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I. Introduction

In [1], Aumann glves s heuristic proof of the value
equivalence theorem for exchange economies with a non-atomic
continuum of traders., His nonrigorous argument is based on a
naive notion of infinitesimals. We shall prove a value equl-
valence theorem for nonstandard exchange economies, using
Robinson's calculus of infinitesimals, i.e. nonstandsrd cal-
culus. Our proof can be viewed as a rigorous version of Aumann's
orisrinal intuitive argument.

As a corollary to our value equivalence theorem we obtain
a standard 1imit theorem. This theorem gives a characterization
of competitive allocations in large standard exchange economies
as approximete value allocations. Moreover, it extends Champsaur's
results on the value of competitive allocations in repllcated
exchange economies [6].

Nonstandard exchange economies gnd the associated non-

standard concepts of the core and competitive equilibrium were
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first defined in Brown-Robinson [3]. 1In that paper, they

oroved the equivalence between the nonstandard core and the

set of nonstandard competitive allocations, i.e. an allocation
is in the core Iff it 1s a competltive allocation. In a second
paper [4], using the core equivalence theorem for nonstandard
exchange economies, they showed that core allocations in large
standard economles are gpproximate competitive allocations. The
interested reader 1s refereed to elther of these two papers for
an introduction to nonstandard analysis and a discussion of
nonstandard exchange economies,

We should note that the existence of a value alloca-
tion follows from the value equivalence theorem, the core
equivalence theorem, and the existence of nonstandard competitive
equilibris shown by Brown in [5].

Before stating and proving our two major theorems, we

shall need the followling definitions.

JI. Definitions

Let *R be the d-fold Carteslian product of *R,

d
the nonstandard extension of R, and *Q, be the positive

orthant of *R If x and y are vectors in *R then we

ar a’
shall write X * ¥ when the distance between x and y 1is
infinitesimal in the metrle defined by the sup norm. §.2 y

means x, >y, for all 1 i X >y means x >y and Xy >

i
for some i; X >> Y means xy >y, for all 1. x > ¥ means
Xy Dy, or x, ~y, forall 1 ;X >V means x >y and x

i i i i z



is greater than Yy by a noninfinitesimal amount for some
i Xx %? y means x; 1s greater than yi by a noninfinitesi-
mal amount for all 1. The vector which is 0 1in all components

except the 1*P ig denoted by st

By the norm of a vector X = (X5 ... »Xq), we mean
the sup norm !xll = max lfj[. A nonstandard vector is saild
1<i«d

tno be finlte or near standard if its sup norm is less than
some standard number. If X 1is a finite vector, then there
exists a unique standard vector, called the standard part of
X, denoted by °%, where %%~ %.

*N will denote the nonstandard extension of N, the
integers, and *N <N 1is the set of infinite integers. If &
is an infinitesimal, then we shall often write & = 0, wilth
similar notation used for infiniteslimal vectors.

Let T be an internal star«finite set. T will
be called the set of traders or agents. We shall always assume
that T 1is infinite, i.e. the internal cardinality
IT! — o « *N -N,

A coalition is an internal subset of traders.

A coalition S 1is negligible 1if HSUAD T 0.

All agents are assumed to have the same consumption set which

is *Qd.
An assignment is an internal map from T into *Qd.
A trader 1s defined by his initial endowment, an element of *Q

d!
and his preference relation, a bilnary relation on *Q

dn



A nonstandard exchange economy, é s 1s a pair <«I,P> where

I(t) 1s an assignment and P(t) 1is an internal map from T

into the family of internal binary relations on *0Q We

d.
will often denote P{t) as >« That is, >, 1s the pre-
ference relation of trader t and I{t) is his initial
endowment.

An allocation, X, 1s an assignment such that X{t) 1is

finite for each t « T, It follows that the norm
Nx(t)ll is uniformly bounded.

An allocation X 1s feasible for a coalition s if

1
Tth z X(t) < T§T£€§ I(t),

€3

An allocation X 1is strictly feasible for a coalition 5 if

S X(t) .<Tth 5 I(t), i.e. = X(t) < T TI(t).

; teS tes T teS

€S

If 8 =T, then we will say'that X 1s feaslble or strictly
feasible.

If X,y € *Q4s then X P y iff for all wW =X
and for all z ~Yy, W P z. If pPe *Qd, then
B5(t) = (X ¢ *0, :pX < p-I(t)}. Given a feasible allocation

X{t), <X,p> 1is a competitive equilibrium for the economy

B = <x(t), (5], ¢ > Iff T 1is finite, P >7> 0 and

there exists a coalition T,, with !Tol/!Tl ¥ 0, such that
for all t e T- TO,X(t) € B;(t) and y ¢ B7(t) for any

