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This paper presents #m;éthod of computing general equilibria which
is applicable to large models. It has been applied to a realistic model
of the world economy described in [14].

The concept of equilibrium is, of course, important and many large
models have been constructed, which faithfully represent the concept of
partial equilibrium (e.g., Takayama and Judge [29], Duloy and Norton [6]).
We do not know however of any large-scale realistic model which reflects
all the complex interrelationships dealt with by general equilibrium theory.
Yet such a model would provide a natural way of formulating numerous prob-
lems in international trade (see [9],[10]) and income distribution. It
could be a practical tool for evaluating the impact of price distortions,
such as tariffs and taxes (see {25], [26], [27], [31]) on income distri-

bution and on production and consumption.
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In Section 1 we recall fundamental concepts and theorems of general
equilibrium theory to define the problem at hand and to classify possible
computational approaches., Section 2 presents the theoretical foundations
of our approach, Section 3 discusses the possibility of solving large
general equilibrium problems by means of Scarf's algorithm or improved
fixed point algorithms, while Section 4 examines whether the size of the
problem can be reduced to save computational costs. Section 5 presents
the three computational procedures which we have used. Section 6 indi-
cates how general equilibrium can be formulated without loss of generality
in a linear framework; finally Section 7 discusses our experience in apply-

ing the procedures to a large scale model.



1. Basic Concepts and Theorems of General Equilibrium Theory

Let Xy and L be r-vectors of consumption and initial endowments

held by consumer i (f{ =1, 2, .,., m) and let yj be an r-vector of

production by producer j (j=1, 2, ..., n} . Let Xi denote the con-

gumption set of i, and Y, the production get of j . Assume that

3

the preferences of consumer 1 can be represented by a continuous real
valued utility function Ui(xi) . Finally let the r-vector p represent

prices and 81 be the proportion of profit of firm § distributed to

i

congumer 1 (68,, >0, T8 =1 for §=1, 2, ..., n) .

i} { 1

Then we define:

befinition 1.1, Competitive Equilibrium: The allocation {;i} 3 65]

supported by the prices ; , 1is a competitive equilibrium if the follow-
ing conditions hold:

(a) Equality of demand and supply for non-free goods:

T, ~ Ty, -Fw,<0; P(EXx,~Ty,-Tw,)=0;
! jj 1 iijjii

(b) utility maximization of consumers: Ei maximizes Ui(xi) sub -

ject to the budget constraint 33x < E-w + T 0 E-y » and
1= Py
the feasibility constraints X, € xi , for 1=1, 2, ..., m;
(¢) profit maximization of firms: ;5 maximizes E-yj subject

to yj ch for j = 1, 2, ooy n .

Let us make the usual assumptions: (1) Ui(xi) is a continuous
real valued Increasing quasi-concave function; (2) the sets Yj are con-

vex, closed and 0 e Yj ; their vector sum Y = Eth gsatisfies YNB =20



with B the closed positive orthant and YN (-Y) =0 ; (3) X, is a

i
convex, closed subset of Ri ;  (4) there exists an xg ¢ xi such that
xg < Wy all 1 . It can then be shown that:

Theorem 1.,1. If the assumptions (1) to (4) hold, there exists a competi-

tive equilibrium,

The proof proceeds by noting that utility and profit maximizing
allocations satisfying (b) and (c) do not necessarily satisfy the balance
condition (a). It then conmstructs an excess demand correspondence as

D(p) 3 d(p) = !lwi -z Xy + Iy vhere x, and y, are consumer and

i’ 1 i
production allocations which maximize utility and profits respectively

at prices p . The mapping

pk + max{-dk(p), 0}
he(P) = 1+ 2max{-dl(p), 0}
L

can be shown to have a fixed point ; which obviously satisfies d(;) >0
so that conditions (a), (b), and (c) are satisfied by p and the corres-

ponding allocations {Ei] ’ [;jT .

Definition 1.2, Welfare Optimum: Let W[U(x)] = W[Ul(xl), voey Um(xm)]
be a concave increasing function of the Ui(xi) and consider the mathe-
+ Tw

matical program max W[U(x)] subject to T Xy " Ty <0,

j i
X, € xi (1=1, .c., m) , yj P Yj (=1, ..., n) . An allocation
{xt‘ , [y;} which maximizes the objective function subject to the con-

straints is a welfare optimum.



Negishi [19] has considered the important special case where the
wel fare function 18 linear in the utilities of agents
m

wiv(x)] = Eaiui(xi) ’ (ai >0, Eai
i=1

1)

and where the utility functions Ui(xi) are concave rather than quasi-

concave.

Definition 1.3. Negishi Welfare Optimum: The allocation resulting from

max L aiUi(xi) subject to the same constraints as in Definition 1.2 will
be called a Negishi Welfare Optimum (NWO). The oy will be called wel-

fare weights,

Theorem 1.2, Let the assumptions (1) to (4) be satisfied and let the wel-
fare function have the properties assumed by Negishi. Then,

(1) TFor any set of admissible weights « there exists a solu-

i 2
tion to the NWO satisfying conditions (a) and (¢) of the com-
petitive equilibrium,

(2) (Negishi [19]). There exists at least one set of strictly
positive ai for which the solution of the welfare optimum

and its dual satisfy conditions (a), (b), and (c) of the com-

petitive equilibrium.

