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EXAMPLES OF PRODUCTION RELATIONS BASED ON MICRODATA*

by

Tjalling C. Koopmans™*

1. INTRODUCTION

The view has been expressed by many that a meaningful capital
theory can and should be developed without ever defining an aggregate
capital index. A fine prototype of this approach is Malinvaud's now
classical paper of 1953. The same banner has been unfurled, though not
with full identity of viewn, in Cambridge, England, and in Cambridge,
Massachugetts.

With princely unconcern econometricians have continued to fit
aggregate production functions approximating an aggregate output index,
for an economy or a sector, by a function F(L,K) of aggregate labor (L)
and capital (K) input indicea. When the matter of the logical founda-
tions for such a construct is raised, words such as "parable" or 'metaphor"
are pressed into service,

Coexistence of loglically unconmected or even incompatible approaches
makes for a rich science, Part of this richness lies in the challenge

to find points of view that may tie together what appear to be competing

*Paper prepared for the conference on '"The Microeconomic Foundations of
Macroeconomics, " held by the International Economic Association at S'Agaro,
Spain, April 21-26, 1975,

**Research supported by grants from the Natiomal Science Foundation and
the Ford Foundation, I am indebted to Katsuhito Iwai and Herbert Scarf

for valuable comments.
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approaches. This paper does not attempt to arrive at a definite stand

on the issue of capital aggregation, Its more modest purpose is to select
a few pleces of work in the literature that have a bearing on the prob-
lem, to describe their principal ideas in a summarizing way, and to com-
ment on such insights as they may give in the problem of aggregating pro-
duction relations. The selection is avowedly subjective, and leaves out
some important contributions already extensively discussed in the litera-
ture.

There are two other selfimposed constraints. Ome is the acceptance
of that shadowy notion of perfect allocation that is subject to two seem-
ingly opposite interpretations: that of perfect markets guided by com-
plete information and perfect foresight, and that of perfect planning
possibly guided by appropriate shadow prices. This constraiat is adopted
on the hunch that aggregation is simpler within it than without it, while
what is learned in this way may still be a worthwhile starting point for
the study of more complicated situations. The constraint is applied to
that part of the economy whose aggregation is under di{scussion, and not
necessarily to the rest of the economy. It may also be applied to the
future under conditions showing that it could not have held in the past.

The second constraint arises from a preference for the notion of
elementary processes &8 the building blocks from which production rela-
tions are constructed. In the simplest case each process is defined
merely by the ratios of inputs to outputs in any utilization of the pro-
cess. Use of this simple linear case implies an assumption of constant
returns to scale within any one process, possibly subject to an upper
bound set by a capacity limit. The assumption of a finite number of

processes has the advantage that the micro-data that describe technology
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in detail often are of this nature. Also, algorithms for marshailing
such data to answer broader questions are évailable. Finally, cases of
joint production can readily be included in this way. Generally speak-
ing, however, the discrete representation of processes is more suited
for the industrial sector than for agriculture. 1In the latter case,

the differentiable production function normally employed for aggregate
relations may well be the appropriate form to represent a family of ele-
mentary processes that allows continuous substitution of one factor of
production for anmother. Production relations in which the two forms are
combined may, of course, be most appropriate in some cases.

In Section 2 we reason from a given size and composition of the
capital stock avallable to each productive unit and held constant during
the single period considered. The object of the analysis fs to derive
the production function in the space of current inputs and outputs implicit
in efficient utilization of its "own'" capital stock by each unit. The
characteristics of these stocks find expression in the shape of the pro-
duction locus, but do not -explicitly appear as variables. 1In this con-
text, therefore, the term aggregation refers only to the fact that one
production relation for the whole is derived from a number of simpler
relations for the parta. There is no attempt yet to reduce the number
of variablea by the formation of suitable index numbers. Rather, the
number of relations isg reduced to one, using the assumption of internally
efficient utilization (or in some cases non-use) of the individuvally con-
trolled pafts of the capital stock.

In Section 3 the size and composition of the total capital steock

do explicitly appear in the model, and can change over time. However,
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the attention concentrates on the search for a capital stock that if
initially given does not change (is "invariant") as a result of optimi-
zation of the production path for capital goods and congumption goods over
an infinite horizon. Implied in this optimization is that not only the
use of individually controlled parts of the capital stock, but indeed

the size, composition, allocation and use of the total stock are optimally
chosen in a sense to be defined in Section 3. The ideas of Section 3

are pregsented with the help of a simple example.

Section 4 discusses how such an invariant capital stock may depend
on the discount factor for future utility flows that enters into the op-
timality criterfon for paths over time. While normally a larger discount
factor (a smaller discount rate) is associated with g larger invariant
capital stock, a aimple example of the reverse relationship is given.

An Appendix has been added after the $'Agaro conference, to elabor-
ate on statements made in the discussion in response to comments and ques-
tions by a number of participants. In particular the Appendix indicates
that, in a counterintuitive example of an invariant capital stock that
is larger when the digcount factor is smaller, that invariant stock 1is
not unique, is not stable under small changes in the initial capital
stock, and is bracketed by two other invariant stocks each of which is

stable.
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2. ONE-PERIOD PRODUCTION RELATIONS

Consider a period short enough so that the size and composition
of - the stock of fixed capital can be regarded as given and constant with-
in the period. The discussion concerns itself with an aggregate or whole
that may be interpreted as a branch of industry, a sector of the produc-
tion economy, or the entire production system of an economy. We are look-
ing for a procedure that derives the "short-run" production function for
the whole from production possibility data associated with the parts
(pleces of equipment, departments, plants, firms, or branches of industry)
that together make up the whole. In keeping with the short-run point of
view, we allow (but do not insist on) an interpretation in which the pos-
sibility of transfers of capital goods between parts during the period
is ruled out,

The locus classicus is a beautiful brief paper by Houthakker (1955).
Variants of his procedure were developed by Levhari (1968) and K. Sato (1969).
A fuller and more systematic treatment is given by Johansen (1972) in an
important book in which the various production function and supply function
concepts are defined, are related to each other, and to empirical data.

