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The estimsted specification of an econometric relationship can rarely
be correct in practicel applications and hence the resulting distributions of
conventionally used estimators will not conform with those obtained under the
assumption of a correct mainteined hypothesis. The effects of such
mis-specifications have not yet received the detailed consideration they
deserve in view of their pervasiveness. Below we analyse the case of applying
members of the class of Generslised Instrumental Variables Estimators (GIVE) which
ineludes Ordinary and Two-Stage Least Squares (OLS and TSLS) to an equation where
the instruments are not uncorrelated asymptotically with a non-spherical error,
and also demonstrate the immense value of such asymptotic results in finite

sample situations.

Consider a regression equation of the form
(M ¥g=y-¥=y- @tyet+zd =y
vhere W = (z E) = ('g Yy, E) and B' = (b ¢ d4) such that y and Y are endogenous,
Z is erogenous and‘§1 denotes the lagged value of ¥y E.is |
Tx(1 +m o+ +'wb) and there exists a set of‘hg excluded predetermined variables
Eo such that all the parameters of (1) are overidentified (W% 2Mm 4 2).
Let @ = (gl 2 Zo) be the chosen set of Instruments and E = (W 2°) be the complete
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set of varisbles of relevance. Finally let

*preliminary and Confidential; please do not quote without author's permission.
1 am indebted to Grayham E, Mizon and J. Denis Sargan for their advise and to
Frank Srba for his invaluable help in programming the calculations. This work
is part of the L.S.E. project on Econometric Methodology financed by a Grand
from the Social Science Research Council; final preparation of the paper was
done at the Cowles Foundation, Yale University with financial support from the
National Science and Ford Foundations,
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with e ~NI(Q, ¢°I).
If the investigator falsely essumef p = 0, the TSLS estimator of B is

= (x'm)"l){'My where M = Q(Q' Q)
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However, when p + 0, plim T‘lQ'u + 0 80 B is inconsistent for B and

nfﬁ(s B} is not distributed asymptotically as N(O a° K ) where

-

K = plim T X NX, thus invalidating inferences based on the estimates.
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In such & situation, we can derive the asymptotic distribution of

J’i‘(é—ﬂz') where plim B = B, as follows.

-~

From (1) and (3),

-g) = ¢¢wherei>=9‘-'2 » § T(XMK) KQ(QQ)

o~

and hence

~

. o . -1
plim (?“?) = (gg-g) = $,0, = b where ,?!, = plin T "Qru

= plim ¢ = KL for L = plim X'Q(Q' ) = RAT . Thus we have
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and the TSLS estimator of P wx (b) is consistent:

and ¢

=

u = +e where plim Tige = g(q
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= (X"MX) X' Mu with plim P = b.
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In Hendry and Harrison (1974} a Control Variable for TSLS is derived

th: distribution of which provides an asymptotic approximation to that

of TSLS and we can use this result to facilitate obtaining the required

limiting distribution of TSLS. From their expression (A22),
-1 -1

(87 8) = 8,0 + K (L9, - K000}

where the "Reduced Form" for X can be written as

X=QL' + V with €(vi) =0

o



and
(10) AL = T v'Q A

(1) ok = @)+« AR - LerqL
(AK should not include the O(%‘; term as in A(20) when it is used in (8))
But from (11)

(2) haop = ulhp « By - @B -

= fz(-o',;,—{)_f-l- E_l(%ﬂ)["f -_E using (9).

and hence

(13) (870 = b+ g9 o KR (g, - wp) -, (B

-1
(1b) a9, =L'h

¥ - = - Q-'—z{- = g'_q
(15) (87 -B) =) + o (¢ Cgp) = p + 8 (3)
(greatly simplifying the interpretation and caleulation of the Control

Variable).

Finally we have that by construction of (8% - g)

~

(16) (8 - 8) = (8" - 8) + o(D)

~ -~ -—

so that, noting Eg_f =g, and 8 +p =8

(17) /-/"T(B~B)=oz%F +o,g?)

and therefore the asymptotic distribution of rﬁ'(é - Ez) is the same
as that of 32 '%%,E which has reduced the problem to a "canonical”
form. Let &(e e')=g=0 G' where Q is positive definite and let F
be generated by a stationary stochastic process with zero mean.

