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A CRITICAL ANALYSIS OF RIDGE REGRESSION®

by

Frank Campbell and Gary Smith

Researchers often find that their data does not contain enough

Information to decisively answer the questions that they have posed.

If they are searching for a model, they may find that the variation in

a particular dependent wvariable can seemingly be explained equalily well
by an annoyinzly wide variety of theoretically motivated and even randomly
selected evplanatory variables. And researchers with a well-defined spe-
cification often obtain confidence regions which are so large that the
point estimates and forecasts are of little interest.

One respense to informational inadequacy in the data is shoulder
shrugping, as with Johnston's widely quoted remark that one cannot "make
bricks without straw." 1In this approach, one simply estimates the a priori
preferred model and notes that more precise estimates will require more
information.

More comnonly, the researcher tries to improve his reported esti-
mates by changing the model. He may limit himself to a small number of
explanatory variables which are chosen in part for their high variances
and relative orthogonality, or he may begin with a more complete model
and then drop those variables with coefficients which are found to be
incorrectly signed or statistically insignificant. At the extreme, there

are those who tcil endlessly for that elusive combination of variables

*The research described in this paper was undertaken by grants from the
National Science Foundation and the Ford Foundation.



which will yield statistically significant and plausibly signed parameter
estimates.

These specification searches can be viewed as the imposition of
exact parameter restrictions on a more general model. If these implicit
restrictions have no a priori weight behind them, then the final reported
estimates and statistics will have little meaning. By emphasizing variance
reduction (which can be measured) and neglecting the biases which have
been introduced (but cannot be measured), the researcher will have done
little more than disguise the imprecision of his estimateg. Techniques
such as stepwise regression, generalized inverses, and principal components
analysis which impose wholly ad hoc parameter restrictions are without
merit, in that rthey can only be successful by fortuitous accident.

While we are more sympathetic to concerns for correctly signed
parameter estimates, this objective in practice usually motivates only
the introduction of exact (typically exclusion) restrictions on an indi-
vidual parameter-by-parameter basis. It is difficult to be comfortable
with exact (or,cven worse. exclusion) restrictions since they force omne
into the position of having to choose between acting as if one had either
no knowledge or perfect knowledge. 1In addition, a myopic parameter-by-
parameter procedure neglects the critical possibilities that the errors
in one's restrictions may multiply or may cancel one another out. For
example, parameter constraints which are individually more accurate than
the corresponding estimates may collectively worsen the estimates of all
of the remaining coefficients. In particular, setting two "incorrectly
signed" coefficients equal to zero may worsen rather than improve one's
model even when one is right that the two estimates do in fact have the

wrong signs,



Recently there has been some interest in ridge regression as an
alternative method for coping with inadequately informative data. This
approach is similar to the popular practices which we have disparaged, in
that it is sometimes motivated by priors which it does not accurately
describe and is more often wholly ad hoc. It differs from the usual pro-
cedures in that it imposes stochastic rather than exact restrictions on
the parameters., Thus, while ridge regression is considerably more flexible
than common practices,it almost always represents an incorrect characteri-
zation of one's prior beliefs and, to the extent that it relies upon capri-
clous information, it can only be accidentally beneficial.

To focus our comments, we have organized this paper as a discussion

of a recent lead article by Marquardt and Snee (MS) in The American Statis-

tician. This article provides both a mathematical and verbal justification
of their procedure and several detailed examples. TFor simplicity, we will

only discuss their first example here, which deals with acetylene data.

I. Variance Inflation Factors and Standardized Data:

Marquardt and Snee begin by arguing that the explanatory variables
should always be standardized:

_ In standardizing the predictor variables, the
mean ig subtracted from each variable ('centering")
and then the centered variable is divided by its
standard deviation ("scaling"). Centering removes
the nonessential ill-conditioning, thus reducing
the variance inflation in the coefficient estimates.
In a linear model centering removes the correlation
between the constant term and all linear terms.