Houthakker, Johansen and Levhari represent the production possibilities

inherent in the capital stockof any given part by aprocess vector in the space of

input and output commodity flows. Besides indicating the ratios of in-
puts and ocutputs by the ratios of its componenta, the process vector is
given a length expressing the absolute inputs and outputs corresponding
to full-capacity use of the capital stock for that part. Then, as long
as the capital stock is held constant, the collection of process vectors,

one for each part, is all one requires for the derivation of the sghort-
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run production function for the whole. Information about the physical
composition of the capital stock available to each part and the processes
involved 1in 1its production are needed only at a later stage of analysis
where changes In the capital stock are introduced.

We have argued above that, in regard to induétri;I production, it seems
more suitable to treat the number of parts represented by process vectors
as finite, but often large. Houthakker, Levhari and, in his Chapters
3, 4, 5, Johansen approximate this discrete collection of vectors by an
infinite number of process vectors arranged in a smooth frequency distri-
bution over the entire space of inputs and outputs, or over ascme gubset
of this space that may be of lower dimensionality. This has the advan-
tage that each individual process may be thought of as operating only
at a level one or zero.

Here I shall use a finite number of process vectors, as is done
by Johangen in his first exposition of the short-run production function
(Sec. 2.4) and in his applications to the Swedish wood pulp industry (Sec.

8,7) and the Norwegian tanker fleet (Ch, 9). As already explained, let
h] I

in this case the capacitated process vector a” = (al, 85) eves ai) rep-

resent inputs and outputs under full utilization of the capital stock
of that part. A scalar utilization factor xj can then be applied to
b

to represent the input and output flows at fea-

the process vector a

sible activity levels by the scalar product

= (xjai, xja%, cesy xjag) ’ 0< X <1l.

[
il

Figure 2,1 {1llustrates the construction of the short-run produc-

*Figures 2.1 and 2,2 are found on pp, Al, A2 at the end of this paper.
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tion function in the simplest case of one input and one output, This
case could serve as a first approximation for a collection of base-load
power plants burning clean coal (if we include labor with the capital
stock). Process vectors al, az, a3, aA might represent plants of in-
creasing age with decreasing "efficiency" of conversion of fuel into elec-
tric energy. In this simple case the short-run production function is
represented by the broken straight line connecting the successive partial
sums O, al, ali-az, +vs, of the given process vectors taken in order
of decreasing "efficiency'" of conversion. Under a regime of maximization
of net revenue from current operations of the whole, a gradual increase
of the ratio of the output price to the inmput price will trace out the
production function. Intervals on the relative price axis will corres-
pond to points ay, ali-az, evey where the production function has a
kink, and relative prices characteristic of.succesaively less efficient
pleces of capital will correspond to segments on which these pieces are
taken into use in the same order.

1f there are m > 2 inputs and outputs and n processes, there
{s no natural linear order of the subsets of processes successively taken
into use, and there are price vectors which permit more than one process
to be efficiently taken into partial use simultaneously. The construc-
tion then is as follows.

Let J (for "technology'") denote the set [aj|j =0, 1, ,.., n}
of all capacitated process vectors aj , where ao =0 (the origin).

For any subset TJ' of J (including J 1itself but excluding the empty

set) let a(J") be the sum

a(J') = 2 aj
aleJ"
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of all process vectors of Cf' . Then the feasible set in the space of
commodity flows is the convex hull 7 of the set of vectors a(gf')

for a11 J"' , that is,

ﬂE Elealjl b.4 'y = X ' or a '
[J'CJ( Ya( )IEJ(J) 1, x(J')20 for al1 ' T},

the set of all convex-linear combinations of all the partial sums a(gf') .
Finally, the graph ér of the production function is the efficient boun-
dary of A~ , that is, the set of those points h of AL such that the
only point h+e¢ of AL with e >0 1ig the point h with e¢=20.

In this case, as output prices increase and/or input prices de-
creagse, the order in which additional processes are started up under cur-
rent net revenue maximization depends on the path in the price space fol-
lowed..

A diagram {llustrating this construction in the case of three pro-
cesses and three goods (two outputs, one input) is given in Figure 2.2,

A similar diagram for the case of two inputs and one output is given by
Johansen (1972, p. 17) in projection on the input space, with isoquants

drawn in to indicate increasing output levels,
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3, A CAPITAL STOCK INVARIANT UNDER OPTIMIZATION OVER TIME

In Section 2 simplicity was bought by the assumption of a fixed
capital stock and a fixed technology for its utilization, In the present
section, in which we consider an intertemporal model of an entire economy,
we gshall continue to assume a fixed technology, not only in the utiliza-
tion of capital goods in production, but also in the production of the
capital goods themselves. However, we shall treat changes over time in
the capital stock as entirely feasible. We also assume abgence of insti-
tutional barriers to the transfer of capital goods from one coatrol to
another. The process notion therefore no longer implies allocative con-
trol over a fixed capital stock associated with each part. The process
thus becomes a more purely technological concept, 1in which capital goods
are now repregented by coefficients for capital inputs required by the
process.

We shall also strengthen the assumption of efficient use of re-
sources to one of intertemporal optimality, defined by specifying some
suitable social objective function over time. A8 explained already, this
construct can be regarded as a simulation that yleldsa first approxima-
tion either to & centrally planned and managed economy, or to the course
over time of a market economy that manages to sustain reascmably full
employment. In the latter case the interpretation of the assumed inter-
temporal preferences is an implicit rather than an explicit one, In both
cases, the simulation takes a rosy view of the working of the simulated
economy .