1This is more restrictive than the general assumption of quasi-concavity
although, as Diewert points out in [2, p. 120], "from an empirical point
of view, it is impossible to distinguish concave from quasi-concave
preferences."



The proof proceeds by noting that any sclution of an NWO satisfles
all the equilibrium conditions, but not necessarily the budget constraints.
It then constructs an excess budget correspondence

Bi(@) 3 by (@) = pe(wy + ? eijyj - %;) where [xi1 s {yj} are optimal

consumer and producer allocations, corresponding to the welfare weights
a and p are Lagrangean multipliers assoclated with the constraints

Exi - Z‘yj - zwigo . The mapping

o + max{—bi(a), 01
gi(a) = ﬂa”+ maxl'—bi(a), 01}
4

can be shown to have a fixed point & which satisfies b(Q) >0, so
that there exists an optimal solution {;i1 y [;j} and the associated
multipliers ; which satisfy all the equilibrium conditions.

These definitions and theorems suggest a possible clagsification
of approaches to the computation of general equilibra.

(a) We will designate as direct computational methods procedures

which search for a p such that d(;) >0 .

(b) Indirect coggutation,2 on the other hand, involves searching
for the welfare weight vector such that b(a) >0.

Each of these approaches may furthermore be undertaken in two ways:

(a) It is possible to grapple with the general equilibrium as a
whole, in its direct or indirect form. This will be deécribed

as full format calculation.

2This terminology differs from Dixon's, who uses the term "joint maximi-
zation" instead of "indirect computation." It would be awkward to adopt
his terminology, since we use a "joint maximizing" procedure to find both
equilibrium p's and oa's .



(b} It is possible to seek to reduce the format of the problem
by obtaining analytical expressions representing the excess
demand and excess budget correspondences d{(p) and b(x)
and then to solve the systems d(p) >0 or b(x) >0 . This

is the reduced format computational method.

2, The Master Program of the Gemeral Equilibrium Problem

The concept of the master program of the general equilibrium prob-
lem prdvides a useful way of clarifying the relation between different
approaches to the computation of equilibria.

Pefinition 2,1. Master Program: The mathematical program max ¥ aiUi(xi)
i

-wi) <0,

(ai > 0) subject to f‘xi - E?wi -z yj <0, p'(xi-§ eijyj
X, € xi s yj ¢ Yj for all 1 and j will be referred to as the master
program of the general equilibrium problem. Remark that the master pro-

gram is simply the Negishi welfare optimum further constrained by the

conditionsg p-(xi- z eijyj-wi) <0.

Theorem 2.1. Consider the set of solutions {511 R {;51 , u, A of
the master program, where u and ) are the Lagrangean multipliers as-
sociated with the constraints T x - T vy " Tw, <0 and

p* - - . f u-=%kp , where

P (xi f eijyj wi) <0, respectively. If u p

k 1s a positive scalar, then for any cholce of « the allocations [§i1 ,

[;11 and the prices E are a competitive equilibrium,

Proof. 1In view of the Kuhn-Tucker-Uzawa Theorem (see (20}, p. 52), if

(;11 ’ f;jT is a solution, there exist u >0, Ey > 0 such that



(2.1) in-EYj-EwiSO 3 u-(?xi-Eyj"I‘.wi)=0
2.2 -b -l_ - v - . —hn-.- - v - = =
{2.2a-b) p (xi ;’eijyj wi) <0 ; Kip (xi ? gijyj wi) 0, i=1,..., m

and for xigx all {1, YjeY all j,

1 j

(2.3) Eaiui(xi) + us(¥ w, ot yj - xi) + iﬂhip-(wi'f‘.? Bijyj 'Xi)

<ET aiui(xi) +us(Tw, + ¥ Yy " Exi) + ;Ehir(wi*rz Bijyj '“1) .

Condition (a) of the equilibrium follows immediately from (2.1),

From (2.2.a) we see that the budget constraints are also satisfied.
If we show that Ui(xi) < Ui(;i) for every 1 , condition (b) of the
equilibrium will also be satisfied., If u = k; , note first that

kpT(W,+ T 8, ¥y, -%x,) =u(Yw,+%7y,-Ex,) =0 . Together with (2,2.a),
PR S B PR B

this implies that for every 1,

(2.4) F-(wi+ T8 =0 .

p ij;j “xy)

Now set ng; for all j, xi.:;i for all 1 except s and

b
u = k; : the first inequality in (2.3) implies then, for every X € Xs

(2.5) au, (x ) + (k+ 'is)E- (x, - %) <au (x) .

1f Xg satisfies the budget constraint of equilibrium condition (b),
then, using (2.4), it 1is easy to check that the second term on the left
hand side of (2.5) is non-negative, and hence, since o >0,

Ua(xa) < Us(;a) for all consumer allocations which can be attained by

congumer .



Finally, set yj = yj for all } except s , X, =Xy for all *
i and u = k; ; the first inequality in (2,3) implies, for every Yy ¢ Y8
.6 Y pe 0. )pey. .
(2.6) (k+ 2,0 )0Pwy, < (Rt TR0 0077,

Since (k+ T Kieis) >0, clearly E3ys 5_;-}; which proves conditién
i

(¢) of the equilibrium,

The following two corollaries clarify the theoretical implications

of Theorem 2.1,

Corollary 2.1.1 (tdtonnement in welfare weights space)., The vectors

{;11 s [;51 , u=kp obtained by solving the master program are an
equilibrium solution of the Negishi welfare optimum problem max SﬁOiUi(xi) ’

subject to f.xi - ? yj - z:wi <0, L Xi for all 1, yj € Yj for

all j , where the at are given the value oq = 1+ Ki/k) .