Then E(E-l g) = E(Eo) = 0 and E(E}:l ee E'_l) - £ Finally, letting
Q

»~

° = ¢Q from the results of Mann and Wald (1943)
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1 -1 o' -
" e® =~ N0, plin T 1%° ¢°) = K(0, plinm T 19:93)
and hence
- _ ' '
TE(B - 8) TN, 4,197,) wnen £ = plin 11,
However, e = Wa, vhere o' = (1 - 8, ')
and we can rewrite Wu as (a (:)I)(W' where © denotes the operation
of vectoring (stacking columns) so that (W') = (E& ees fi) and (:)
denotes the Kronecker product: A(E)B = (bisA)‘ Then
_ v v
= (g,'@1) E((W') @W')@JDQ.
More precise results can be obtained for the large class of systems
in which the complete set of M varisbles F can be transformed such that
they are generated'by a firet order vector autoregressive process with
"white noise' errors:
F' =DF +E E(F' E) =0
\zlere gll the latemt ~voots of D have moduli less than unlty,amgl are
etimct.
Let N = gt F'F); thes, since
t t-1.J
] ] 1
E = 9 Et * E OE §3
-] ¥
o'Ne 9'ND'0 ...@'ND' © ©
' - ~ o~ o~ - '
CreeT) = | ome  ome .. e e ) = o
@'D" "NO . . .- ' :©'N®
for any m x 1 vector 6 . Consider plim T LF'G*F and let
(9 9) k ( 0 9)
J = 8o that J =
~ AIpg 0 - I and
(gkg)t = Eﬂ apart from asymptotically negligible "end corrections"
or "initial values". Thus from (23)
@ = T @09 () - ormer

P Nt

and
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{30)

FIQVF = I gé o' DENO(F!I*F + F'J 'F) - O'NGF'F
= zT -1 G'DtNe (D F'F, + f'F D't')- O'NOF'F
g=o O R NO WD * I O'Nor'¥