We shall utilize an objective function of the form
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-]

ve s@ gt , o<a<i1.
t=1

Here yt denotes a vector of final consumption flows of the various con-
sumables in period t , wu(y) the utility flow assoclated with a consump-
tion flow of y per unit period,* and @ a discount factor** per unit
of time, applied to future utilities and assumed given and constant,
Consumption goods as well as capital goods are produced using processes
selected from a finite collection of processes. The inputs to these pro-
cesses include the utilization of capital goods and the consumptive use
of resource flows such as labor, minerals, clean air. Total available
flows of resources In each period are again assumed fixed over time (for
simplification though not realism).

The grand and difficult problem posed by this model 1s to associate
with any (historically) given initial capital stock an optimal path (if
one exigts), that is, a path that maximizes the objective function U
among all feasible paths over an infinite time period.

However, some further provisional simplification can again be bought

by first asking only the following question: Does there exist a capital

stock which, 1f put in the place of the given initial gtock, will be re-

produced precisely at the end of each period as a result of the optimi-

zation? If so, such a capital stock can be regarded as being in equi-
librium with the technology, the resource constraints, and the preferences,

both intertemporal as givem by & , and within each period as given by

* u(y) 1s assumed differentiable and concave.

ok (a)t denotes « ralsed to the power t , 1in contrast with the use

t
of guperscripts t as time labels in yt , and in x" y Z below,
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u(+) « We shall refer to such a stock as an invariant optimal capital
stock. |

For the basic case of a single good in the double role of capital
good and consumption good, our question has been fully answered by Ramsey
(1928) and his followers.* If the output flow of that good produced by
a fixed labor force is a strictly concave function of the available
capital stock, then there is a unique invariant optimal capital stock,

It has been called the golden rule stock modified by discounting. Its
dependence on the discount factor « is also well known: As « increases
(hence the discount rate p = (l-0)/a decreases), the invariant stock
increases and approaches the golden rule stock proper as « = 1 , hence
p—=0 . It is readily computed from the value of & and the form of

the production function, by requiring the marginal productivity of the

good as capital in terms of the good as an output flow to be equal to

p . Hence it does not depend on the shape of the utility function. Finally,
for any @, 0<a<1, and any positive initial capital stock, a unique
optimal capital path exists which approaches the modified golden_rule
stock as time proceeds.

Matters are more complicated for an arbitrary number of commodi-
ties. An analysisof the general case involving any finite numbers of
processes and of the three types of goods (i.e., capital, consumption,
resources) 1s given by Hangen and Koopmans (1972) from both the theoreti-
cal and computational points of view, with references to earlier work.

Here we consider in some detail an example with one capital good, one
resource and two consumption goods. It is hoped that such an explora-

~tion will bring out some of the economic content and implications of the

*For a more recent exposition see Koopmans (1967) in which other litera-
ture 1s also cited.
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concept of an invariant optimal capital stock more vividly than can the
theorems and algorithms regarding the general case. While the presenta-
tion is self-contained and uses only elementary calculus, some umproved
statements are supported by the reference cited.

| 7We shall assume that the single-period utility funct ion_ t;(yl, yz) is
defined for all ¥q 20, Yy >0, increasesstrict ly with each of the two consump-
tion flows, Yi1 Y2 (nonsaturation), is strictly concave and continuouslydif-
ferentiable. As té the constraints, Table 1* gives the input and cutput coeffi-
cients for the four goods for eachof three processes. The symbols ay, bj s
x_1 s Yy zt represent non-negative scalars. The technical coefficients
aj R bj are independent of time by assumption. The coefficient vectors
are normalized so as to specify a unit input of the single resource (labor,
say) for the unit activity level of each process. Also, the units of the
two consumption goods are chosen so that one unit of labor is required
to produce one unit of either good. As to timing, labor and consumption
can be regarded as flows during the period. In those parts of the rea-
soning in which we consider only one period at a time, no time label will
be attached to the x:,| s Yy o Capital input is required to be available
at the beginning of each period for use during that period. Capital out=-
put becomes available at the end of each period. Since capital input
and output for a given period may differ, a time superscript t 1s at~-
tached to the symbol z whenever needed.

capital "output' represents the sum of (already used) capital re-

leased for possible use in the next period and new capital goods produced

during the period. 1In principle one should consider two capital goods

*See p. 3.4a.
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Table 1: Technology Matrix for an Intertemporal Model of Production

Activity Levels x; and| o 41ab111t1es and
Notations for Technical Coefficients Total ""Qutputs"
Coefficient Vectors X X X >
1 2 3 £
1
-a -a -a -z capital input
1 2 3
£, i 2
b1 b2 b3 z° capital "output"
-1 -1 -1 ~1 -1 -1 -1 labor
1l 0 0 y, cons. good "1V
d1 d2 0
0 1 0 y, cons. good '12"
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constructed from the same blueprint but with different lengths of prior
use as different capital goods. For simplicity, for the processes
§=1, 2, {interpreted as producing consumption goods only, we specify
aj > bj to simulate loss of effectiveness of the capital good by a con-
gtant geometric decline per period in its quantity, regardless of the
rate of use, In this case the specification a, < b3 is essential for
an increase or even constancy over time of the capital stock to be com-
patible with a positive level of consumption. The symbols fj R dj
are abbreviated notations for the corresponding column vectors of order

two for the coefficients of capital goods and consumption goods, resgpec-

tively. These symbols are used mostly in the diagrams.

The firgt line of the table expresses the feasibility constraint

~a.X, = d,X, = a,X, > -zl
171 272 33 = 4

which says that capital in use during the period cannot exceed the amount
avallable at its beginning. The other constraints can be read off accord~
ingly. The entire set of constraints remains the same at all times, and
can be read as applying either to the first period, or to any nameless
future period. Teo apply it to a specific perlod, say the tth ; super-
scripts t are attached to the x, and y, » and t-1 is added to
the superscripts of zl P 22 .