Proof. We will verify that all vectors X; e Xi ; Y. & Yj sy u>0

J
verify the saddle point inequalities

_ . - - _
(2.7) T OGU, (x,) + we(Sw Ty, - Twg) < T OU Gxy) U (Tw Ty - T x)

< T AU (x)) + ue(T viHT Y- Tx) .

That the second inequality of (2.7) is verified follows from the
fact that {;i1 , {;3} , u and A verify the second inequality of
(2.3). 1If the first inequality does not hold, then there exists one

- _ % -
Y, ¢ Y, or one x X such that uy, > uy, or ogUs(xs) uex

> O:UB(;;) - 63;; » The first possibility is excluded since ;; iz a
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profit maximizing allocation at prices p = . u for s = 1, 2, ..., n,
Assume that the second possibility holds; then, given the definition of

cx: , it must follow that U (x) - (u+AP)*x, > QU (x) - (u+Ap)x, »

Setting yj = yj for all j and X, = %Xy for all i except s , this

contradicts the first saddle point condition of (2.3).

Corollary 2.1.2 (tdtonnement in prices space), The vectors {;;1 , {;jl ,

¥ where AI = (iii—k)ﬁai and where {;11 y f;j1 y u = kp , M are
obtained by solving the master program, are & solution of the mathematical

program max T Ui(xi) subject to ;-(xi~ T
i ]
yj ¢ Yj for all 1,j .

Proof. Subject to appropriate change of notation, the proof is similar

to that of Corollary 2.1.1.3

From a computational point of view, it is convenient that the mathe-
matical programs considered in the Theorem and its two Corollaries can be
set up in the same basic format, The Negishi welfare optimum problem
of Corollary 2.1.1 can be obtained by introducing slacks into the budget
constraints of the master program. The values of the slacks then give
the values of the excess budgets corresponding to each chosen value of
o . Likewise the program of Corollary 2.1.2 can be obtained from the
master program by introducing slacks into its resource balance constraints;
the values of the slacks are the excess demands corresponding to each

cholce of p .

31t is useful to note that this mathematical program is decomposable.
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From a theoretical point of view, the corollaries suggest a way
of computing the excess budgets and excess demand correspondences involved
in the proofs of existence of equilibrium by the Negishi indirect approach
and by the more usual direct approach. Also, Corollary 2.1.1 indicates
how the Negishi equilibrium weights can be computed from the solution of
the magter program, Corollary 2.1.2 shows how their inverses, the mar-

ginal utilities of income, can be computed from the solution of the same

program.

3. Computation by the Scarf-Type Fixed Point Algorithms

The full format general equilibrium problem, as inspection shows,
has an unusual structure which does not lend itself readily to computa-
tion. H. Scarf was the first to suggest a general algorithm which is
capable of solving it. His beautifully elegant procedure not only is
sure to find equilibrium solutions to any degree of appr&ximation; but
it has alsc provided a new approach to proving existence of such solu-
tions and has ylelded new information on the number of equilibrium points,

Scarf's algorithm is unfortunately costly to use. Even for small
problems it involves examining excess demands (or excess budgets) at hun-
dreds of points on a grid of prices (or welfare weights). Using the full
format approach, it would be necessary to solve hundreds of times either
the profit and utility maximizing problems of individual producers and
consumerg (in the direct computation), or the welfare optimum problem of
the indirect approach., It would involve a large computational burden
to solve problems other than classroom examples, and this explains why

4
the procedure has not so far been applied in a plamming context.
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4, Reduced Format Computation

It may happen that the form of the production and ut{lity functions
makes it possible to reduce the full format problem to a set of equations
involving only prices or only welfare weights. For direct computation
this would involve solving analytically the mathematical program of Corol-
lary 2.1.2, to obtain expressions defining the optimal allocations as
functions of prices; these expressions could be inserted into the excess
demand constraints (a) of the general equilibrium problem, giving the set
of conditions d{p) > 0 together possibly with side constraints, which
are discussed below. The system can then be solved for equilibrium prices,
which will determine the equilibrium allocations.5

For indirect calculation the reduced format of the system is ob-
tained by solving analytically the mathematical program of Corollary 2.l.1.

The optimal allocations and shadow prices are then functions of the welfare

4See H. Scarf [23], (24]. Mainly Eaves [7], [8] andMerrill {17] have
proposed notable improvements of Scarf's original procedure, making it
possible to start from any point of the price or welfare welght grid,

and to refine the grid size as equilibrium is approached. These refine-
ments have not so far improved the procedure to the point where it would
become applicable to large realistic problems (see e.g. the computational
experience reported in Chapter 3 of Wilmuth's dissertation [32])., 1In
case of full format indirect or direct computation, every new mathemati-
cal program would differ very little from the previous one, if the grid

with which the pj or OJ vectors are chosen is small enough. This
implies that very little computation would be necessary to go from one
optimal solution to another. However, experience with relatively large
linear programs shows that it takes a few seconds to check if a former
solution is still optimal. For example for our problem, using the very
efficient Apex I linear programming computer code developed by Control
Data Corporation, it takes almost 6 seconds CP time on a CDC 6400 to

check if a basis is still optimal, for a problem with some 400 constraints.