In addition, in a quadratic model centering reduces
and in certain situations completely removes, the
correlation between the linear and quadratic terms.
Scaling expresses the equation in a form that lends
itself to more strailghtforward interpretation and
use,



This standardization applies a unique nonsingular linear transfor-
mation to the variables and consequently has no substantive effect on the
model, in that it does not change the least squares forecasts or the least
squares estimates of any estimatable coefficients. Looking specifically

at their acetylene data example, the unstandardized model

3 3
(1) Y=Db.+ TbX + T b, XX, +¢
0 g=1 L1 1<i<] iji

can be rewritten in the entirely equivalent standardized form

3 3
(2) Y= [by + ii:lbiii + l;ﬁjbijig{j]
3 _ 3 _ X, - X ( )
+ ifl[bi+biixi+1§1bijlesi Si + 1< 133153 ——:—)( >+ €
3 3
= ﬁo + iflﬁizi -+ 1S§%jaijzizj + €

(where 2, = (X, -fi)lsi and the scaling has been by S; =ﬁ(xi -ii)zln—l )
While the implicit estimates of all estimatable parameters are un-
changed, the parameters that are actually being directly estimated are some-
what different, which means that one must be careful in making comparisons.
This is true of such obvious things as the comparison of, say, the esti-
mated coefficients of Xy in equation (1) and (Xl--;{-l)/s1 in equation
(2), and also of more subtle interpretations such as the strength or weak-
ness of the data.
Since rewriting the model in the form (2) does not affect any of
the implicit estimates, it clearly has no effect on the amount of infor-

mation contained in the data., That information has only been packaged in



a different form. One can, of course, use simplistic measures ot the in~
formational content of the data which do depend upon how the variables

are arranged. Such a dependency does not imply that there is a preferred
linear arrangement of the varigbles, but only that the information measure
is inadequate. For example, Marquardt and Snee offer the variance infla-
tion factor (VIF) as a measure of ill-conditioning and as an indicator

of whether a biased estimator should be used.

In the general model

y=L«Q
i

+ .
278

the variance of rhe ordinary least squares estimate of Oﬁ is given by

N ”ze 1
Var(x ) =
xk (n_l)si C - Ri)

where Ri is the squared multiple correlation coefficient between the

kth variable and the remaining explanatory variables. The variance in-

flation factor is

VIF(Gr ) = , _1R2
k
which can be interpreted as the ratio of the vari ance of a% to what that
variance would be if Xk were uncorrelated with the remaining Xi .
However, the VIF is of little interest since this measure is not
invariant to linear transformations of the variables. At the cosmetic
extreme, data can always be orthogonalized so that all of the VIF's are
equal to one wittout affecting any of the parameter estimates. 1If the

estimates are ilmprecise, this would then be attributable to the low variation



of the associated variables rather than to their high intercorrelation.
In general, any collinearity problem can be equally well described as a
problem of low variation. For example, one could attribute the imprecision
in estimated interest rate elasticities to the high correlation between
two interest rates or to the stabillity of the rate differential; but we
surely do not want to use a measure of informational content which de-
pends upon whether we use two rates as explanatory variables or instead
use one rate and the rate differential,

Yet this is precisely what Marquardt and Snee have done. When
their acetylene model is writtem in form (1), there are some very high
intercorrelations among the variables, due in part to the fact that they
have only 16 observations on 9 variables, with 6 of the variables constructed
as products of the other 3. One of the more dramatic and yet easily under-
11X§ . The only observations
are 6 at 1300, 6 at 1200 and 4 at 1100, which gives a simple cor-

stood facets of this example is the term b

on Xl

relation between X, and X2 of .99967. Overall, the squared correlation

1 1
between Xf and the remaining variables is .9999996, which gilves b11
a VIF of 2.5 million. This means that the variance of b will be large

11

unless the variance of X% is large or the variance of the disturbance
term is small. In this example, the former is 3.77 x 1010 and the latter

is estimated to be .81258, so that

81258 5 (2.5 x 106) - .36 x 1077 .