Note that the only variable occurring in the constraints for two
successive periods, say those with labels t , ¢t+l1 , is the variable
zt+1 . This, together with the additive form of the objective function,
makes 1t possible to carr& out the optimization of the entire future path

(starting with any prescribed initial stock z1 ) in two stages. In

the firgt stage all values 2" for t = 1, 2, ..., are held fixed at
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arbiltrary jointly attailnable levels, and the attention is directed to=-

ward maximizing the term OF-lu(yt) within each perfod by choice of the
t
j b

is a value

X yi subject only to the constraints for that period. The result

t-1 t t t-1 t t+1
max & “u(y,, y,) =0 “¥(-z, z ), say,
t  t
Xy

that depends only on the initial and terminal capital stocks of that period.

The second stage then consists in maximizing

-
5= Zat-lw(_zt’ £ty

t=1

subject to the given initial stock z1 and such constraints on the pairs

(zt, zt+1) s t=1,2 ..., as are 1lmplicit in those of Table 1.

While our focus is on initial stocks zl that in the second stage

yield constant optimal paths 2t = z1 y t =2, 3, ..., it will help

if we do not vet specify zt = zt+1 in describing the first stage. Re-

verting to the nameless-period notation of Table 1 we therefore now take

both z1 and 22 as given and possibly different, and drop the factor

Ot-l . The first observation then is that optimality requires

Y15 % 2T %

because any slack in the consumption of either good would unnecessarily
diminish the utility u(yl, yz) .
Our procedure for analyzing stage one will be to compare the maxi~

mal utility flow, ¢(-zl, zz) , for the given 2! » z2 » with that
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attainable flow, to be denoted w(-zl, 22) , that results 1if each of
the three other conatraints is tentatively required also to hold with

strict equality,

1

-alxl - 8.21(2 - 83)(3 = =Z

b.x. + b.x, + b.x. = z°
1% T Pp¥p T PyXg T 2

- x, - X, - x., = =1 .

We shall call these the no-slack constraintg for capital input, capital
output and labor, respectively. The domain of definition of m(-zl, 22)
then is that set of points (-zl, 22) , to be denoted ﬁ below, for
which a nonnegative solution (xl, Xys x3) of the no-slack constraints
exists.

We choose our example such that the 3-by-3 matrix of coefficients
of the xj is nonsingular, solve for X4 from the third equation and

substitute the resulting expression in the other two equations, obtaining

Il

-z

(2 -83)x; - (ay-a3)x, - a,
(b1 -b3)x1 + (bZ-bB)KZ + b3 = z ,

with & nonsingular 2-by-2 matrix. Ignoring nonnegativity constraints,

these equations define a one-to-one linear mapping from the points (xl,xz)

to the points (—zl,zz)

The non-negativity of the activity levels xj , j=1, 2, 3 ,*

For § = 3 the constraint now takes the form %+ x, < 1.
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and the identity of the xj and yj allow us to enter the level curves
(indifference curves) of u(yl, y2) in the closed positive quadrant of
the (xl, xz)-plane (see Figure* 3.1). We recall for later usge scme ele-

mentary mathematical verities. 3Since the derivatives

- - Du
ul(xl’ x2) = a\:l ’ uz(xl, x2) = a’; s

are positive in all ﬁoints of the quadrant, there 18 in each point

(xl, x2) a tangent to the level curvé of negative fi&iégg;'slope; This
tangent partitions the set of all directions out of the point (xl, xz)
into three subsets. As illustrated byarrows labeled +, 0, or - in
Figure 3.1, in all directions (61, 62) leading from (xl, xz) to points

"above'" the tangent the directional derivative

du(x + kbl, x, t+ Ab

o)
dA A= 0

of u 1is positive; in the two directions along the tangent that deriva-
tive is zero; in all directions to points "below'" the tangent the deriva-
tive is negative. The origin is '"below" the tangent***- Finally, an impli-
cation of the strict concavity of u should be noted. Proceeding from

(xl, xz) along a straight line in any direction with a nonpositive direc~

*Figures 3.1 to 5.2 are found on pages marked A3 to A1l5 at the end of
this paper.

ok
Our assumptions about wu(-,-) imply that the axes are not tangent to
any level curve.

***ihenever (xy, %5) # (0,0)
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tional derivative in (xl, xz) » the function will monotonically decrease
along the entire feasible segment of that line. In particular, the maxi-
mum of u(xi, xi) among points (xi, xé) of the tangent in (xl, x2)
is reached uniquely in (xl, xz) .

The no-slack congtregints for labor allow us to represent the set
of attainable activityvectors (xl, X5 x3) by the closed triangle
}ﬁ EjQL(O, dl’ dz) with vertices O, dl’ d2 in the space of (xl, X,)
only, since Xy = 1 - X T Xy . The mapping (xl, xz) > (-zl, 22)
in turn transforms this triangle into the triangle 25 Eigz(fl, f2’ f3)
in the space of (-zl, 22) —gee Figure 3.2. The triangle ;?L representé
the set of all those pairs (-zl, z2) that are both attainable and consis-
tent with the added no-slack constraints. Any point in this triangle
simultanecusly represents the pair (-zl, zz) by reference to the
rectangular coordinate axes of --z1 and 22 , and the pair (xl, xz)
by reference to a skew coordinate system defined within the triangle by
placing the origin in f3 and unit points on the two axes in fl and
f, » Transferred to the new (xl, xz)-coordinatea defined on T;L , the
level curves of u(xl, x2) now also serve as level curves for the func-
tion w(-zl, z2) mentioned above (see Figure 3.3). This function is

then defined on j/ by
cp(-z1 z2) 2 u(x X, ) whenever (x X,) <> (= 1 2
’ R 14 72 (=27, z7) .