using (22) and d'tcﬂ’u.z) asgwlatot;m!h‘, o\ec,l{q;bh‘- termes,

We can factorise D as BAB where {’} is the diagonal matrix of

My e

eigenvalues I)\‘L|<l and hence

o'D*NeD°F}F, = B(G'B)f\ (871ne) [\°B

~~~~~~t L o

~Lg
2 Tk

= g(f'[\ C)[} ~ ..t = ﬂ:z.] 63 CJ(XJA )t]B .»t t

where E ] denotes the R.th element of a diagonal matrix (§' = ©'B etc.)

Thus as lim Qt = 0

-1
1im T F'Q*F = H L. 6.C. N + NB L.6.¢. B' - NGN.
P A o -{J_ﬂ__‘]___:E- L ] e~
CI-A.A
J L

For example, in the dynamic, simultaneous equations model with

autocorrelated errors used by Hendry and Harrison (197L), m =m, = 1,
my = 3 and
] =('131 PQ> 23 = dg(ul... “h) and after
k]
0 93 transforming (1) to eliminate the autocorrelation
(D. :D ) 1 (a+p) -pb  -dp  cluy-p) DbY¥,u, bYau,  bYu
-1°~2 1-ab a(d+p) -ampb -adp : ac(u,-p) ¥ ¥ L4
ap 80 HTP 2¥2 33 gt
1-ab 0 0 0 o} 0 0

Thus B = (91 }32) where {(8,!B,) 45
0 - ~

-~

8d/(1-gb) -d/b ap ! an, (”z'd)/b (u3-d)/b (uy-d) /v

1 1 1 1 1 1 1

and §3 = dﬁ( (ul(l-ab)-d)/c (uz(l—ab)—dYn?e (uh(l-ab)-dy‘bvh),
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(b,c,'«l‘i + 0) where the first row of B is the vector of eigenvalues of D. 141(272
taking g' = (gi : Q) and selecting the relevant elements of N yields I in (19).
(Relative to the notation in Hendry and Harrison, P.15k, we have p = r,

Y, = £, u = Ai). A number of important special cases are now easily

derived,

(i) Correct instruments, no autocorrelated errors (p =0,p= 0)

Now_g_L =gq, 0'N0 = o° eand 6'D= Q' so that
(31) ~T(B - B) T Mo, azrg:l) . the standard result,
(ii) Valid instruments, autocorrelation (p $0,Q= (g %?), b :(5)
The main changes from (i) are that ©'D = p@' and 0'N@ = 02/(1-p2)
T-1
hence 2 % 5- ..... P
Lyl s : N = €(uu') with
o~ I'PI :T_l e, Lo ~
I |
-1 02 -1 -1
(32)  plim T FrawrF = 152 (I - eD) "N + N(I - pD")™" - K}

from which I is easily selected for use in (19) with B, = 8.
Ctherwise one must calculatc (27) to obtain L for (19) with p ¥o,
EE % 8.To complete the analysis we must also calculate the plims of the

estimated asymptotic variances based on the conventional formula

02(){'MD{)“1 where u = y — XB. Thus plim ¢ = oi =

o

Elo! (W'W)a ) and
~f T ~2
CT2an-l 2 -1 . )
plim o“T(X'MX) ~ = 0, K~ which can be compared (numerically} with the

-~

variance of the limiting distribution.
The GIVE class includes the possible choice of X as the set of

instruments which yields OLS denoted *, equivalent to M=I. Thus,

metching (i) we have #T(B - 8) 7 N(0,6°H™%) where H = plim T 1x'x

(another sub-matrix of N) again reproducing the standard result.

Matching (ii),~T(8 - 8) ~~ N(O,H_J'SH_I), with ¥ given by (32) and hence

~ -~ A — S



if neither Y nor Yy is a regressor andlme =1 with Z = ugl +w and
- - 2 2 '
(33) w .~ NI(0,¥°I) we obtain NT(c - ¢) v N(o,("—._z- : 1—3—2- . 1—"15-"-))

as anticipated. The most general case (p # O, with or without p # 0)

is (plim 8 = Bz).
(3h4) ~T(B - EL) T N(o, gflg 1) with L selected from (27), corresponding to H

from N. For the model defined by (28) and {29) exaet parametric expressions

1 v
21 E 21 ;3 these are

unenlightening in such a general case but alternative specialisations

can be cbtained for KX L H™' and
similar to (33) are reasonably easy to obtain and highlight the main
determinants of the asymptotic variances of the estimators around their
plims. Further, relative Mean Square Error comparisons are possible

and so on.

An important question is the value of these results in samples of the size

usually available in Econometrics and we can provide considerable evidence on

this from the simulation results obtained by Hendry and Harrison (197L4). Firstly,
their regression results (as in thecir Table 4} strongly confirm the closeness of
the inconsistency and the finite sample bias (see the Appendix below, however).

A similar analysis for the plims of the estimated asymptotic variances and their
small sample equivalents is also possible as all the required population moments
are available; Thus we obtained the following results from 36 of their L0 experimente
(set ) by regressing the meen direct simulation estimates of 8(32) and 8(52)
(based on 100 replications) on their respective plims in log linear equations:
(35) In o5 = 1,000 1n o5 - .b1/T

(.008) (.27)

R2 = ,998 xﬁ = 10.3

2

(36) 1n ¢° = 1.006 1n of Y.

(.008) (.23)

R° = .998 xf = 0.6



The x2 statistic is an approximate test of the validity of each regression in
4

predicting the outcomes in the remaining four experiments. These are shown in

Table I.

Table I Estimates of oo in four experiments

TSLS oLS
2 ~2 2 ~2 2
T g o Gz g °z
15 L, 3.46 (.19) L.33 2.53 (.11) 2.63
55 .25 0.32 (.01) 0.34 0.32 (.01) 0.33
55 &, 3.94 (,09) 4,00 3.51 (.0T) 3.56
75 k., 10.23 (.41) 9.96 5.85 (.14) 5.89

(Simuletion Standard Errors in parentheses)

It is clear that ci provides a very good explanation of estimates of 02