15(3.77 x 107°)

A ~

Var(bll) =
Is this large or small? Obviously one cannot say without knowing

what bll is and what the estimate will be used for. Nonetheless, Marquardt

and Snee state that a VIF of two million "is unthinkable and unnecessary"



since the model can be written in the standardized form (2), in which the
R =.2,2
coefficient of (Xl'-Xl) /S1 has a VIF of less than two thousand, as the

squared correlation of this variable with the remaining variables in (2)
2
1 2

is "only" .99943. Since the coefficient of this variable is blls
a N\
we can obtain the implicit estimate b11 = (bllsf)/sf which will be iden-~

tical to the estimate that is directly obtained from (1). As they note,
scaling does not affect the VIF (since it doesn't affect the correlation

coefficients), so that in form (2),

-t = 1762.58

VIF(b11) = TT 799943

while

2
T

€

(n-1)c* )
%, - X))

H

A o N\
ARG ) VIF( ), §))

- -81258 —1762.58 = .36 x 107 .
(15)(2.656 x 10')

Thus, the use of form (2) has no effect on the estimate of b11 or on
the precision of this estimate. The VIF has been reduced by a factor
of 1000 but so has the variance of the associated variable, so that the
imprecision has simply been relabeled a problem of low variation rather
than one of high covariation. A similar analysis could be carried out
for any of the estimatable coefficients.

Thus, while some may find the VIF helpful in describing the sources
of imprecision, it does not measure the amount of imprecision and cannot
be used to justify the reliance on weakly held supplementary information;

nor can it be used to motivate linear transformations of the variables.



Similarly, the examination of the eigenvalues of the sample moment
matrix (which MS mention briefly) is insufficient as a measure of infor-
mational content since these also are not invariant to linear transforma-
tions of the data. For example, the data can again always be orthogona~
lized and rescaled so that all of the eigenvalues are equal to one.

The essential problem with these techniques is that they ignore the
parameters while trying to assess the informational content of the data.
Clearly, an evaluation of the strength of the data depends upon the scale
and nature of the parameters. One cannot label a variance or a confidence
interval (or, even worse, a part of the variance) as large or small without
knowing what the parameter is and how much precision is required in the
estimate of that parameter. In particular, a seemingly large variance
may be quite satisfactory if the parameter is very large, if one has strong
a priori information about the parameter, or if the parameter is uninter-
esting (perhaps because the associated variable will be constant during
the forecast period). A meaningful assessment will require a well-defined
loss function which must necessarily depend upon the particular problem

being examined.

II. Ridge Regression
For estimation purposes, MS prefer to rewrite the model in corre-

lation form:

ot 3O, 30 ],
Jn-ISY NG Jo-1 1<ig] iJS Jh-l S n-1 s,

(which is apgain a transformation that does not alter the model). They

then argue that 'the 'fly in the ointment' with least squares is its



requirement of unbiasedness....Thus, it is meaningful to focus on the

achievement of small mean square error as the relevant criterion, if a
major reduction in variance can be obtained as a result of allowing a

little bias. This 1is precisely what the ridge and generalized inverse
solutions accompligh."

However, a MSE comparison for these suggested estimators is always
ambiguous since the size of the bias depends upon the unknown population
values of the parameters. Indeed, a major advantage of unbiazsed estimators
is that the MSE's do not depend'upon the actual values of the parameters.

Alternatively, least squares can be justified on likelihood grounds
or as the mode of the posterior with improper uninformative priors. 1In
regponse to these justifications, MS argue that a reasonable person would
have bounded priors and that in correlation form "it is exceedingly rare
for the population value of any regression coefficient to be larger than
three in a real problem.'™ Now if one is as well informed as MS about
the population values of parameters, then one would certainly want to

use that information to choose among biased estimators or to more directly

*To formally analyze this strange statement, consider the simple model
Y=p+ BIXI + BZXZ +e.