It represents the utility attained in the given period with initial and

terminal capital specifications (-zl, zz) if each of the five constraints

is forced to hold with‘equality. Because of the linearity of the mapping
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¢ inherits the continuous differentiability and the strict concavity
of u.
1 2
The function o(-z°, z ) so defined in E}, is not necessarily the
same, even within gi, , as the function W(-zl, zz) defined earlier

in the entire set of feagible (*zl, z2) . The difference within 2} is

1 2
that Y(~z~, z°) is the maximum attainable utility under constraints
permitting slacks, whereas m(-zl, zz) is the unique utility level that
is attainable—hence optimal --under constraints that rule out all slacks.

Since narrowing the constraint set cannot increase the maximum attainable

utility we must have

-zt 2% 3 ec-zt, 25

in all points (-zl, zz) of 2} . On the other hand, we must have
1 2 1 2
Y-z, 27) = o(-z", z7)

in all those points (-zl, zz) of E}» in which the maximum utility at-
tainable under constraints permitting slacks is in fact attained for the
unique no-slack activity vector (xl, xz) <> the given (-zl, zz) . We
shall now examine for each of the three constraints under what conditions
this is the case.

Let (-zl, zz) be a point in the interior of Z} » Taking first
the two capital constraints, we assume that the no-slack constraint for
labor 1is satisfied. Then a slack of 61 >0 in capital input would mean
that out of a stock z1 made available only zl - 61 is used in produc-

tion, Similarly, a slack of 62 > 0 in capital output would be to pro-
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duce 22 + 62 but hand on only z2 . For eilther of these and any com-

bination of them to decrease utility, it is sufficient® for the two deri-
vatives

('zly zZ) = 2o wh('zl) zZ) = jﬁ% P

P 3
1 B(-zl)

to be negative, Figure 3,3 illustrates that this implies a finite nega-

tive slope

Qo2 2) g2

s -
1 2 1
0y (=27, 27) 4(-2")/ um const.

for the tangent to the level curve of ¢ in the point (-zl, zz) .

We now turn to the no-slack constraint for labor, which we examine
assuming the no-slack constraints for capital to be satisfied. Let the

amount of labor in use be changed from 1 ¢to

X, ¥ xy +xy=1-¢, 0<e<l

allowing a slack of e . We choose a particular small value of ¢ and

treat the above equation as defining a new experimental equality constraint

on labor, This defines a new mapping between the new activity levels

El , §& and the capital specifications z1 ’ z2 , according to the

equations

*In the configuration of Figure 3.3, where the new origin f3 for the
(xl, xz)-coordinate system is "above'" and "to the right of" the point

(-zl; z2) , 1t is necessary and sufficient that these derivatives are
nonpositive (not both can be zero), thus allowing a vertical or a hori-
zontal tangent. See the implication of strict concavity of u discussed

above.
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~ ~ 1
-(a1 ~a3)x1 - (a2 -a3)x2 - a3(1-s) = -z

~ ~ 2
(bl -b3)x1 + (b2-~b3)x2 + b3(1-e) = z .,

But then those values 3t s 52 of the capital stocks that would have

produced the present consumption flows ﬁi ’ ﬁé in the absence of any
labor or capltal disposals are related to the specified flows z1 ; z2

by

= 22 + eb, .

It is these values that are to be tested in relation to the level curves of the
function ¢ InFigure 3,3. Thia 1is done in Figure 3.4, where the dashed
line connecting the interior point (-zl, zz) of 19y with (-El, 22)

is drawn so as to be parallel, in slope and direction, to the line 6?;
connecting the origin of the (-zl, zz)-plane with the point f3==(-a3, b3)
representing the capital producing process. Therefore, for any slack in

labor use to be nonoptimal, the following condition on the directional

derivative in the directfon (-a;, b;) dis both necessary” and sufficient,

d"’('zl"“‘y zz‘”‘bs) 1 2 1 20
an \=0 a3y (2, 2} + byoy (2T, 2) £ 0,

Since we assume capital slacks to be nonoptimal, ¢1 and ¢2 must be

nonpositive, which precludes Py = 0 . Therefore the condition just ob-

tained is equivalent to the slope condition

*The necessity 1s achieved by the inclusion of the = sign, on the strength
of the strict concavity of o .
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as illustrated in Figure 3.4,

We have now derived conditions on the nonoptimality of slacks by
testing the effect of the no-slack constraints one or two at a time while
assuming the other(s) to be satisfied. Due to the differentiability and
strict concavity of ¢ , the conditions so obtained can be combined to
form one condition on the nonoptimality of any combination of non-negative
slacks in the three constraints with 61 + 62 + ¢ >0, that leaves the

regulting point (-z14-61- LY zz

+ 62+ ¢b3) in ? . In terms of the
slope 8 = s(-zl, zz) of the tangent to the level curve of ¢ in (-zl, zz)

that comprehensive sufficient (necessary)* condition then is

o

- 2ce, D<o,

3

Finally, in all interior points (-zl, zz) of g? in which the
comprehensive sufficient condition is satisfied we must have, as explained

above,

o(-zL, 22) = y¢-24, %) .

Therefore, the level curves of ¢ and ¥ coincide in that part of g} in
which the sufficient slope condition is satisfied. Moreover, in those

points, we can look upon the negatives

*cee footnote on page 3.11.
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1 1 2 2 1 2 1 2 1 2
q E"'CPI("Z:Z), q E"‘Pz(’z)z)y r533¢1('z,z)'b3m2('z!z)i

of the directional derivatives used in testing for the tightness of the
capital and labor constraints as non-negative shadow prices associated

with the corresponding inputs and outputs. These prices are expressed

in units of marginal utility discounted to time t =1 .,

For all points (-zl, z2) of E}. for which the no-slack conditions
are met, stage one, the discussion of optimization within single periods
for which (-zl, zz) is given, has now been completed. It will turn
out that the stage one analysis for this subset of g} is sufficient for
our present exploratory purpose.