¥ >> X(t). If <X,p> 1s a competitive equilibrium, then

we say that X 1s a competitive allocation and T 1is s

competitive price system,



if >t is a preference relation over *Q then

q°
a utility (function) for >t 1s an internal map u, : ¥0y —> *R
such that for all i,? € *Qd, X P y iff ut(f) > ut(y).
If {>t]teT is an internal family of preference relations,
then an internal family of utilities f{uyl, . 1is said to
represent [>t}tcT if for each t ¢ T, u. 1is a utility
function for >t'

e is a representing family for

ugdgor Oplpers
then .S can be exnressed as <I(t), [ut]teT>‘ We now use
e to define a star-finite internal game & , 1in
characteristic form, over T. Let o (T) Dbe the family of

internal subsets of T or coalitions of T. Then

é¥ = <V,cﬁ(T)> where V : dg(T) -~—> ¥R 1is defined as follows:
Given S ¢ f (T), V(S) = max % by ut(Y(t)) where Y ranges
tesS
over all assignments with = Y(t) ¢ = I(t).
"tesS teS

The Shapley-value is an a priori evaluation of a
finite game for each player. A brief discussion of the
Shapley-value and its propertles is given in Appendix A of
[2]. By transfer, the Shapley-value of 47 1s well defined
and we denote it by Py« 0f course, JZ and hence oy
depends on [ut]teT and in general different.'representing
families define different games.

A value allocation with respect to g - <I(t),{ut}t€T>
1s a feasible allocation X such that for each S ¢ & (T),

Z @V(t) ~ L s ut(X(t)). It is important to note
€

tes T 9 tes
that a value allocation depends on the representation of the

preferences [>t]t€T’



Debreu [7] defines a (standard) smooth preference rela-

tion over Qd as a binary relation over Qd having a
quasi-concave C2 standard utility with a strictly positive gradi-
ent and indifference surfaces with everywhere positive Gaussian
curvature.

A uniformly smooth family of (standard) preferences
was first defined by Aumann[l]. In particular, he consldered
the followlng example of a uniformly smooth family, which we
shall call a precompact smooth family. A family of standard
utilities [us]S€S on 0 (i.e; for all s ¢ S, u Py —> R)

is said to be a precompact smooth family 1if:

(a) Each u_ 1s smooth (in the sense of Debreu).
(p) The u_, are bounded over Qy uniformly in s.

() {us]seS
space 14- of C

is contained in a compact subset of the
? utility functions on
endowed with the topology of 02 uniform

convergence on compact sets.

If X @ thena C' utility (function) u on 04
is called concave over 0, at X (or concave at X) if for
all ¥ € Qg u(¥) - u(X) g Tu(X)-(¥ ~X%X) wnhere WVu(x) 1is the

gradient of u evaluated at X.

I1I. Assumptions .

(1) Tl = w e *N -N,.

(2) TI(t) 1is an allocation,
1 _
(3) = = 1(t) > 0.
) Peerr ) #

(%) TFor all t e T, I(t) £ 3.

(5) The preferences [>t}teT are repregented by an internal
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family of utility functions [ut}teT where f{u/ )¢ o 1s
contained in the nonstandard extension of a precompact
smooth family of standard utility functions.

By a representing family of utilities, we shall
mean a famlly satisfying assumption (5).

Aumann in [1], Lemma 15.1, has shown that if [uS]SeS
is a precompact smooth family Qf standard utility functions,

then for every vy > 0 the e exists a family of utilities
~ .
[us seS such that:

L)

~

‘a) The ug, are uniformly bounded.

= i
(b)Y The u, are C on Qd'

e} The gradients Vﬁs are, on compact sets, uniformly
bounded and uniformly positive, i.e. for every
compact set K there exists vectors a and b,

where a > 0 and b > 0 such that for all

s €S, forall yeK, ac Vﬁs(§) < b.

(d) Each ﬁs is concave over Qd at each x such

that | x|l ¢ v .

A family of utilities satisfying (a), (b), (c), and
/a), above shall be called essentially concave in B_(0) =
{x € Qd:H x|l < y.
By a representing famlly of utilities [ut]teT
* -
essentially concave in BY(O)’ we mean an internal subset of

the nonstandard extension of a famlly of standard utilities

essentially concave in By(ﬁ). Moreover, this family of



standard utilities is assumed to be compact in the topology

of Cl uniform convergence on compact sets.

IV, Statement of the Maln Theorem

Let € - <I{t), be a nonstandard exchange

Oylien>
economy satisfying the assumptions in Section III.

Theorem 1. (a) Given a nonstandard competitive allocation

X for & , there is a y > 0 such that if [ut]te'l‘ is a
representing family of utilities essentially concave in

* -

BY(O), then there is an internal family of weights [at}teT

with a, >0 for each t such that X 1is a value allocation
7 |

with respect to the family of utilities [atut}teT'

(b) There exists a finite <y such that for every

representing famlly of utilities for all coall-

(gl s
tions S and every allocation X(t) strictly feasible for

s, if = ut(Y(t)) < = ut(X(t)) for all allocations
tes teS

Y(t) strictly feasible for S, then max |X(t)}|l < vy .
teS

(¢) 1If is a representing family of

(ug)ger
* -

utilities, essentlally concave in BY(O) where vy is

given in (b), and X 1is & value allocation with respect to

(ut}teT then X 1is a competitive allocation.



V. Proof of Main Theorem

Lemma 1. Let [ut]teT be a representing family of utilities.
Given a coalition SC T and an allocation 2z(t), let c .

