicability of their solution concept.
Doing so we make the definiticn of solution more precise. We will define
the kernel as general solution to a non-cooperative game over the primary
game, of which characteristic function 8 v .

Let P = (Pl, R, Pm) be a coalitional structure and

s = {x: in=v(Pj), 1=1, seey my x; 2v(1), 1 e N} .
ie%



Let e(C,x) be the excess,

e(C,x) = v(C) - x(C) , =x(C) = Ix,

ieC
and Sij(x) be the demand
8y (x) = max e(C,x) ,
1 CeT
i3
T,.,={C:¢ccnN,1ec, j £cCt.

1]

Denote x”yi} y, the imputation, in which £

th
by Yi and j by yj for 4, § ¢ Pk e P,

1

component x, is changed

Define the strategy set

of player i as a family of sets Xi(x) y X e8,

Xi(x) = {y = xHyi, it Yy <xy+ (Bij(x) -sji(x)),

Yy = %5 7 g mxy) > v (),

With

K = {{i}} » 1 eN

X >,y <m=> Xy > Yy

i

the game in the sense of Definition 1 is given.

Obviously, it is a non-cooperative game.

i-: j € Pk}

Therefore the solution

¢ consists of the outcomes x , against which no player has objections.

If there is an objection to player 1 against x , then for some

Jnggi

Xy < Yy < X, + (sij(x)"sji(x))

Yy =%y © Gy mx) >v()



which means

Bij(x) - sji(x) >0, x,. >v(j) (2)

3

and x 1s not in the kermel. And on the contrary if (2), then there
is a v & Xi(x) with Yy > X; which means objection of player i
against x . So solution ¢ for this game is the kernel for the usual

cooperative game v .

4. Counter-Objection: Discussion and Examples

Informally a counter-objection of coalition Q 18 an objection
which makes the primary objection of coalition C against s ¢ § doubtful,
Pecause it 1s useful for players from C N Q ¥ # to joln coalition Q
instead of coalition C . Thise is a reason to keep s on the list for
further consideration.

This notion of counter-objection Iis a8 simple as possible, but the
trouble is that solution ¢ 18 generally very large (sometimes all S,
which is not necessarily the wrong thing) and therefore not very infor-
mative. In the previous section we gave the example (kernel) in which
the objections were specified. Now we are going to make some remarks
about possible concretization of counter-objections by adding new require-
ments for them.

The general purpose of the additional requirements Is to point
out thag a counter-cbjection is stronger, more probable than an objection.
As we mentioned above, objection and counter-objection are simply competi-
tive and each of them is possible, but not both.

Counter-objection to any issue. Qur further consideration is based

on classical cooperative game, therefore we need it written in terms of

Definition 1.



Model 1.

K = 2V \{g}

X, = {xc = (xi)ieC : x(C) < v(C), x; 2v(), L ¢ ct,
Sc(%.) = Uy = yg = %o Y S v,

X >C y <me=>> X > Yy for all 1 ¢ C ,

Model 2,

K and >C are the same.

xC(x) = {x : x(C) < v{C), xi 2 v(1), L enN, x(N) = v(N)}

Sq(x) = {x}

The existence of a solution for model 1 follows from the general
existence theorem [l1]. For model 2 the existence is rather obvious under
super -additivity condition. Indeed, if (C,y) 1is an objection without

a counter-objection, then

y(C) < v(C)
(3)
y(S) >v(8) , snNc+¢yg.

Let y maximize y(C) under condition (3). Then coalition C has no
ob jection without counter«objection against ; , and inequalities (3)
mean that there are no obtections against ; from coalitions intersect-
ing C . But it follows from super-additivity, that any T, TNC =@

has no objection, too:

F(T) + ¥(C) > v(T U C) > v(T) + v(C) , Y(T) > v(T) .
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Hence ; e ® .
We can compare the two solutions by changing the notion of counter-

objection for model 1 in the following way.