SAB is well known, the excess demand functions are not independent. Ome

of them can be dropped, while it is convenient to normalize prices.
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welghts o , Substituting these into the excess budget constraints gives
a set of conditions b(x) > 0 together possibly with side constraints
which are discussed below. This system can also be solved for equilibrium
welghts, which determine the equilibrium allocations and prices.6

Even when format reduction is feasible the problem obtained may
turn out to be quite complex. The resource balances are inequalities,
and equilibrium prices of goods In excess supply must be zero. The non-
negativity constraints on consumption and production are transformed by
the reduction procedure into complicated non-linear inequalities involv-
ing prices.

That such side conditions can be neglected may be known on empiri-
cal or theoretical grounds. 1In empirical models the list of free and
non-free goods is generally known in advance; the prices of free goods
should be set equal to zero and attention confined to resource equations
involving the non-~free goods only, It may also be known in advance that
certain agents do not consume certain goods, so that their demand can
be disregarded. The knowledge that all agents require certain goods (e.g.
food) makes it unnecessary to include non-negativity constraints for con-
sumption of these goods.

The mathematical properties of the problem may also ensure that
inequality and/or non-negativity constraints may be dropped. For example
with input-output technologies it is known that under quite general con-
ditions non-negative final demand implies non-negative production. Like-
wise some utility functions like the Cobb-Douglas have the property that

the induced demand for a good rises indefinitely when its price tends to

6Likewise, the excess budget constraints are dependent and the ai's
can be normalized.
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zero; such a good cannot be a free good, and the corresponding resource
balance may be treated as an equation,

Altogether we feel that format reduction is a promising approach
only when for empirical or theoretical grounds it is clear that resource
constraints may be treated as equations, and non-negativity constraints
on variables are superfluous. The range of cases for which this is true
1s s0 narrow that the approach is mainly applicable to illustrative cases.

One final remark is in order. In the favorable cases where the
reduced format representation of the general equilibrium problem involves
(under the direct approach) a system of r equations in r prices and
(under indirect approaches) a system of m equations in m welfare weights,
it may be worth comparing the number r of goods and the number m of
consumers. For there is a presumption that the problem with fewer equa-
tions and unknowns is easier to solve than the other. There can of course
be exceptions to this rule. And there 18 no reason to think that in the
general case, when all conditions of the problem have to be taken into
account, the format which involves fewer varisbles will be easier to tackle

than the other.

5, Three Full Format Computational Procedures

Apart from Scarf-type fixed point algorithms, there exists no method
which is guaranteed to find the solution of general equilibrium problems.
It is well-known, however, that in solving non-linear problems engineers
and economists often use algorithms which are not guaranteed to converge,
Such algorithms usually include a number of options, as well as parameters
which may be set arbitrarily by the user, and this makes them capable

of solving successfully even ill-structured problems. Experience shows
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that the chances of convergence are best when the algorithms can be started
close to the final solution of the problem;7 The three algorithms described
in this section do not have the mathematical elegance nor the convergence
properties of Scarf-type procedures. But they have proved surprisingly
effective in solving one rather large and realistic general equilibrium
model, and seem flexible enough to provide a grip even on problems which
prove more difficult to solve.

All three algorithms involve the same Initial step, based on the
straightforward idea that if we solve the program with prices ; and
welfare weights @ not too far from equilibrium the result will be a
solution with dual prices u close to ; and to equilibrium prices.

Program Pl is defined as

Program Pl (Near Equilibrium Program): max E.aiUi(xi), (éi > 0) sub-

jact to f.xi-ZWi-Ey <0, p-(xi-‘.ze -wi)go, ¥, X

y .
RIS ;173 1%

for every i and yj e Y for every j .

i

The first computational procedure follows immediately:

Computational Procedure I (Direct Computation in Prices Space)

- Step 1: Set the values of 3, ; >0,

~ Step 2: Solve a mathematical program P1. Check whether u s

7An example of such a method is the Gauss-Seildel algorithm for solving
systems of non-linear equations [15]. Other examples are given in a
recent paper by McKenzie [18]. 1In real l1ife economic problems one has,
in general, a good guess at the final answer. In macro models, for ex-
ample, the iterations are started by giving to the variables the value
of the last observation. And, certainly, one would suspect an error in
the computer program if the 1976 values of the variables were very dif-
ferent from the 1974 observations.
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the optimal values of the Lagrange multipliers asso-

clated with the ¢ xi- Tw, -~ % yj < 0 constraints
i j i

of Pl are proportional to ; .

[ .

- Step 3: Should this be true, we can consider ; = ku as a fixed
point of the mapping P : p = p . If this is not the

case, put ; =u and go to Step 2.

In choosing initial values of prices it is reasonable to set »p
equal to observed market prices. The initial Ei could be deduced by
solving the utility maximization problems of equilibrium condition (b)
on the basis of these prices and observed production levels, and setting

3 = llii , Where X, is the marginal utility of income so obtained.

i i
We have found that a rough guess of the proper value of ai was good
enough in practice.