{Y:Y is an assignment and T Y(t) ¢ = zZ(t)). If X eC
ted teS

and 3w (¥(t)) ¢ = u(X(t)) for all Ye C, then
teS teS

(1) For every v ¢ N - 1N, max || X(t}] < v.
teS

11) There exists P e *Qd such that

(¢) P is finite and p ?? d,

(B) Given t e S, if Xj(t) 4 3, then 5J -
' Vjut(x(t)), and if XJ(t) = 0, then

Proof. Suppoce for some s € S and J < d, XJ(S) > v
where v € N - N. Then |s| € "N - N since Z 1s an
allocation and X ¢ C . Let A, = {t e s: 1 x(t))! < n}.

if IAn| is finite for all n € N, then there exists a
1/2 _

0ec N - N such that |Ap\/|Sll/2 ~0 and p/|S| 0.
- d _ -
Let || XH]_= 5 Xy if x ¢ *Qd. Since preferences are
=1
monotonic, we have = X(t) = =2 Z(t) so = [ X(t)l; =
teS teS teS
1 : 1
= Nzte)lly . But —=— = |[x{t)ll;= —= = Ix(e)ll; +
teS |s| tes || teAP
S=-A
1
1oy e, - Aoz pxwiy » el o1,
Is! teS-Ap |s} teS-Ap st .
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This contradicts the finiteness of 2 ) llZ(t\T|l. Hence,
Is| tes

e "N = N. Let 6= minG,|A_ |);
0 0

choose 3B A, with iB| = 6, eand define a new allocation
0

for some ny € N, |An

X(t) + 53 for t e B
W(t) = X(t) - GEJ for t = s

X(t) otherwise.

Since the wu, are standardly bounded, uS(X{s)) and us(w(s))
differ by only a finite amount. The u, are near standard on

any compact standard set, hence they are near standard on

(% e *Qd:|1i1| < max !} W(t)|]'. Therefore, minfu (W(t)) -
teB B teB

u, (X(t))] >0, and I uw (W(t)) > = u (X(t}) which contra-

XD 2 AP

dicts the definition of X(t). Thus, for every v e N - N,

max!| x(t)ll < v.
teS

For part (ii) of the lemma, suppose for some J < d
and s € S that Xj(s) > 0. Define a vector AX where
A%, = 0 for 1#J and Ak, =6 with 0 <6< Xy(s). If
reS and r #s, then the assigmment Y(t) where Y(t) =
X(t) for t #s or r; Y(s) = X(s) = Ax; and Y(r) = X(r)

+ AX belongs to C . Therefore, Z ut(Y(t)) < = ut(x(t\).
teS teS
ur(x(r)+A§)-u (X(r)) uS(X(s))-us(X(s)—AS'c)
Thus, £ < ; s
&

which implies that V.u_(X(s)) > Vjur(X(r)). If X

Jug (t) = 0

b
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for all t e &, let p, = max V,u (X(t)). If there is a
I geg JF

t €S with X;/t) >0, let Py = V,u (X(t)). Clearly,
p 1is well defined and ﬁj > Vjut(X(t)) >0 for all

jJ<d and for all t e S.
3y Part (1), X(t) 1t finite for all t € S, thus,

for all Jj<d and s e §, VJuS( (s)) ~ VJuS (°x(s)) > 0.
Hence, for each J ¢ d, Pp, >0 and max T,u (X(s)) is
J # ses I 8

finite, i.e. P 1is finite.

Lemma 2. There exists a finlte integer vy such that for

et et 2l et

every representing family of utilities [ut}teT and every
coalition S, if X{(t) 4is strictly feasible for S and

T ou (Y(R)) < = u (X(t)) for all Y(t) which are strictly
teS el

feasible for S, then max || X(t}|] < v.
teS

Proof. Consider the internal set of integers A, where
neA if there exists a coalitlon S, a representing'

family of utilities {u} and allocation X(t) strictly

t teT?

feasible for S which maximizes s ut(Y(t over all
te

allocations Y(t) strictly feasible for 5, such that

max ;' X(t)|| > n., By Part (i) of Lemma 1, A contalns no
teS

infinite integers. Hence, A contains only a finlite number

of elements. s0 7Y =1+ max J glves the desired bound.
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Proposition 1. Let f{u.}, o be a representing family of

b e et e i

* -
utilities, essentially concave in BY(O)’ where vy 1is
given in Lemma 2. Given a coalition SC T and an alloca-

tion Z(t), 1let C? = {Y:Y 1is an assignment and = Y(t) ¢

teS
® 2(8)), and fix X e € so that = u (Y(t)) ¢ = u, (X(t))
teS ‘ teS ted

for all Y e € . Let P be the finite vector in ",

that 53 = max Vjut{xft)) if Xj(t) =0 for all t e S and
teS

51 - Vqu (X{s)) for each s e S such that X,(s) # 0. Then

J
for all § e Q4. u(F) - u (X(t)) <5 - (¥ - X(t)).