Definition 5. Let us say that there is a counter-objection to objection

({c, xC) if there is an objection (Q, yQ) ;, QNC#9, toany x ¢ S(xc)
ingtead of a certain.

It is easy to see that the solution for model 1 with counter-objection
by Definition 5 will coincide with the solution for model 2 whenever De-
finition 4 or 5 is applied.

The von Neumann-Morgenstern gsolution. Model 2 is quite adequate

to a classical cooperative game, nevertheless a solution o for it differs
from the von Neumann-Morgenstern solution. To get the last by our general
approach we need some further restriction on counter-objection. The re-
striction is of the kind mentioned above: a counter-objection must be

stronger than an objection. Let V be the set of "strong'" imputations.

Definition 6., We will say that there is a V-counter-objection to objection

(C,x) 1If there exists an objection (Q,y) against x, QN C=@ or
not, but y ¢ V .

Any von Neumann-Morgenstern solution V equals the solution ¢
with counter-objection by Definition 6. To prove it, it is sufficient
to 1link the twe solutions' definitions, By definition of the von Neumann-
Morgenstern solution V 0o x e¢ V 1s dominated by other y ¢ V (there
is no objection (C,y) , y ¢V against x ¢V ), and every z ¢V 1is
dominated by some x ¢ V (to any objection (C,z) , z ¢V , there is
a V-counter-objection in the sense of Definition 6). Therefore, to any

objection against x ¢ V there exists a counter-objection, and x e « .
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Against any z ¢V there is an objection (C,x) s X ¢V, which, there-
fore has no counter-objection.

A similar result, as well as others, for model 1 one can find in
the author's paper [13] in English,

Other restrictions on counter-objection. All real games are hardly

separable from player's psychology and they grow strong temptations to
invent new notions of counter-objection on this ground. 1Two feelings--
fear and resistance--are quite common and have been used in game theory

literature.

Definition 7. A palr (Q,z) 1is said to be a counter-objection to objec-
tion (C,y) against x 1f (Q,z) , QN C ¥ @ 1is an objection against
y and =z <i x for some 1 e C .

The explanation of the counter-cbjection is that it is dangerous
to §1ayer 1 to join coalition C because it may lead to some loss of
his initial payoff. This notion can be generalized to a sequence
(Ql’ zl), cnny (Qr, zr) of subsequent objections with the loss of player

ieC 1in z and the existence theorem can be proved at least in this

special case {11].

Definition 8. A pair (Q,z) 1s said to be a counter-objection to objec-

tion (C,y) against x 1f (Q,z) , QN C # @, 1is an objection against
and z > x .
Y ~
It means that coalition Q can defend the initial imputation x
and therefore one cannot remove it from ¢ . We do not know any general
existence theorem for this case. However, it is easy to show that the

solution related to Definition 8 for three-person simple game with all

coalitions winning, but {1}, 4 =1, 2, 3, 1is as shadowed in the
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picture. It is obvious that one can
think of the core of the game as such
1/2 1/2 a solution in which counter-cbjections
are made impossible.
Nucleolus. It is rgther sur-

1 1 prising that the nucleolus could be
1/2

described in strategic form of solu-
tion © , more, it could be done simply and with new interesting social
interpretation of nucleolus,

For a classical cooperative game let strategy sets be
xC - {xc(x)}xex

X.(x) = {y : e(Qy) < e(Qx) for all Q e T(C,x)

e(Q,y) < e(C,y) for all Q ¢ T(C,x)? .

b

the e(Q,x) being the excess of coalition Q at x , and

T(C,x) = {Q : e(Q,x) > e(C,x)} .

One can interpret all this by saying a coalition is permitted to
improve its position if and only if this does not make it worse for the
"neediest! coalitions T and does not chaﬁge its status in the "social
hierarchy.”