In correlation form, the (squared) parameters are
2 2.2
B.S, B.S;
it ivi

3 S22 22 2

where r is the sample correlation coefficient between Xl and X,

and ¢ 1is assumed for simplicity to be uncorrelated in sample with x1
and X, - Now, if Blsl = -BZSZ (to take an extreme example), then

2,,2.2

(Bisi/SY)z = 1/[2(1-r)+—(se/&isi)] which will be arbitrarily large as

2,.2 2
r =1 and Se/Bisi -0 .
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apply an optimal estimator based on the available information. Unfortu-
nately, a comparison with such procedures only serves to reveal the steri-
lity of ridge estimators.

More concretely, consider the model

Y=X+ ¢

2
e ~ N[O, UeI]

where one has the supplementary information

B=Db+u

u ~ N(,L) .

Theil-Goldberger's mixed estimation is a classical approach which
views B as fixed and b and Y as random and applies generalized least

squares to the two sets of data to obtain

1

B = [X'x + ciz'll [X'Y + oi}:'lb] .

Chipman's paftially Bayesian analysis takes b and Y as fixed
and B 'as random and cbtains F£* as the linear minimum mean squared
error estimator. 1In a fully Bayesian approach, B% is found to be the
posterior mean.

Since the ridge estimator is

6& = [X'X + kI ey

it is possible to motivate ridge regression from a wide variety cf view-

points when one actually has a priori information of the special form
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2
€
b = =
0 and z KI

which is to say that one has orthogonal priors with common variances centered
at the origin. Conversely, the theoretical inadequacy of ridge regression

is that it does not even attempt to assess the appropriateness of these
implicit priors.

If one's priors are normally distributed, then they can always be
centered, diagonalized and scaled. Thus, it 1s always possible to linearly
transform a model so that a ridge estimator is appropriate. The problem
with ridge estimation in practice is that the model is linearly transformed
so as to center, scale, and partially diagonalize the variables rather
than the parameters. And, indeed, one is never even asked to contemplate
the reasonableness of the implicit assumption that the parameters have
zero means, zero covariances and identical variances. Notice also that
while linear transformations do not’affect the model, they do change
the parameters which are being explicitly estimated and consequently should
change the variance-covariance matrix for omne's priors on the explicitly
estimated coefficients. In particular, if the priors implicit in a ridge
approach are actually appropriate for the model in any ome of the forms
(1), (2), or (3), then ridge regression will be generally inappropriate
for the remaining forms in that the variances will not all be equal and
some of the covariances will be nonzero. Thus, "standardization" of the
data does affect the ridge estimates and the appropriateness of a ridge
technique. Unfortunately, the standardization is not based upon either
of these considerations.

Similarly, in selecting %k , the ridge user does not take into

account the fact that the implicit variances on the priors are being set
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at oi/k . Instead, k 1is chosen by an ad hoc procedure whose loose
theoretical underpinnings are highlighted by the wholly arbitrary restric-
tion that k be less than one, which compels one to assume that the var-
lance of the disturbance term is less than the variance on one's priors.
Inside this range, k 1is selected so as to yield "reasonable" variance
inflation factors (which we have seen to be a meaningless objective) or

so as to yield estimates which are relatively insensitive to small changes
in k . Figure 1 gives a ridge trace for the acetylene data examnple.

The intercepts are the least squares estimates (k = 0) ; the next unit
corresponds to k = .0001, and each unit after that corresponds to a 50%
increase in k over the preceding unit. Despite MS's assurances that

it is easy to select k from the ridge trace, we do not view the estimates
as stable for the k's of .0l or .05 which they selected and, indeed,

do not see much stability for any values of k less than one. In addi-
tion, there 13 the problem that this sensitivity analysis is not invariant
to linear transformations of the model. That is, ridge traces of linear
combinations of the parameters will not generally show the same regions of
relative stability. More fundamentally, we cannot understand why k
gshould be chogen on the basis of local insensitivity; The fact that the
estimates are not much different with k at .01 or .02 is not a convincing
argument for using these estimates rather than the very different estimates
which result from a k of .001 or 2.0.