Proof. By Lemma 2, || X(t)|{< y for all t ¢ S. Thus, by
the essential concavity of the [ut]teT’ ut(§) - ut(X(t)) <
Tu(X(t)) - (¥ - X(t)) for all § e '0,. By Lemma 1, if

5J # Vjut(x(t)) then ﬁj > vjut(x(t)) and &d - Xd(t) >0

since XJ(t) = 0. Therefore, u.(¥) - u (X(t)) <D + (¥-X(t)).

Definition. Given 2, X, {ut}teT’ and P as in Proposition
1, we write (X,p) eaﬂfs,z,fut]teT), and we say that X max-
imizes utility for S.

* .
Lemma 3. Given S T where |[S! € N - N, let
(Y,p) e(%n(S,I,(utﬁteT). If X 1is a feasible allocation for

S such that = b3 ut(X(t\) ~ L ut(Y(t)), then there
IS] tes S| teS
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exists an S, S with ISl /18! ~ 0 so that for all t ¢ S -
Sgs W (X(E)) = u (Y(t)) + B - (X(t) = ¥(%)).

Proof. Since X and Y are feasible on 83,

B 2 3 (x(t) - Y(t)) ~0. Let S_= {te S:u (X(t)) -
[S| tes n t

u (Y(t)) <P« (X(t) = ¥(t)) - 1/n). Clearly, s, C S
¥*
for each ne N. If ne N and 1sn|/|s| > 1/n, then

== % (u(X(1)) - w (¥(t)) < = = (B - (X(t) - Y(t)) - L/n) +
|8] tes |s| tes,

2z B eox(e) - v(6) <B o[ 2 = oxee) - Y(t)i) -

|S! teS-g |S| tes

Hence, A Zou (X(t)) < L s

. Y(t)) - 1/n°.
S| tes S| teS

&

*
But this 1s impossible. Therefore, there is a v e N - N
with !sv]/|s1 < 1/v. 1t follows from Proposition 1 that
for all t e S -5, u(X(t)) - w(¥(t)) = P o- (X(t) - Y(£)).

) »*
Lemma 4. Let S be a subset of T with |S| ¢ N - N,
and let X be an allocation which is feasible on S such

that -%- = X(t) >> 5. Then there is an allocation Z(t)
s tes >

which is strictly feasible on S such that Z(t) ~ X(t)

for all t € 8.
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Proof. Let a, = -=- 5 X.(t) and let A, = {t ¢ S:X,(t) >

= I 15| tes d J i
35/21. Then IAjl/ls| A 0. For each t e¢ S and j<d, let

t) + —— 3 (I

3( |Aj| s J(s)-XJ(s)) if t ¢ A

J

Xj(t) otherwise.

since |S|/IA,| 1is finite and —%- 3 (I.(t) - X5(£)) = 0,
J Is] tes 9
Zj”t) ~ Xjft\ for all j < d and all t € S. Clearly,

Z(t) 1is strictly feasible on S.

Lemma 5. Let (X,p) e?ﬂ.(T,I,[ut}teT) and let S Dbe a subset
of T such that |S! ¢ N - N, X is feasible on S, and

1 . - - ) - -
—= % X{t) >> 0. Let (Y,q) eﬁhlks I,{u} }o Then p ~ q.
S| tes 7 | 7Tt teT

Proof. By Lemma 4, there 1s an allocation Z(t) which is
strictly feasible on S such that Z(t) ~ X(t), for all
t € §. Therefore, A s ut(xft\) ~ e Z uy (Z(t)) <

[s] tes 'S| tes

_lT % u (Y(t)). On the other hand, (X,P) €7bL(S:X'{“t]teT)
's| tes

'...J

and i S OY(tY = I(t) ~ A ¥ X(t). Again by Lemma 4
[s] teS s| sl tes

fusing X instead of I) there is an allocation - W with
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L Wt) = T X(t) and W(t) ~ ¥(t) for each t ¢ S. There-

u (Y(t)) = Aoosu () ¢ A s u, (X(t)).

IS| tes © IS| tes

Thus, 2= 2 w (X(t)} ~ -2 2 u (Y(t)), so by Lemma 3 there
Is| tes

st

exists 8'7 8 with —— ~ 0, such that for all t € S - 8',

u (X(2)) = u (Y£)) ~ a - (X{t) - ¥(t)). Applying

the same lemma't'c'J| Y(t) and (X,p) we see that for some
S

s"7 S with ~ 0 we have for all t e § - S",

1o

Icl

Uy ol 0

VRN - u (X(EY) = P o0 (Y(t) - X(t)). Let S8, = S! Js",
then for all t ¢ S = 85, u (X't)) - ﬁt(Y(tw) ~q - (X(t) -
Y{(t)' ~ p ¢ (X{t) - Y(t)) and |sol/|s| ~ 0.

For all t ¢ T and for all X e 0, u(X) -
ug X(t)) <P - (x - X(t)). Hence for all t e S - 5,

ut(i) = ut(Y(t)) = ut(ﬁ) - ut(x{.t)) +-U.t(X(t)) - U.t(Y(t))

B e (X - X(£)) + D - (X(t) - ¥(t))

| FAN

<P - (x-X(t)).