We are therefore now ready for stage two, the search for invariant
optimal capital stocks. We now want to examine points (-zl, zz) for

1 2
which z =z"=2z , gay. In the diagrams these points are denoted

fm (-z, z) = 2+(-1, 1) = zee ,

that is (see Figure 3.5), points of the line £ through the origin and
of slope =1 . Again, we first limit our search to points (-z, z) in
which the reproduction of 22 = z from zl = z 1s achieved optimally
without slacks. This limits the search first of all to points of the
segment gf in which £ intersects 2} « Since by previous assumptions

about the a b, the points f, , £, are 'below" £, £, '"above"

17 7y 1 2 3
£, the segment xi' intersects é} in its interior. It is the segment
“!’ minus its end points in which we shall now search.

Secondly, we shall at first use the slightly more restrictive suf-

ficlent slope condition
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3
w < g{~z, z) <0

for the within-period optimality of the no-slack activity vector
(xl’ XZ) €—> (-z, z) .
Assuming that such a point (-z, z) exists we must now find a

test whether the maximization of

U = Eat'l\y(-zt, 1L
te=l
subject to z1 = z and the within-period constraints for each period
t

1s achieved by z =2z for all t >1 . Trimming our sails once more,

we shall first study a weaker test, necessary but perhaps not sufficient,

obtained by specifying

which leaves only z2 free to vary. We then need to consider only the

maximization of

V= ¥z, 20) + a¥(-z2, 2)

with respect to zz . Finally, since u and therefore ¢ have continuous
first derivatives, the present slope condition is satisfied also in a
neighborhood 72, within i} of the point (-z, z) . Therefore, restrict-
ing z2 further such that both (-z, zz) and (~zz, z) are in 7! 5

we are in fact maximizing

W = o(-z, zz) + am(-zz, z) .
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The test then is whether the maximum of W within 7? ig attained for

z2 = z , For thig to occur, it is necessary that

0= (;“%) = 9,(-2, 2) - o (-2, 2) ,
2 /2
zZ =2

or, equivalently*,

(pl('z: z)
!92("2, z) -

: 1
8(-z, Z2)m~ -3

It has been proved elsewhere™™ that this necessary condition for
the maximality of U 1in the constant program zt = z 18 also sufficient.

Figure 3.5 1llustrates the construction. One scans the pointsg of ‘f to

find one or more points where the slope of the level curve of ¢ has

the value =~-1/a for the given « . Any point in the interior of i;i

satisfying this "slope condition' represents an invarient optimal capital

stock, to be denoted £ , provided the prescribed slope -1/ itself

meets our present 'mo-slack" slope constraint™*™*

b
1 -
-—§-<-a-=s(-£, z) .

a5

The "slope condition'" for an invariant capital stock we have found

has a natural interpretation in terms of the ghadow prices qt s rt

~

agsoclated with the conatant program zt = z ., The condition specifies

*Since not both, hence neither, of % + % can vanish in (-z, z) .
**Hansen and Koopmans (1972},

***We do not need to reiterate the constraint s < 0 because the speci-
fication 0 < @ <1 requires that s < -1 ,



2 1 3 2 t t-11
g =g , ¢ =g, ..oy 80 q =(0) ¢ , t=2,3 ...

a geometric decline in marginal utility of the invariant capital stock
zt==£, in the.ratio @ per period equal to the discount factor pre-
gcribed by the objective function U .

The condition q2 = oql extends to the end points of xi and to
points of £ for which an associated optimal activity vector involves
slacks. It also generalizes to similar models with any number of capital
goods, resources and consumption goods. In these cases, q , q2 are
to be regarded as vectors of shadow prices (dual variables). Where these
vectors are not uniquely determined, the condition q2 = oql requires

only that one can find values ql s q2 within the permissible joint

range of (ql, qz) that meet the condition.
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4, THE RELATION BETWEEN THE DISCOUNT FACTOR

AND AN INVARIANT OPTIMAL CAPITAL STOCK

In the preceeding Section 3, the element of intertemporal prefer-~
ences was introduced by a discount factor « applicable to future utilities.
At the end of the Section it was found that, if an invariant capital stock
is indefinitely maintained, that same factor « also applies in the de-
finition of shadow prices of goods. The reason is simple. As long as the
capital stock, the consumption vector, and the one-period utility function
u(+,+) do not change over time, the same holds for the warginal utilities
of the poods in question. Therefore the discount factor for utilities
equals that for goods in this case.

It is of interest to study the relation between the discount factor
Q and the associated value or values of the invariant capital stock
2(0) . This may be defined as the set of compatible pairs (o, Z(¥)) .
This notion is applicable equally to the perfect market interpretation
and to the perfect planning model. 1Its principal weakness in either case
is the disregard of technical change. A second weakness is the circum-
stance that for a historically given initial capital stock, even without
further technical change, continued growth toward an attractive invariant
capital stock is likely to be, in most if not all existing economies, the
first recommentdation of the criterion U on which the concept rests.

For most policy problems knowledge of the characteristics of the near-
future segment of that path is the most urgent requirement.

However, we have to crawl before we can walk, and walk before we
can run. It is hoped that an analysis of the relation between « and
£(0) may add precision to intuitions and ideas with a long history in

economic theory. It may also turn out to be a useful preparation for the
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more difficult problems associated with a path that chases a capital stock
which itself 1s in a moving equilibrium over time with changing techno-
logy, changing resource availability, and changing momentary and inter-
temporal preferences,

Figure 4.1 illustrates that there can easiiy be more than one in-
variant capital stock for a given value of & . The diagram exhibits
two distinct points of i&/ with identical slopes =-1/Q, and between
them a third point with a different slope -1/a' , where a' > .

Such a pattern is entirely compatible with strict concavity of the func-
tion ¢(-zl, zz) .