Another puzzle for us is MS's statement that, "If the predictor
variables are orthogonal, then the coefficients would change very little
(i.e., the coefficlents are already stable) indicating the least squares
solution is a good set of coefficients." We have already pointed out that

orthogonality does not imply strong data; therefore the ridge trace is
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Figure 1
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misleading if it favors the least squares point in this situation, Simi-
larly, since the data can always be orthogonalized, their statement il-
lustrates our previous point that the selection of k depends upon which
parameters are being examined. On the other hand, it is difficult for
us to agree with their statement. It is true that in correlation form
with orthogonal data the curve décolletage will be a straight line, so
that the ridge estimates will move directly toward zero; but this does
not imply that they will not move, or move slowly, or move only a small
distance.

Seemingly, without prior Information, the only theoretically de-
fensible use of ridge regression would be with a value of k that was
sc small as to give, for all practical purpcses, the least squares esti-
mates. One could then argue that one was sioply assuming proper locally
almost uniform priors. MS do in fact argue that, "the ridge estimate
is equivalent to placing mild boundedness requirements on the coefficient
vector."

Were this so, ridge estimates would be only a formal curiosity.
But of course it is not so in that in practice ridge regression is used
to obtain estimates which are significantly different from the presumedly
unsatisfactory lecast squares estimates. This is clear in the acetylene
data example from a comparison of the estimates in MS's Table 2 and also
from an examination of the wvalues of k that were used, .0l and .05.

Using the least squares estimated value of oi ; the implicit com-
mon variances on the priors are respectively .0328 and .0066, which most
would feel are fairly tight priors given the size of the least squares
estimates. In terms of confidence intervals, M§ acted as if for each

parameter they were 957 confident that the population value of the para-

meter is no further than .36 or .16 from zero. In contrast, 5 of the 9
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least squares estimates are outside of the larger interval and 8 outside
the smaller. Clearly, one is assuming more than "mild boundedness."

In fact, using Theil's suggested test, MS's implicit priors are
actually incompatible with the data. For k = .01, the chi-square sta-
tistic here is 24.7 and for %k = .05 it is 93.5, as compared to a cri-
tical point of 16.9 for a test at the 5% level. With priors of the ridge
type, one would have to use a k < .006 to pass Theil's test and a much

snmaller k to be assuming only '"mild boundedness."

ITI. Ridge Regregsion, Principal Components and Generalized Inverses

In ridge regression, one works with orthogonal priors and typically
very nonorthogonal data. In this situation, the estimates are only shrunk
towards the origin in a mairix sense, in that individual parameter esti-
mates may move awvay from the origin or may move past the origin and change
signs. Both of these phenomena in fact occur with MS's acetylene data
example., TFor a rough intuitive explanation, consider the 2 paraneter
ridge case where the explanatory variables are highly positively corre-
lated; the data -ontains more information about Bz than 51 (cue to
the higher variance of X2 ); and the data is mofe informative than the
priors. In this case the priors will tend to pull él towards the origin
while the data will move @2 in the opposite direction as illustrated
in Figure 2.

One implication of this is that ridge regression cannot be used
as an ad hoc way of shrinking all of the estimates. More generally,
with nonorthogonal data amd more than two parameters, it will be exceedingly

difficult to foresee the consequences of using ridge regression. Thus,

one's priors should be tru y based upon one's priors and pot upon the
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hoped for posterior.

However, it is possible to make a simple parameter-by-parameter
analysis by translating the data into its principal components. A4nd in
this framework we find a clear relationship between ridge regression,
principal components analysis, and Marquardt's generalized inverse tech-
nique.

1f the columns of A are the orthomormal eigenvectors of X'X,

then

XB+ €= XaA'B + ¢

pd
1]

Py + ¢

where the columns of P are the principal components of X'X and P'P
is a diagonal matrix with the eigenvalues (Xi) of X'X as its diagonal

elements. Similarly we can transform the implicit ridge priors on £

w
n

O+U, E@U'Y) = (Ui/K)I

~
!

A'B =0+ A0, E(A'UU'A) = (crze/K)I .