Fix J with 1< J ¢ d. Since —— s ¥Y(t) >> 3 and
S| tes 7

EN
7*7~ ~ 0, there exists a ¢
2

€S-8y with Y, (t)) > 0.

1 7

0

Thus, by Part (ii) of Lemma 1, Vjutl(Y(tl)) = aj.
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O

O - (o] o)
On the other hand, utl( T(t)) + o8y) - utl( Y(ty)) <

°§Jé for any real & with 6] < 1°Yd(tl) . Thus,

Py Vj utl(oY(tl)) ~ 4y for each J ¢ 4.

Lemmg 6. Given a family of utilities [ut] as in
teT

Proposition 1,'let V be the corresponding game and let
(X,p) eavz(T,I,[ut]teT). let S be a subset of T such

that |S] ¢ "N - N, X 1s feasible on S and —=- % X(t) > > 0.
18] teS ’

1 |
Then for every t, € S, V(8) - V(5 - (t,)) = a[uto(x(to)) +

P+ (I(t.) - X'ty)) + €] where e ~ O.

o)

Proof. Let (Y,3) e?ﬂ(&hl,[ut]teT) and let (2,7) e

M - [to], I, [ut]teT)' By Lemms 5, q ~ p ~ I. Moreover,

Y{t + pR Y(t) = I(t + X INEA d th f
( 0) . { ] ( ) ( 0) . ( } ( ) an ererore
N Y(t - Z(t) - by Y(t) - T{t = T(t w Y{t .
ES [ }( ( ) ( ‘) c [ ]( ( ) \ )) ( 0) ( 0)

By Proposition 1, (Y(£)) = u (Z2(%)) £ I - s (Y(t) -

by ut
teS-[tO] teS-[tO]
Z(t)) = 1 - (T7ty) = Y(t5)) = q - (I(ty) - Y(ty)) =

q - Y(t) - Z(t b Y(t)) - Z{(t)).
3 tesf[tol( (t) - 2(t)) < t_AES_“_'O]ut( (£)) = u (2(t))
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Hence, = u_(Y(t)) - 5 ow (zZ(t)) = u, (Yt ) +
tes © tes-(ty) © to O
Soou (Y(E)) = u (Zit)) ~ ug (Y(tg) + D - (I(ty) = ¥(t,)).
tes-(ty) t t to O 0 0
But  u. (Y{t,)) o u, (X(t5)) + D« (Y(t,) - X(ty)). This

0 TR0
follows from the fact that P ~ @ and Proposition 1.

i

Hence w{V(S) - V(S = {tO])) b ut(Y(t)) - b ut(z(t)) =

;es tes-[tol

vy (X(E)) + B - (T(%) - X(%5)).

Lemma 7. For any SC T and any t, € 5, o(V(S) - V(5-(t4})

is finite.

Proof. Let (V@) eM(S,T,(ulyey) and (2,7) ¢ Ws -

(ty), I, {utlteT)' As in the proof of the previous lemma
we have = Y(t) - z(t) = I(to) - Y(to). Therefore,
tes-{t,)
O(V(S) = V(S - (85))) = T u (Y()) - = u(2(t)) -
0 tes © tes-(t,) ©

ug (Y(to)) +

0 tesé[to]ut(y(t)) = u (2(8)) < ug(¥(ty)) +

g (I(to) - Y(to)) by Proposition 1.

Note that Lemma 7 implies the m%$ fw(V(s) - V(S-[to]))]
s T

tO(sS

is Tinite.
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Lemma 8. Let (X,p) e(}n(T,I,[ut] ) and let n € "N - N.
tel

Then almost all coalitions SC T with |S| = n have the
1

property that 5 2 X(t) ~ % 5 I(t) >> 0. (Here "almost
teS teS o

all" means that if gz is the set of coalitions of size

n and gp() is the subset f~r which the theorem is false,

then |J/o1/14 1 = 0.)

2d

-1
Proof. Let 6 =n". For each k ¢ N, k™ & ~ 0, where

*
is the dimension of the commodity space. Fix vy e N - N

d

so that v°% ~ 0. Let L = max (|X(t)[l + || T(t)|| + 1),

teT
and let B bhe the box defined by

- * -
B=1(xe Q3:0Kx<L vyl

Let 13 be the set of infinitesimal boxes of the form

k k
(% € B: -4 I, < X4 < Ly,
Y Y

J

: *
where for each J < d, 0 ( kj <Yy =1, and k N.

€

J
Divide T into equivalence classes called types:

ty and t, are of the same type if X(t,) and X(t,) are

in the same box in ﬂ? and if I(tl) and I(t,) are in the

2 J
same box in 1? . Let m Dbe the number of types in T;
clearly m £ y2d. Order the types and let Ty 1<1idm,

h

be the ratio of the number of elements of the 1 type to

[T = w.
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B8y Chebyschev'!s inequality, the probabllity is at

most -j%g of obtaining an internal random sample S of
hné

size n from T for which the ratio si of the number

of elements of type 1 in S8 to n differs from ry by
at least ¢é. That is,

P(ls, = 1,1 > 6) ¢ ~* _ &
i 1= né y

i

since & = n'&. Let 6!
2
that there is a set Gf 6 C dﬂ with LJ%l/Lﬂ| < %: ¥*¢ ~ o

{sC T: ]8| = n]. We have shown

so that for each S ¢ J—JO, m?x Isi - ril < 8.