The second Computational Procedure 1s based on Theorem 2.1 and

Corollary 2.,1.1: it tries to make use of the steps of Computational Pro-

cadure I and to change at the same time the welfare weights ai :

Computational Procedure II (Mixed Direct/Indirect Computation in the

Space of Prices and Welfare Weights)
- Steps 1 and 2: are the same as in Computational Procedure I.
- Step 3: If u # k; , Bet 3 = u as in Procedure I. Also com-

pute a new value for &, as suggested by Corollary

-

2,1.1; i.e. choose ai = ai :

convention, the left and right hand side Ei are the

a + ii/ﬁ) where, by

old and new values of the wvariable; Xi is the value

of the earlier optimal value of ii . It is reasonable
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to set k=T EE/E ;L y but in practice since the
L

=

values of u and p are close together we found that

k =1 gave good results, Go to Step 2,

We now come to the third procedure, based on an equivalent formu-
lation to the welfare optimum; define Program P2:
-

Program P2 (Pareto Optimum): max Ul(xl) sub ject to Ui(xi) > Ui(xg)

(L=2, sve, m) , Tx, ~Tw, - ? yj <0, x, ¢X, for every i,

1 i { i I i i
yj ¢ Yj for every j ; Ui(xg) is the value of consumer's i nutility

when he consumes a given bundle xg .

Clearly, to every optimal solution of P2, there corresponds a solu-
tion of the Negishi welfare optimum in which Oi =1 and the weights
Oy weey O of which are the dual values picked up by the Ui(xi) > Ui(xg)
congtraints of P2, Thus finding the fixed point in the welfare weights
space is the same as finding the Ui(xg) assoclated to the equilibrium
solution of the welfare optimum.

Since there are some reasons to believe that the utility frontier
in the welfare space has a flat shape, a very small change in the wel-
fare weilghts may induce large welfare changes; and, in a sense, it may
seem easier to control the mapping from the excess budgets into the wel-

fares, rather than the ugual mapping from the excess budgets into the

welfare weights. We now define:



18

Computational Procedure IIT (Indirect Computation in Utility Space).

This procedure is inspired by Corollary 2.1.1.

~ Steps 1 and 2: are the same as in Computational Procedure I,

A

Step 3:

Step 4:

Step 5:

Step 6:

Set ; = u where u are the dual prices given by the
solution of the last mathematical program solved, and

compute excess budgets bi(P) = p.(wi4-z gijyj"xi)

at these prices. If the excess budgets are negligibly

small, go to Step 6 (or end). If not go to

Compute the welfares ﬁi = Ui(ii) of the last mathe-

matical program solved, and set ﬁi = Ei + uibi(;) ,

where, by convention, the left and right hand side ﬁi

refer to the old and new values of Ei .
Set up a new program P2, solve it, and go to Step 3.
(Optional) as a way of refining the approximation, set

up a program Pl where the & and ; vectors are the

dual solutions of the last Step 3 program.

reasonable choice of by is suggested by the fact that if ii

is the marginal utility of income, a small unit increase in utility re-

quires, if prices are constant, an increase llii = 31 in spending,

The procedure is quite robust, however, and in our case we found that

setting uy = 1 gave good results.
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6. Analytical Representation of Production Sets, Consumption Sets, and

Utility Functions8

We have used up to now an abstract set theoretic representation
of production and consumption sets, which has the advantage of focusing
attention on the resource and budget balances which lie at the heart of
the general equilibrium problem. In actual computation it is necessary
to be more specific. It is well-known that production and consumption
sets can be represented by functional inequalities.g Computer applica-
tions require functional rather than set theoretic representations of
production and consumption sets.

It is obviously possible to implement procedures I, II, and III
using non-linear programming codes. For practical reasons the choice of
functions must be limited to analytic functions which computers can under-
stand, A certain approximation error is therefore necessarily involved
in the representation of the general equilibrium problem; this error is
of course small compared to our ignorance of the structure of the problem.

In fact this ignorance is so great that using linear rather than
non-linear programming involves no meaningful loss of accuracy. The
former takes advantage of the existence of remarkably efficilent matrix
generation.and solution codes which can be used to set up and solve prob-
lems; furthermore, in spite of a widespread opinion, using linear programming
involves no loss in generality.

It i3 well-known that any convex production set can be approximated

8See also [13] and [14] for a more comprehensive discussion.

9See e.g. T. Negishi [19],
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by the polyhedron generated by a set of linear inequalities. Under con-
stant returns the production sets are cones and the system of inequali-
ties has the form specified by activity analysis.

It is less well~known--but by no means novello--that any concave
utility function can be represented by the r-dimensional efficient fron-
tier of a convex set generated in an 1+l spéce of which the coordinates
are (U, Xps eres xr) » Such a function is represented by max U subject

to
x-W>g, x>0

where £ 18 an s-column vector of ones, {G&] is an s-(r+l) matrix
of which the rows are the coefficients of the s hyper-planes bounding
the convex set and g 1is an s-vector of Intercepts of the hyperplanes
with the U-axis. For the case of geparable utility functions it is more

convenient to use a stepwise approximation.