Thus, one could equivalently carry our a ridge analysis using either
the original data or the principal components, In the latter form, how-
ever, the orthogonality of both the data and the priors ylelds estimates

which are simple weighted averages of the likelihood estimate and the

A
#R i A k
7y T G.ﬁl)% + Gi“‘)o

with those estimates with the largest variances (Gi/hi} being shrunk

prior mean
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the most. Similarly, the larger is %k , the closer are all of these
estimates to zero.
There is an obvious similarity between this and the usual principal

components analysis. In the lattef, one typically uses

where h 1s some selected cutoff point for retaining components. In

this form of principal components analysis, then, one chooses between

zero and the least squares point based upon the relative variance of the
least squares estimate. In ridge regression, one chooses a point between
zero and the least squares estimate based again upon the relative variance
of the estimate.

Marquardt's generalized inverse technique is a minor variant of
this principal components analysis. He allows for the case of an inter-
mediate eigenvalue that is neither obviously large nor small, for which
one chooses a point between the least squares estimate and zero based

upon the closeness of the eigenvalue to being large rather than small:

7o M2h
7i = ryi 3 h2 < Ki < h1 .
0, r <h,

All three of these techniques consequently fit into the class of
estimators which use simple weighted averages of the least squares esti-

mate and some (for generality, possibly non-zero) point Ci

?i = ai?i + (1 -cxi)c!.L
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where the weights O < &, <1 depend upon the variances of the least

i
squares estimates. These techniques consequently all suffer from the
same inherent weaknesses.

First, the estimates depend upon the wholly arbitrary initial
gstandardization of the model, Simple innocent linear transformations
of the data will change the principal components and the characteristic
roots and thereby alter the parameters (and the variances) which are ex-
plicitly estimated. Thus, different parameters will be set equal to or
shrunk towards zero; equivalently, a particular set of parameters will
be shrunk towards different points. Such linear transformations will
also affect the degree of movement away from the least squares estimates
through the number of parameters which are shrunk and/or the extent to
which they are shrunk.

Second, these estimators incorrectly use the relative variance
of an estimate as a measure of the strength of the data. One inadequacy
in this is the neglect of the absolute size of the variances, which depends
upon the size of oi . More fundamentally, the variances alone canmmnot
"adequately describe the strength of the data relative to one's priors.
For instance, a seemingly large variance should not motivate the abandon-
ment of the least squares cstimate if this point is far from one's priors
(here the origin) or if one's priors are very weak. By ignoring these
factors, these shrinkage techniques can yield estimates which would have
little posterior weight and which would be rejected by classical hypothesis
tests.

This is in fact the case with MS's acetylene data example. TFigure
3 displays the least squares estimates of the coefficients of the prin-

cipal components, the associated eigenvalues, M8's ridge estimates, and

MS's generalized inverse estimates.



FIGURE 3

Estimates of the Coefficients of the Principal Components
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Leastlsquares Generalized
Estimate Ridge Estimates Inverse
Parameter! (t-statistic) ki k = .01 k= .05 r =3.,8
4 (3'935828) 4,205 .351 .348 .352
72 ('_'03095) 2.163 -.005 -.005 -.005
-.600
73 ("35.38) 10138 _-595 -u575 -0600
74 (1'323483) 1.041 ,236 227 .190
7 ('gg§ .3845 .009 .008 .0
76 ('221677) L0495 .181 .108 .0
7 e L0136 -.221 -.082 0
7g (ésgé) .0051 .176 .048 .0
-2.401
7 131 .0001 -.023 -.005 .0
SSR .0023 .0039 .0067 0110
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Many of the coefficients with low eigenvalues are significantly
different from zero because of the size of the estimates and the small
value of Ui . As a consequence, four of the six restrictions imposed
by MS's generalized inverse procedure would be rejected by individual
classical hypothesis tests at the 5% level; and the 5 exact restrictions
would even be rejected by a joint test. Due to the very limited degrees
of freedom, a 95% nine-dimensional confidence region based solely on the
least squares estimates is extremely large and does include each of the
three vectors of estimates selected by MS. On the other hand, as we've
stated before, if the ridge procedures are viewed as data augmenting
techniques, then this supplementary information is incompatible with the
data.