Choose one representative ti € T for each type.
Using the ordering on T, 1let ¢ be the Jth

1]
in the 179 type;: let aij = X(tij) - X(ti) and Bij =

element

I(tij) - I(t;). Clearly, I &ijll ~ 0 and || Eijll ~ 0.

Given S G&Z , and s the ratio of the number of elements

i!
in S of type 1 to n, let Ji run through the elements

of type 1 in S when s, # 0. 'Then

L s x(t) - 1(t)
n teS ns
.
) . -
_ 2 5, 5 [ (X(%,) + a, - (I(t,) + Byy )]
n i:s.#0 3.=1 (% 131) Tty 134
i i
- nsi
- 35 1 z =z .’E

- T
s (X(ty) = I(t,))+

- - E )o
11 ni:s; 70 §=1 i3y "1y
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Since n is at least the number of terms in the second sum
on the right side of the last equation and the average of
infinitesimal vectors is infinitesimal, we have

l .

Losoxit) - I(t) ~

= 2 . s, (X(ty) = I(ty)).

Mg

1

By similar reasoning, we have

m

= 1
== % X(t) - I(t) ~ = r (X(t,) - I(t)).
@ fer =1 171 1
Now if Sej -jo, then
1L 5 xe) = T = Il 3 (2 + (symr ) X(8)-(¢, )]
= % X(t) - I(t ~ |l 2 (ry+ (sy=r;)) X(t,)=-I(t
n tes -1 1 it 1 1
< m?x ley - ri| . mix I x(ty) - I(ti)H - m
2d
< 6y - max |l X(ti) - I(ti)” = O.
~ i
On the other hand,
Y 1 m (.L)I'i _
S8 T(t) == 3 S (I(t;) 4 Byy )
© Lo ©1=1 §=1 i 134
m -
~ = r,I{t;) >0
- YA

and similarly,
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1 m
= 5 I{t)~ 3 siI(ti).
n teS i=1
Since
m 2d
2 (s NI(E) I < 0 YT - max [ T(ty)l =0,
i=1 i
= 2 I(t) >0
n tes r*

Proposition 2. Given a family of utilities [ut]teT as in

Proposition 1 and the corresponding game V, 1f (X,p) €

ﬁﬂL(T,I,{ut]teT) then for all %, ¢ T and for almost all

sC T we have w(V(8) - V(S = (t,])) ~ uto(x(to)) +
P - (I(to\ - X(to)}. Thus,

't

cpv.. O) = E[V(S)—V(S-{to])} =

= [utO(X(tO)) + P - [I(ty) - X(1y)) + €], where ¢ =~ O.

(Here E 1is the expectation operator.)
Proof. The formula for the Shapley-value 1s given by transfer as

w=-1
(t) = £ » L 5 V(RU (t.)) - V(R)]).
WS e e VRU (5) - V(m)]
IRl=3J

Fix ke N - N such that k/w ~ 0. Since by Lemma 7

V(R‘pJ{to]} - V(R) has a finite upper bound, we have mv(t)
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[V(Rle[to}) - V(R)}). For infinite

1 9Tt
~L s 5
-0 g (6:I (RCZT-[tO]
|IR|=J

coalitions R, e.g. |R| > k, we can apply Lemmas 6, 7,

and 8 and obtain for fixed J > k

1
2. = V(RU () - V(R)] ~
((.031 R__T-' o [( 0 ()]_
IR|=
2 [ (K(55)) + B - (178) = X(6))].
Therefore

oy tg) = & [y (X(£g)) + B~ (T(tg) = X(t))]
- % [uto(x(to)\ + 5 . (I{tO) - X(to))].

We now prove Part ¢ of Theorem 1: If Y 1s a values

allocation with respect to an appropriate family of utilities,

then Y 1s a competitive allocation.
If Y 4is a value allocation with respect to g family

of utilities as In Proposition 1, then by definition

z t
2, B (e))

El-

't) = V(T) =

el

S ouw (Y(8) ~ 3 a
teT © teT ¥

vwhere (X,p) Eibz(T’I’[ut}teT)‘ Thus there exists by

Lemma 3 a set TO(: T with |T |/|T| ~ 0 such that for
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all t e T - T,, ulY(t)) ~ ut(X(t)) +p ¢ (Y(t) - X(t)).

Hence by Proposition 2,

u (X(8)) = ug(X(8)) + B(I(E) = X(£)) + B(¥(t) = I(t))

~ wlog(t)] + B - (Y(£) - I(t)).

Therefore,

op(t) ~ & [u (Y(t)) + B(I(t) - ¥(t))]

for 2all t ¢ T - To.