8
r r _
: < .
max jzi kzigjkxjk subject to 0 < xjk < X5k all j, k

where is the marginal utility of commodity 3 over the step x_, ,

gjk ij
bounded above by ;5k ; another special case is the homothetic function

which may be represented by the activity analysis representation max Y<zj

subject to =z, > 0 and T gjkz < x

A/ 5 j

commodities on the indifference surface U(x) =1 .

K where the gjk are baskets of

From a theoretical point of view it is clear that linear constraints

can represent production and consumption sets to any degree of approximation.

10See e.g. Diewert [3].
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The price of greater precision is of course a greater number of constraints,
80 that an accurate model might be very costly. This is especially true
for production and consumption sets which cannot be described by separ-
able or homothetic functions. In practice what matters of course is be-
havior in the neighborhood of equilibrium: it is not necessary to des-
cribe the economy accurately elsewhere. Tdentifying a region within which
equilibrium is expected to lie and setting up constraints which describe
that region is a crucial part of the construction of the model. This in-
evitably involves trial and error, in which additional constraints are

added as a result of preliminary experiments with the model.11

7. Computational Results

Computatlons have been made using an international equilibrium
model described in [14]. This model includes some 360 constraints and
400 upper or lower bounded variables out of the 880 variables in all.

The model was carefully constructed to provide a believable picture
of the world economy. It computes intermational equilibrium prices of
close to 50 traded goods among four groups of countries representing the
non-socialist world; the total number of equilibrium prices computed
ig however much larger. The results reported were obtained for model
variants which corresponded to interesting alternative states of the world
economy. Among others, various hypotheses of free trade have been examined,

which we hope to describe in a later paper.

llThis is of course a feature of all linear programming models and not
of the general equilibrium procedure per se. In practice we found that
in the trial and error phase it was sufficient to solve the '"near equi-
1ibrium" model P1, using general equilibrium procedures only to refine
the solution obtained.
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The computations were run on a CDC 6400 computer on which a canned
verslon of the linear programming code Apex I was available. Tt is use-
ful, at this stage, to go into some detail concerning the code described
at full length in [1]. This will shed some light on the interpretation

of the performances.

7.1, Some Bagic Features on the Computer Program

Apex I can be used as such, by simply submitting to the code any
linear program in a suitable form (MPS format) and by specifying how the
problem should be solved: direction of optimization, name of the objec-
tive function, name of the right hand side and the bounds vector, type
of desired printed output; a precise description of the files on which
are located the various components of the problem--input data, eventual
revision, advanced basis, etc...--should, of course, also be supplied
to the computer, The optimal solution can then be transferred onto a
magnetic disc which is readable by a user supplied FORTRAN program (USP).
This program can compute whatever is needed, change some of the data of
the problem and submit it for a new solution. The general scheme is thus
a series of as many (Apex — USP = Apex) Ilteratlons as needed.l2 0f course,
such a procedure requires a fairly large number of files stored on disc
to go from one major iteration to the next; this means also that at each
of these wmajor iterations the linear programming problem matrix must be
reconstituted and the optimal solution, including the optimal basis, has

to be stored on an external (not in central memory) file.

12Thi.s notion of iteration should not be confused with the usual simplex

iteration. To avoid confusion, we use in the sequel the term "major iter-
ation" as opposed to "simplex iteration."
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Apex I can also be used as a callable subroutine. This means that
the user has his own FORTRAN program and wants to employ special sub-
routines of the Apex I system, for instance, the optimization subroutine.
With this option, the problem can reside in central memory during the
major iterations; this simplifies the management of the various files,
since they stay in central core, and also reduces the computing time:
there is neither reconstruction of the constraints matrix, nor coastruc-
fion of an output file at each major iteration. Of course, there is no
free lunch and this way of using Apex requires much more programming work
and skill; in fact, it amounts to updating and recompiling the partly
FORTRAN~-written Apex I program,

We chose to use the first option; it is clear that 1if several dozens
of runs have to be made, the second option would be preferred. We shall
try to give an idea of the possible gains in computing time, using the
second option.

The computer programs have been writtenm in such a way that every
one of the computational procedures required a maximum of eight major
iterations, the first of them being in each case the following Pl type

program: max L Q.U ,(x.) subject to Ex, - Ty, - Lw, <0,
A A A TG B

E.(xi- ? eijyj -wi) <90, X, € Xi s yj € Yj , for every i and j .
Since in the empirical model constructed prices were normalized to cne,

the initial guess ; is a vector of ones; likewise, utility is almost
equal to income, so that the initial value of a, was also set equal

to one.13 The following seven major iterations for Procedures I and II

13The data concerning this first iteration will not be given; they are
not very meaningful since anyway the computations start with an advanced
basis and not from a completely artificial ome.
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are described in enough detail in Section 5 of this paper. For Procedure
'III there are six iterations of the program P2-type; the eighth and last
iteration is a Pl program constructed according to Step 6 of the proce-

dure.

7.2. Comparative Performance of the Procedures

The three procedures discussed in Section 5 have been tested on
five different variants of the same model.14 The main results are sum-
marized in Table 1 which gives for every variant a measure of the speed
of convergence and the total number of simplex iterations needed. The
measure of the speed of convergence is taken to be the sum of absolute
values of excess budgets (l.e. in this case the balance of payments) in
millions of U.S. dollars. It may help the reader to evaluate the conver-
gence to know that in variant 1 ﬁhe equilibrium value of world imports
is 178.1 billion.