Figures 4.2 and 4.3 illustrate that this cannot occur if the two
consumption goods are normal goods. By this I mean that, for any fixed
positive relative prices Py s Py the utility-maximizing consumption
pair Yy 0 Y2 attainable within a given budget b at those prices in-
creases strictly in both components as b increases. In that case the

absolute value of the slope

oy vy = L2
1’ 72 - uz(le yZ)

of the level curve of u in the point (yl, yz) increases 1if Yo in-
creases with Y1 held constant and decreases 1if ¥y increases with

2% constant. In that case, 1f one follows any straight line with nega-

Star
4,4,

curve increases as Y, {ncreases (and hence Y1 decreases at the same

tive slope such as in Figure 4.2, the absolute slope of the level

time). Choosing d{d; in such a way that by the mapping
(yl, yz) = (xl, x2) G (-zl, zz) it transforms into the segment x£

in Figure 4.3, we find that 2z(@) increases as « increases. The
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interpretation is that a higher discount factor {(a lower real interest
rate) is assoclated both with a higher equilibrium capital stock per
worker and with a proportionately higher consumption of the good "2",
which is more capital intensive 1in its production than good "1". 1In
contrast, in Section 5 we shall consider the counterintuitive case of
decreasing Z(Q) , where a higher discount factor is associated with
a smaller invariant capital stock and, indeed, a lower utility level in
each perlod. In that case the more capital-intensive good "2" ig superior*
to good "1".

For the present case of normal consumption goods, we shall describe
without full proof the (@, Z£()) pairs for a and/or z at the end
points of their permitted ranges. 1f, as in Figure 4.4 on page

8(-z, z) reaches its algebraic upper bound -1 in some point (-Z(1), z(1))

of ,\2 interior to ?, » then

1im z (@)
a1

£(1)

is an analogue of the (undiscounted) golden rule capital stock of the
one-sector model. Values z > Z(1) then cannot occur as invarilant capi-
tal stocks for any permitted value of « . If as in Figure 4.5 the slope
-1/a of ¢ at the (boundary) point (-'z_, ;) of ? with the highest

attalnable value z of 2z satisfies

*At least in a neighborhood of the set of consumption vectors §1(a) s
§2(a) associated with the pairs (@, Z(0)) in question.
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b
- ;2-< s(-z, z) = - é <-1,

3

Q

then z 18 an invariant stock for the following set of values of O s

Q) = z for « <a<l.

HA

Most intriguing is the situation for the lowest value

W [

R
L}
IR
If

of « permitting within-period optimality without labor slack in combi-
nation with the corresponding invariant stock of 5(99 , 1f a stock satis-
fying the "slope condition" exists for that o . In Figure 4.5, this Z(Q)
is in the interior of . It could also be the lower end point z

’

of /(f . In either case, this same value Q = Q can also be associated

with any stock z 1in the range

in the role of an invariant stock for that « , with unemployment increas-
ing as z decreases.

Figure 4.5 shows for any given such 2z the determination of the
unemployment e¢=1-x , say, where x-=x14-x2+-x3 is the remaining employ-

ment, both measured in a total-labor-force unit. It is now preferable
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to give up the principle underlying Figure 3.2, the representation of

(xl, xz) and (-zl, zz) by a single point referred to two different
coordinate systems, If we were to insist on maintaining this principle

in the presence of unemployment, we would have to use a coordinate sys-
tem of (xl, xz) that moves, level curves and all, with the axes remain-
ing parallel to themselves but the origin in the point (-ayx, b3x) slid-
ing along 0of. in step with the employment x . It is simpler to retain

3

the old origin £, for the coordinate system of (xl, xz) . Using =z

3
as a parameter, and denoting the corresponding employment and activity

levels by
’?(z): il(z)’ ﬁz(z) ’ 0 <€zg 5(9‘_) )

these quantities are determined with the help of a displaced vector

(-2, 22y = (-2, z) + (1%) (-8, bs)

similar to that used in the tightness test for the labor constraint. For
given z and variable x , the point so defined moves from (-z, 2z)
along a straight line of slope -b3/a3 = -1/a . To determine the value
X = %(z) of x corresponding to the given =z one extends this line,

if possible, until it is tangent to an (undisplaced) level curve of

m(-zl, z2) . The value of x at the point of tangency

~

= f) = (~TH(2), 22(z)) , say, 1s the desired #(z) . The values

of fl(z) , iz(z) are read off from the mapping relation
a ~ o~ ~2
(xl(z), xz(z)) «> (-z (2}, z (2)) ,

taken in the reverse direction. If no tangency point exists,
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(-51(2), 7%(z)) 1s a boundary point of Q} . which one it is is de-
termined by rules similar to those applicable in the end points of &f .
As to the latter, 1f in no point of.&f interior to Q? there is a tangent
to m(-zl, zz) of slope -1/, then the boundary point (-z, z) of
2} on )Jz nearest to the origin will take the place of (-2(@), Z(Q))
in the above description, and will also serve as a no-slack invariant

capital stock for all « such that

A
'
13 Ly
A

B('E, 2-'-_) .

21

How does the ratio /b3 come to have such an important role

3
as a critical value Q of the discount factor in the present problem?

The answer lies in a connection between the present model and the von
Neumann model obtained from Table 1 by discarding all but the first two
constraints. Since process "3" has the highest ratio bj/aj of capital
output to input among the three processes, the requirement of fastest
capital growth implicit in the von Neumann model can be met only by shift-
ing all labof from the production of consumption goods to that of capital
goods—a feat easier in the so truncated model than in reality. A counter-

piece to this observation arises in the present model., If Impatience rises,

hence the discount factor sinks, below the critical value Q,

0<cx<gsa3/b3,

then the only invariant capital stock in existence is the null stock,

(o) = 0, with fj(a) =0, J=1,2, 3.
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At the precise point « = ¢, a whole family of invariant capital stocks
z, 0<z< £(a) , and associated employment levels X(z) varying con-
tinuously from 0 to 1, maintains the connectednees of the set of
all points (q, Z(@), fj(a), j=1, 2, 3) in 5-dimensional space.