even in quite small samples. Similarly for the mean Estimated Standard Errors
(ESE)(based on "conventional" formulese like ;2(§'g§)_l) for the three parameters
in (1) (na =h, =1, m3 = 3) for the same 36 experiments.The results are shown

in Table II, which records estimates of regressions of the form

(j=1,...36)
(37) 1n ESEij =v,; In PE;; + Yei/Tj (i=1,...3) where PE, is the plim of &Sg,,
Table II ESE Regressions
TSLS oLS
Y Y 2 2 2 2
1 2 R X}, Y, Y5 R_ Xy
b 1.01 (.007) 2,50 (.40) .99k 5.3 1.01 (.003) 1.80 (.19) .998 0.3
4 1.00 (.o00kL) 2.27 (.27) .996 0.7 1.00 (.003) 1.72 (.21) .997 5.8
¢ 1.00 (.005) 3.8 (.20) .998 1.7 1.00 (.004) 3.25 (.17) .998 10.8

(Regression Coefficient Standard Errors in parentheses)



15
55
55
75
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Table IIT records the outcomes for the same I experiments as in Table I,

Table II1I Estimates of ESE and PE in four Experiments
TSLS OLS
b a c b d ¢
ESE PE ESE PE ESE FE ESE PE ESE PE ESE
Lo (.21) b1 ).2h (,08) .21 jr.16 (.53) .90} .2k (.08) .22 .19 (.05) .16 |.96{.38)
.07 (,01) .o7 |.06 (.01) .06 | .15 (.03) .1b4fl.06 (.01) .06 1.06 (.01) .05 |.14(.03)
.25 (.06) .2h |.1% (.01) .1k | .50(.13) .k6]|.18 (.03) .17 |.13 (.01) .13 |.&7(.11)
.21 (.07) .20 ).o6 (.02) .06 | .62 (.16) .62||.10 (.01) .10 {.03 (.00) .03 {.k7(.09)

(Legend as Table I)

Again we convincingly confirm the value of asymptotic theory in explaining small

sample outcomes. Finally we investigatedthe relationship between the actual

‘sampling veriances (e.g. (8 - 8)(8 - B)') as estimated by the experiments (SV) and

the varianceSof the asymptotic distributions based on (19) and (27) (denoted AV).
Note that B*'has (19) as its finite sarvle distribution and therefore the rather

complicated numerical calculation of AV can be checked by the simulation variance of

1.

the Control Varieble. Further, the Monte Carlo efficiency gains from using B

~

depend on AV being “close” to SV (i.e. on B and B+ being highly correlated) and the

results of Hendry and Harrison suggest that this will be the case (for their 20

experiments with T = 55 or 75, the average variance reduction achieved by the control

variable was a factor of 10.6 for OLS and 7.6 for TSIS). Table IV records estimates

of regressions of the form

(3=1,...,36)

(37) 1n svi‘j =y ; 1n AV, (i=1,...,3)

3 * Y2i/Tj
and Table V records SV and AV in the remaining four experiments.

We conclude that for both the first and the second moments of B8 and B the

asymptotic results are an extremely good guide to the finite sample outcome

PE

.70
1k
43
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confirming the value of the theory and casting considerable doubt on the net

value of imprecise, specific and expensive Monte Carlo experiments.

A similar

conclusion holds for the estimated variances and estimated equation standard

errors.

8V Regressions

TABLE IV.
TSLS
2 2 R? wz
b 1.0l (.011) 1.72 (.66) .982 1.7
d 1.00 (.012) 1,93 (.71) .973 2.5
¢ .0.99 (.015) 3.21 (.55) .983 8.9
TABLE V.
TSLS
b d
T SV AV SV AV SV AV
15 | .393 .399 | .299 .233 | 1.63 0.97
55 | .079 .074 | .078 .070 | .199 .200
55 | .263 242 | .122 .135 | .526 .459
75 1 187 .177 | .055 ,055 | .346 .305

71
1.01 (.008)
1.01 (.013)

1.00 (.015)

SV AV
250 ,216
.057 .058
185 .174

146,123

OLS
72
1.80 (.51)
2.44 (.80)

3.12 (.54)

Estimates of SV and AV in 4 Experiments

OLS
d
.250 .170
.077 .069
.112

044,038

.126

2
988 4.6
967 5.7
983 11.6

c
sV AV

1.28 0.73

.196  ,196

492 433

401 .353



Appendix *

Maddala and Rao {1973) apparently disconfirm this result, but their finding
is partly an artefact of their choice of parameter values and data generation

process. They use

: 2y o 2st1 — ) erin
(A1) Z, = WL, o+ w, and while &(23) = y°/(1 - u°) this is NOT

equal to 8(25/20) (the variance Z , 8ctually has in the Monte Carlo experiments).
Maddals and Rao set Zo = 0, generate 60 values and discard the first 20 and use
T = 40 so that as

t tzl

{A2) Zt = p Zo + Lou

60 60 t-1 .
(83)  Bld §uprZ2/0) = d5 VP ikoy Fuo v ¥ ¥P(L = 270 - k(ho,u)) /(1)

and while the uhglho is negligible, if u is close to unity,

T+h

k(T,u) =y /M1 - ue) is not.

Indeed, k(40, .98) =~ .25 yielding a downward bias of sbout 25%, while
k(100, .98)= .04 and k(L40, .8) is negligible. This exactly matches their
findings. Thus for the semple sizes and parameters used, their actual signal-noise
ratios did not have the values imp”‘ed in the asymptotic calculations (whereas
they would have obtained accurate results had they used (A3)). Whether this is
regarded as a "failure” of asymptotic theory in near non-stationary situations,

or an inappropriate experimental design is a moot point.

*I am grateful to James E. Davidson for bringing my attention to this point.
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