It is proved by the author {13] that solution ¢ equals the nucleolus

of game v , and hence does core and von Neumann-Morgenstern's solution
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5. Elements of Cocalitional Dynamics

One of the first attempts to consider the dynamics of the coali-
tional game 1s due to R. D. Luce [l4]. Luce's #-solution is defined for
(P,x) as outcomes of the game, where P 1is a coalitional structure
and x is imputation. Given rule ¢(P) of possible changes of coali-
tions, the following two conditions for (P,x) ¢ ¥ are introduced:

(1) =x(C) > v(C) for every C ¢ ¥(P)

(11) x, = v(i) ==> {{} e P ,

i

The first condition says that no coalition possible at the moment, has
any objection against x . The second says that every player must gain
something from joining a coalition.

Now we can define a general game, the core of which i{s ¢-solution.
Let the set of possible coalitions be K = ZN'\{G1 and the set of out-

comes

s = {(p,x) : x, >v(i) if {1V ¢ B, x(N) = v(N), x, 2 V(i) .

Let ch be any coalitional structure with C ¢ FVC and

fx : x(€) < v(C), (B/C, x) ¢S}, C e #(P)
XC(P) =

¢ » C € uE) .
We will finish the definition of game, letting
S, (x) = {(Frc, 0

(P,x) s (P',y) <==> Xy > ¥y for every 1 ¢ C .

0f course, there are many other definitions of game in terms of

Definition 1, for which the set of outcomes without objections turns out
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to be the §-solution. We just wanted to give an example of how a general
approach works in coalitional dynamics.

To complete the definition of a general coalitional game in exten-
sive form we mneed not so much as to add to the previous model. Let
§=TUW, TNW=¢, where W is the set of final positions and
T 1is of the non-final. Every coalition has preference among final posi-
tions W and a set of strategies (alternatives) XC(t) at any non-final
position t ¢ T, which may be empty., The last will simply indicate that
the coalition C at t cannot be formed., In this formulation there is
no necessity to keep set K in the definition of the game; it may be
changed by the set of players N . What the strategies are for is limitation
of the set of possible states and outcomes of the game. That is, what sets
Sc(xé) CT or W do for every xé € xc(t) .

Thus, a coalitional game in extensive form can be defined as the

collection,
t
X T (O oy, e e ¥ {SC(XC)1CCN,erXC(t)’ Coloa @

Obviously, the very meaning of the components of game imposes cer-
tain restrictions on these sets. E.g. the highly realistic "“"something
must happen after every sequence of feasible strategies'" leads to the
constraint of kind sC(le) n sc,(xé:) # @ . We will not discuss this
question here and limit ourselves with the fingl remark, that the model
1s capable of taking into acount, at least formally, informational, in-
stitutional, probabillistic, etc. urgent realities of economy (see for

argumentation, M. Shubik [6]).

Following the general approach we shall define an objection of a
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coalition C against an outcome W for this game. Denote first W(xé)
to be a set of final states of the game which follow the choice of

strategy xé .
Definition 9. A pair (C, xé) is said to be an objection against w e W

t . t
> '
if x. e xC(t) ¢ and w c v for every w' ¢ W(xc) .

Definition 10. A pair (Q, xg) is said to be a counter-objection to ob-
jection (C, xé) if it is an objection against some w' ¢ W(xg) and
Qnc+4¢.

Now everything which was applied to Definitions 2 and 3 can be used
for Definitions 9 and 10 with more variety, of course.

The game (4) has never been investigated in the game theory iitera-
ture, except in one very special case (R. Selten [4]). Selten discussed
a cooperative solution (valuation) for usual non-cooperative game in ex-
tensive form. Nevertheless some axioms used by Selten, especially these
about information, sound well in model (&),

Besides concretizations of solution ¢ referred to It would be
very interesting to find out a solution concept defined by an axiom
similar to Bellman's optimality principle. Of course, this is not the
only problem: this sketch on optimality proves there are many more open

problems than solved.
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