Figure 4.5 illustrates the dependence of Z(@) on «a and shows
one particular possible geometrical form for the family of X(x) asso-
ciated with o = ¢ . Figure 4.6 exhibits a corresponding curve for the
dependence of the X,(0) , j=1,2, on « in the (x5 xz)-plane,

A

again with a one-parameter family of points for the value =0 .
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5. APPENDIX: *
INSTABILITY OF THE INVARIANT CAPITAL STOCK

IN THE COUNTER-INTUITIVE CASE

So far we have only asked for a capital stock invariant under op-
timization., We now raise the question of stability of an invariant capital
stock under small perturbations of the initial stock. An invariant opti-
mal capital stock will be called stable (under optimization) 1f optimal
paths starting from initial stocks Iin some neighborhood of the invariant
stock will converge over time to that invariant stock.

Figure 5.1 illustrates a simple heuristic (monrigorous) test of
the stability of an invariant optimal (scalar) capital stock in one im-

portant case. It is based on properties of the fumnction

2 2 2 3
W=, 25, 205 @) = a(-z, 20) + an(-z, 20)

that go beyond those studied above in connection with the test of invari-

ance of an initial stock =z = z1 = 23 . Recall that the latter test con-

firms the invariance of such a =z 1If the maximum of W with respect to
z2 is attained when also 22 = z , Let this be the case.

The heuristic test of stability then applies in the case where,

for all z1 and 23 in & neighborhood (z-¢, z+g) of z , the value

£2 of z2 that maximizes W 1is & strictly increasing function both of

z1 and of 23 « While this, let us say, strong smoothness condition con

W may seem arbitrary, it becomes more natural if we think in terms of
a class of functions W which, in the limit for smalier and smaller time

units, permits a smooth transition to a continuous time variable.

*As indicated at the end of Section 1, this Appendix was added after
the Conference.
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To apply the stability test to the invariant stock 2z , let

1 3
z <z' <zte, and now take z =z' = z° . write £

for the value

2
of 22 maximizing W(z', z°, z') . The strong smoothness condition then
requires that Zz' > z . The stability test then says that,

z 1s stable if z < £' < z!
whenever z < z' < 2+4¢ .

Lod }

z 18 unstable 1f z! < 2

To be conclusive the test would also need to be applied symmetrically
to all z' with z-e< 2' <z .

Figure 5.1 illustrates by heavy lines a case where the stability
test is met by a z' with 2z < z' < z+e . The thin lines give plausi-
bility to the test by suggesting a limiting process converging to the
optimal path from an initial stock z1 = z' by alternately holding the
capital stocks constant in odd-numbered and even-numbered points of time
while optimizing at all other points. The convergence follows from the
strong smoothness condition.

So far the discussion has been concerned with the stability of a
capital stock z = £(0) invariant for a given value of the discount factor
Q . We shall now show that the same test also answers the question whether,
for a discount factor «' slightly larger (or smaller) than a , we
have the intuitive case where the corresponding invariant stock =z' = Z{a')
is algo larger (smaller) than =z , or the counterintuitive case where
z' < () z .,

The conditions defining 2z and =z' are

w(zz) = of-z, zz) + am(-zz, z) 1s maximal for z2 =z,

w'(zz)s;m(-z',zz)-+ a'w(-zz,z') is maximal for z2 =z' .,
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Necessary and sufficient conditions for these to hold are, respectively,

0,(-2, 2) -aw(z 2 =0,

9, (-2", 2') - ' (-z', 2') =0 .
The stability test involves a third function of a W-type, viz.,

w(') = og(-2', 22) + aQ(-zz, z') ,

(")

and, is, on account of the strict concavity of W s equivalent to

M <
stable dw
z 1s unstable 1 (: B mZ(-z" z') - aqi(-z', z') N

for |z-2'| < ¢ . But then, since this expression vanishes if « is
replaced by «' , and since @ is positive, we find that 2z 1is stable
{f a<a', unstable if a > a' . Note that these are precisely the
intuitive and the counter-intuitive case, respectively, with regard to
the direction of change of the invariant capital stock when the discount
factor is changed.

To illustrate the implications of this finding (see Figure 5.2),
assume that the counter-intuitive behavior of Z(a) applies throughout
the interval ikf of Figure 3.5. Let as before :z , z denote the capi-
tal stocks correaponding to the lower and upper end points of Q¥ , and
a s O, respectively, the corresponding discount factors. Then 2z < z s
a < a, and z = (@), z= £(g) are invariant capital stocks for the
discount factors shown, provided Q2> Q = b3/a3 . Now take an « with

g <ac< o, and study the dependence of the optimal path zt on the
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prescribed initial value 2. Then, if by chance 2l = £(a) , the path
zt continues on the constant level of the unstable invariant capital
stock Z(@) . If 2z < z1 < £(q) , by however little, zt decreases
until the level 2z 1is reached, whereupon the path continues at that

1 <z ; the path increases until it becomes

level. Likewise, if 2Z(a) < z
constant at the level z . In fact, 2z 18 a stable invariant stock
Z(a') for all «a' such that g<a@'< & , and z 1is a stable stock

for all «' such that g <a' < 1 . Hence, under the present assumptions,
the endpoints 2z , z are prototypes of empirically meaningful invariant
capital stocks, while Z(x) 1is a freak, a knife-edge occurrence. Its
only conceivable empirical significance is a signal that for z1 in a
neighborhood of 2Z(t) the many features of reality not expressed in an
otherwise acceptable model will Influence the outcome of the toss of a
coln,

Twal [1975] has confirmed the heuristic reasoning of this appendix
by a rigorous application of stability analysis that examines the behavior
of second derivatives of the function w(zl, 22, 23; @) for the zt in
a neighborhood of an invariant capital stock Z(&) . His analysis also
includes the case where strong smoothness of W 1s not assumed. It can
then happen that, for some zl, 23 > Z(a) , the value of z2 maximizing
W satigfies z2 < £(@) . 1In such a case optimal paths can oscillate

between values above and below Z{(0) , with stability not governed by

the criterion found above.
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