We claim that P - Y(t) ~ P + I(t) for almost all
t e T. Let

[92]
i

(t e T = TO:§ - Y(t) > P - I{t) + 1/n)
and

v
n

{t eT - Tozﬁ © Y(t) < p - I(t) - 1/n)

“ for each ¥
Then Sn(: S, and Vn . Vn+ ac ne Assume

1 1

N
that |Snl/|T-T0| > 1/n, then by definition, % = oug(Y(t)) =

tesn

(u (Y(6)) + P - (I(t) = Y(B)) + ),

5 % . (L(t) - ¥(£)) ~ 0. But P-I(t)-
€

P ¥(t) ¢~z forall tesS, so s B (I(t) -
[

teS
n

s, |
Y{t)) < “Z?_ (-1/n) < —1/n2, which is impossible if n ¢ N.

- -
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Therefore, for some v € *N - N. ]Svl/lT-TO| < 1/v and
similarly |Uv|/|T-TO| < 1l/v. That is, D - Y(t) ~ D + I(t)
except for t ¢ Sv L)kaujTO. Thus, gilven t ¢ T -

l . - * - - -
[SV\VJUVﬂuJTO] and y € Qg with p -y <p" I(t), we

have D + ¥ < P - Y(t), whence ut(§) - u (Y(t)) =
[ug(F) = u (XN - [ug(¥(t)) - u(X(t)] <P - (¥ - X(%)) -

P (Yt) - X(t)) =B - (¥ - Y(t)) < 0. That is, u.(¥) <

vy (Y(8)).

Part b of Theorem 1 is given by Lemma 2,
We now prove Part a of Theorem 1.

Let (Y,p) be a competitive equilibrium. Let [at]tET
be a representing family of utilities essentially concave in

*5 {8) where 1if ¥, = [max p - I(t)/ min ﬁd] and v, 1s
¥ teT 1<i<d

the constant in Lemma 2, then -~ = 1 4+ Yy * Yoo Let X{t)

~

be a point maximizing ut(§) on the budget hyperplane

- * - - - *
Bi(t) = (Fe Qb - F=5  Lt))C "By

is a competitive equilibrium, there exists T0<Z T such

(0). Since (Y,p)

that for all t e T - T,, uw (Yit)) ~ u (X(t)) and

0’ t
Tyl /]2 = 0.
Given t ¢ T, 1let JO be the first Jj ¢ d such

~

that XJO(t) > Xj(t), and let o = ﬁio/vjo u (X(t)). Then

a, > 0 1is finite since p >> 0 and V, u./(X) >0 and
7 7

N

Jo
¥, u, (%) is finite when X € 3=(t). Let
Jo ¢ P



3 then V¥ (X(t))

I u, = pjo.

- * - - - -
for Jj & jo, fix y e Qd with p - y=p + I and ¥y =

X, if 1#J and 1# 3, Then Vu (%) - (§-%) =

pjo(yj - xJO) + Vjut(x) . (y‘j - xj) < 0, since the directional

0

derivative at X(t) along the budget plane is < 0. But
By By - Fy ) o BTy - Ky)e so TyugR) - (T - ) -
ia'J(Srj - ij) < 0., If xJ(t) > 0, then ﬁj = Vjut(i). Other-
wise we have Vjut(ﬁ) < EJ. .

We now have for any ¥ € Qg ut(ﬁ) - u (X(t)) <

P (¥y-X(t3Y)=Dp -y ~-p - I(t), for all t e T.

Let (Z,q) e (T ,I,(ut]teT). Then
5 ug(z(6)) - wg(X(t)) < 2B - (2(8) - I(1)) =
teT teT
- 1 1
p - % Z{t) - I(t) =0, and so Z 3 ut(z(t)) <5 2 u(X(t))
teT teT teT
1 ‘ 1
> ut(Y(t)). On the other hand, 7 2 ut(Y(t)) -
teT teT
1 - - 1
u o Z(8)) < E £ oa - (Y(b) - 2(8) =d-05 = Y(t) - 2] =
t O ger ® teT
q - % L Y(t) - I(t)]~ 0. Hence % by ut(Z(t))
teT teT
1 . 1
~ = 3 u/(Y(t)) which implies that = 2 u,(2(t))
W e b ® gep ©
- X 5 u (x7t)). since B - ( s (x(t) - 2(t))) =
@ teT T | teT
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p - 1 = (X{t) - I(t))) - 0. we can use the proof
bT | teT

of Lemma 3 to show that for almost all t ¢ T , ut(Z(t)) -
u (X80 p * (Z{t) - X(t)). But for all t € T and all

- * - i - - -
X € Qs ut(x) - ut&X-t)) <P - {(x - X(t)); hence ut(x) -

i

u (Z0E)) <€ P - (X - Z{t)) for almost all t € T . Using

the argument at the end of the proof of Lemma 5, we see
that p ~ q.
By Proposition 2, if V 1s the game assoclated with

{ug ), p then for all t e T, wlop(t)] » u (2(t)) +

0 - (I(t) - 2(t)). But for almost all t e T, w,(Z(t))

+q - (I{t) - Z2(t)) ~ ut(z(t)) + P« (X(£) - Z(L))Y + P« (I(%)
~X(t)) ~ ut(X(t)). Therefore, m[mv(t)] = ut(Y(t)) + €,

where e, > O for almest all t €T and e 1s finite
for all t ¢ T by Proposition 2,

1
Hence for all SC T S oop(t) ~ = 2 ou (Y(t)).
" pes'V ® tes

That is, Y{t) is a value allocation.