The inadequacy of retaining components on the basis of eigenvalues
was recognized several years ago by Hotelling, who pointed out that com-
ponents which are of little use in explaining the explanatory variables
may be very powerful in explaining the dependent variable. This has led
Massy and others to advocate the deletion of components whose coefficients
are statistically insignificant. While this avoids the imposition of
weakly held restrictions that are rejected by the data, it still mechani-
cally overrules the likelihood point whenever an arbitrarily selected
point (zero) is inside the confidence interval, Thus, this approach per-
wits one to impose ad hoc constraints where the data is very informative
(when zero is inside a tight band) and to refrain when constraints are
badly needed (when zero is outside a large band).

The third inadequacy of the procedures considered here is that they
do not even ask of the researcher what would be the most reasonable point

to shrink the estimates towards or which estimates he feels moat confident
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about shrinking. Thus, one actg as if there were supplementary informa-
tion available without ever confronting the vﬁlidity of that presumed
information. As a consequence, the desirability of the estimates depends
upon unasked questions and, in addition, one loses the potential gains
from introducing truly held a priori beliefs,

These points are illustrated in more detail by the consideration
of a specific loss function. MS follow Hoerl and Kennard in using average
mean squared error, or expected squared distance to B ,”

L=e6-H @h = sused)
i

Again, we can work with principal components as these preserve average

mean square errer

rs R &
£(B-B) ' (8-8) = E(B-B)'AA" (B-B)

p@as-ady @as-ah) = -9 o-H

T MSE(¥.) .
i i

Now, for the procedures considered here
‘)"i =y, + (L-o)c,

the MSE can be broken into two parts

2 2

2 2 S 2
EQr; =73 = MSE(Y) + (1 -0 (y; -Cy)

i

Var(?i) + [Bias(;i)]2 .

*For nonorthonormal data, this loss function does not insure smaller mean
square prediction error.
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Thus, as compared to the least squares estimate (?i) , shrinking unam-
biguously reduces the variance and increases the bias., If the least squares
variance is not zero and (71--Ci)2 is bounded then there will always be
some weights ai which reduce the mean squared error. (If

(7i--Ci)2 < MSE(?i) then this will be true of all o, <1 .,) If, how-

i
ever, 7, is unkmown then one will also not know whether or not the
MSE has been reduced. Thus the gains from shrinking to wholly arbitrary
points are necessarily accidental.

Notice also that the variance reduction is entirely independent
of the shrinking target, Ci . That is, shrinking towards the origin
is of no advantage for variance reduction., Where the choice of target
does show up is in the sguared bias, and here a more accurate target is
unambigucusly beneficial. Thus, the origin can only be justified as a
shrinking target if it is favored over other potential targets on a priori
g,rounds."'f But if one has such a priori beliefs, then they should be in-
corporated in a straightforward fashion rather than being mangled by an
inflexible procedure. And if one doesn't have such beliefs, then there

is no justification for using procedures which mechanically impose arbi-

trary priors.

“Note that all of this discussion refers to procedures in which one acts
as 1f one had diagonal priors. The analysis is considerably more complex
with nondiagonal priors.
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IV. Summar

Ridge estimation has several characteristics in common with other
estimation practices which are designed to overcome weak data. Our in-
dictment of these characteristics is consequently also a criticism of
these other procedures.

One characteristic is the incorrect labelling of nonorthogonal data
as uninformative data. Collinearity can be one source of weak data, but
the strength of the data cannot be measured solely by the orthogonality
of the data.

A second characteristic is the use of an estimator which is not
invariant to nonsingular linear transformations of the model. Every model
has an infinite number of implicitly estimatable parameters. Since the
choice of parameters to explicitly estimate is wholly arbitrary, estimates
which depend upon this arbitrary choice are necessarily capricious.

A third characteristic is the use of wholly ad hoc constraints on
the parameters. Such pseudo information yields estimates of unknowable
reliability which can only be accidentally successful.

A fourth characteristic is the abstention from the use of actual
additional information about the parameters. Such prior information is
a defensible supplement to weak data and is unambiguously superior to

arbitrarily constructed pseude information.
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