In all cases, convergence was achieved more or less quickly, ex-
cept for run 2 with Procedure I, which might have diverged if iterations
had been added. On the average the procedure in the utility space (Pro-
cedure III) performs best with an average of 130 simplex iterations to
reach equilibrium, against 165 for Procedure I and 172 for Procedure II.

The number of simplex iterations to achieve equilibrium is small anyway

14The variants were chosen for their economic meaning and for their
value in testing the robustness of the procedure to sharp changes in
starting values, The problems are {ordered from A to L in Tables 1 and
2): reference solution; free trade in Latin America; free trade in Asia;
free trade in Africa; free trade in the developing countries; world-wide
free trade; free trade in the developed world; free trade in developed
and 50% tariff cut in developing countries; effects of the oil crisis;
effects of the o0il crisis I and recession in developed world; effects

of the o1l crisis II; recession in developed world, without oil crisis,
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compared to the solution of the Pl-type linear program (between 800 and
1000 simplex iterations to achieve near equilibrium), and 1s only loosely
related to the initial '"distance" from equilibrium: compare for instance
run 1 with run 5.

From a practical point of view it is Important to note that the
"near equilibrium' prices and allocations obtained by solving problem
Pl were indeed close enough to equilibrium to make it possible to use
only the near equilibrium model in the initial exploration of the system,
General equilibrium did, however, diverge from the preliminary near equi-
1ibrium solutions, especially for the values of excess budgets. As noted
above, obtalning true general equilibrium solutions was little more costly
than remaining satisfied with calculations which stopped at the near equi-
librium stage.

The results shed light on the idea stressed by P. Dixon [4], (5]
(and also by Ginsburgh and Waelbroeck in an earlier paper [11] written
before they knew of Dixon's work) that if the number of agents is less
than the number of goods, indirect computation should be cheaper than
direct computation, because the fixed point research is restricted to
a smaller dimensional space. Procedure III is indeed cheaper than the
others, but the gain is small, As there did seem to be a gain and our
funds were limited, the other methods were momentarily not further ex-

plored; we preferred to gain more insight into Procedure III.

7.3. Computations] Procedure IIT

Twelve variants of the model have been computed (this includes
the five we have spoken of earlier). The results are reproduced in

Table 2 which, basically, gives the same data as Table 1: column (1)
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contains the sum of the absolute values of the excess budgets during the
iterative process; column (2) gives the number of LP simplex iterations;
for each problem we indicate also the total time taken in central process-
ing seconds (input-output time is negligible since Apex works in core)

and the time taken for solving the various linear programs involved; the
difference between the two numbers is due to:15

- the time taken for the construction of the LP matrices, which
amounts to some 63 seconds per problem; this time could be saved
if Apex was used as a subroutine, so that the problem would al-
ways remain in the memory;

- the time taken to prepare the final complete solution of the
linear program: 7 seconds CP time;

- the time for reading each LP solution, computing the excess
budgets and revising the data of the linear program before going
to the next major iteration: 32 seconds CP time.

It can be seen that, even when departing from very far from equi~
librium (cases I and J), convergence is achieved (case J would have needed
2 or 3 more iteratioms) and that computing time is far from being prohi-
bitive, once a solution of the linear program including budget constraints
is available. As we have already written, this amounts to a thousand
simplex iterations for our model; however, when alternative solutions
are computed, we can start from a fairly good basis, for instance the

one for the reference solution.

15These numbers are averages: the variance is, however, very small (about
2 or 3 percent around the mean).
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7.4. Dealing with Convergence Difficulties

We do not know of a convergence proof of the procedures described,
nor do we think that such a proof is possible.16 That such procedures
are likely to behave well is suggested by heuristic reasoning; for ex-
ample, common sense suggests that increasing the welfare weight of one
consumer in a Negishi welfare optimum will increase the excess spending
of that consumer and reduce that of the others, The theoretical litera-
ture, however, devises counterexamples which show that unexpected behavior
is possible. Close examination of these examples shows that they imply
perverse income effects. If relative prices do not change, shifting wel-
fare weights in favor of a consumer leads to a shift in allocation in
favor of that consumer in a way which increases his excess spending but
reduces that of the others. But if prices change, this tendency may be
counteracted by income effects reflecting differences between the spend-
ing patterns and initial resources of the various consuﬁers.

We have not encountered convergence problems in solving our model,
and have therefore not had a chance to grapple with such difficulties.
The algorithms are, however, designed in such a way that it is possible
to govern their behavior to a certain extent, by control parameters.,

Also, there exist three alternative procedures17 and this also offers

16It is not difficult to think of conditions which guarantee convergence.
For example, as proved by Mantel [16] and Dixon [4] if in the indirect
procedure increasing one consumer's welfare weight reduces the excess
spendings of other consumers the indirect procedure converges (the argu-
ment is the same as that used to prove convergence of price titonnement
in the gross substitutes case). As Mantel points out, this is not a use-
ful condition for it is not possible in general to check in advance
whether the condition holds.

17And it is not difficult to imagine several others.
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scope for a trial and error process of experimenting with alternative
algorithms., As all the procedures use the same master problem format
this would not be difficult in practice.