This completes the proof of the main theorem, Theorem 1.

VIi. A Limit Theorem

A standard exchange economy @ of size me N
consists of m traders, whose initlal endowments and

preferences are restricted to the standard commodity space
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Qd; here, Qd is the d=fold Cartesian product of R. Let
Q = < I(t),> > where for all %, I(t) ¢ Qd and >¢ is a
binary relat;;.on on Qt' The notation t € E’ will refer to
theltth trader's endowment, I(t), and preference relation,
>t -

An allocation Y(t) is a m;tuple of vectors in Q4

such that Z Y(t) < Z I(t). A competitive equilibrium for
t=1 t=1

3 is a pair <X,p> such that D e Q X(t) 1is an

a’
allocation with p - X(t) ¢ p - I(t) for all t, and such
that for all ¥ e @, with ¥ >, X(t), P Y >D - I(t).
X(t) 1is called a competitive allocation and p 1s called
a competitive price system.

Given a representing family of utilities for a
standard exchange economy 81, we can, of course, define
a finite game in characteristic or coalitional form, where
V(sS), the worth of a coalition, is.the maximum of the sum of
the individual utilities that the coalition S can obtain
by redistributing thelr aggregate initial endowment. This
game has a Shapley value which we denote as mv,e .

The prototypical example of an unbounded family of
standard exchange economles 1s & sequence of replicated

economles. Let E be a standard exchange economy having m

traders. The r-fold replica of £, denoted & (r), congists
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of r copies of e . That 1s, g(r) with mr traders
consists of m  types of traders where each type has r
traders and all members of a type have the same initial
endowment and preference relation. Moreover. each type has
the same preference and initial endowment as some trader

in the original economy £ . Every allocation in & defines
an allocation in df(r) by replication, i.e. each member
of a type 1s given the same comriodity bundle as his counter-
part in 8 . If X is an allocation in e, then X(r)

will denote the replicated allocation in & (r).

Theorem 2. If each trader in e has a smooth preference
fin the sense of Debreu) and each trader has a strictly

positive initial endowment, then the following are equivalent:

(1) X 1is a competitive allocation for € .

(11) X(r) is a competitive allocation for é?(r)
for all r € N.

(i11) There is a representing family of utilities
[ut}te € with the property that for every

€ >0 there is an r, € N such that if r >

0
ry and sC €7, then
1 (r)
(1) 129 6) - & 2w xTen)ce .
tes vy & (T) MT feg ¢
(iv) For every e > 0 =2and all ry € N there is an
r > or, and a representing family of utilities such

that 1f 8C &7 then Equation (1) in (111i) holds.
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We shall only give an outline of the proof. Of
course, (i) <==> (ii) is clear.
If r

*
o € N ~ N, then for any r > r,, satisfies

r

0

property (i) of Lemma 1 (i.e., Iéxax I x(£)ll < ry) for £ (r).
€5

Therefore, there is an ry € N such that Lemma 2 is valid

with vy =r, for (") yhenever r>r,. Given P
and I(t), we may now, as in the proof of Part a of Theorem 1,
find a box B;(O) and utilities {ut] essentially concave
on B;(O) so that i1f @ e N - N and <X(°°),13> is a nonstandard
competitive equilibrium for éE(“), then x“”) is a
value allocation with respect to the family of utilitles {ut].
The notlions of competitive equilibrium which we have
defined for standard and nonstandard exchange economies differ
in their definition of allocation, budget set, and maximality
of a commodity bundle in the budget set. But the concépt of
competitive equilibrium as it 1s defined for standard ex-
change economies is also meaningful in nonstandard exchange
economies. We shall call this the Q-competitive equilibrium
(quasi-standard competitive equilibrium).

5%
Now fix € >0 and r. € N - N and replicate the

0

economy  times where w > r Given an allocation X in

O.
Q , we consider X(w). Next we use the lemma, which is

proved in [4], that every Q-competitive equilibrium in Ef(w)
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1s a nonstandard competitive equilibrium in € (m). Thus,

if X 1is a competitive equilibrium in € , then it follows
immediately that x(“’) is a Q-competitive equi-

iibrium in &€ (©). Hence, by the lemma, %) 1is a non-
standard competitive equilibrium and by the value equivalence
theorem, Theorem 1, for all coalitions SC & (m),

(w
b } o= = u, (X < €. ollows a
! t) - = 5 u( %)l It follows that
teS

tes v; (@)

t

there is a standard r, € N such that 1f r > Ty and

S C e(r) then Equation 1l hOldS; i.e, (ii) o> (iii)-
That {iii) ==> (iv) is clear., If X satisfies (iv),

*
then x(“’) 18 a value allocation for some w ¢ N - N, i.,e.

choose an infinitesimal € and r,. € *N - N. Therefore,

0

there exlsts a P ¢ *Qd such that <X(w) , P> 1s a non-
standard competitive equilibrium with |[pll = 1 and
P >"> 0. Since the preferences in & (0) are standard, it

follows that <X, %> 1is a competitive equilibrium for e .
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