The most powerful approach is to use a true gradient procedure
instead of the heuristic adjustment of prices, welfare weights, and re-
quired utility levels of the three procedures. M. Osterrieth [21] has
tried this approach to compute the solution of the well-known unstable
equilibrium problem described by Scarf [22]. Mantel's paper [16] and
numerical experiments show that the simple procedures described in Sec-
tion 5 do not converge for this problem. Osterrieth has found that a
gradient method which adjusts welfare weights to reduce the sum of the
absolute excess spendings yields a solution quite quickly.

For linear programming problems gradients cannot be obtained ana-
lytically. But quasi-gradients could be obtained by changing welfare
weipghts one by one and observing the effect on all excess budgets. This
would be an expensive procedure. Extracting the solution of models is
not a game of biind man's bluff however, and the builder of a realistic
model usually has quite a bit of insight into lts properties, If dif-
ficulties are encountered, concentrated thinking on what the model is doing
and why, will probably be the cheapest and most effective way of under-
standing how the algorithm (or the model) should be modified to obtain

the desired solution.

7.5. Representation of Price Distortions, External Economies

The solution procedures alternate between '"Revision phases'" in
which prices, welfare weights, or minimum utility levels are revised,

and "Solution phases' in which a (linear) programming code is used to
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compute new shadow prices and allocations. It is important to notice
that the Revision phases give an opportunity to change other parameters
of the problem. In the model solved this possibility was used to revise
ad valorem tariffs to keep them proportional to prices. Income taxes

and other indirect taxes could be treated in the same way, and some types
of public spending could be connected by appropriate functions to the
values of variables of the model, External economies and diseconomies
could also be dealt with: for example it would be possible to represent
increages In efficiency which are associated with increases in the size
of new industries, provided that these increases accrued to producers via
external effects. Finally, some types of monopoly behavior could be
represented by using the Revision phase to change the prices of the mono-
polist in response to sales and to shadow prices of other goods, while

in each Solution phase purchases from the monopolist would be treated as

purchases from outside the system.



TABLE 1:

Comparative Performances of the Procedures

Iterations

A B E F K
1 11 IIT I II ITT T IT IIT I II TII 1 II IT1
Major Iteration 1{3184 | 3184 | 3184 |10367|10367|10367[17900|17900|17900]13771|13771{ 13771 8260 | 8260 | 8260
2| 3342 | 3342 | 1154 | 2322 | 2322 | 1742 | 3751 | 3751 | 2794 | 4405 | 4405 | 3237 | 2917 | 2917 | 480
311680 11811 ] 930 | 714 | 539 | 799 | 629 | 414 | 1088 | 210 | 334 | 384 | 919 | 969 | 482
4) 270 | 501 | 584 | 168 | 389 | 152 | 137 | 30 | 180 | 24 | 70 | 49 | 931 | 132 | 134
s 70 | 214 | 359 | 38 | 294 | 142 | 52 3 |18 | 5 5 7 | 18 | 40 | 25
6l 18 | 15 | 72 | 185 | 70 | 40 | & 3 4 2 1 3 5 | 14 | s
7] 3 2 | 26 |18 | 12 | 5 2 3 2 1 1 2 1 | 10| 1
8| 3 1 1 | 188 | 2 2 1 3 2 1 1 1 1 2 2
Number of Simplex| ;5. | 475 | 133 | 231 | 239 | 160 | 166 | 147 | 153 | 110 | 120 | 121 | 164 | 182 | 94

Each column gives

the sum of the absolute values of the excess budgets during the iterative procedure.

o¢



TABLE 2:

Per formance of Procedure III

A B C D E F
(1) (2) (1) (2) (1) (2) (1) 2) (1) (2) (1) (2)
Iteration 1 3184 10367 6370 5750 17800 13771
2 1154 51 1742 73 2899 67 1246 50 2794 101 3237 94
3 930 33 799 44 959 49 232 18 1088 37 384 19
4 584 10 152 25 124 7 212 8 180 8 49 0
5 359 10 142 6 54 0 50 3 18 0 7 0
6 72 0 40 ¢] 1 0 25 0 4 0 3 0
7 26 0 5 0 1 0 12 0 2 0 2 0
8 1 9 2 12 1 6 1 7 2 7 1 8
Total Simplex Iterations 113 160 129 86 153 121
Computing Time
Total -307 332 319 309 327 310
of which LP 205 230 217 207 225 208

Column (1) gives the sum of the absolute valuesof the excess budgets.

Column (2) gives the number of simplex iterations in every major iteration.

1¢



TABLE 2 (continued)
G H I K L
¢ (2) (1) (2) (1) (2) 1 (2 (1) (2) (1) (2)
Iteration 1 4069 6824 34740 27202 8260 6414
2 2071 54 1672 52 35600 152 33246 168 480 61 531 56
3 854 28 296 10 9350 i18 5758 138 482 10 76 1
4 199 6 15 0 1350 50 1910 26 134 11 2 0
5 570 9 2 0 758 11 1008 29 25 1 1 0
6 189 ] 1 0 266 1 210 13 5 0 1 0
7 60 0 1 0 90 0 204 3 1 0 1 ]
8 2 11 1 10 2 14 315 15 2 11 2 9
Total Simplex Iterations 108 72 345 392 94 66
Computing Time
Total 313 265 404 451 312 230
of which LP 211 163 302 349 210 128

[4%
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