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THE SOLUTION OF SYSTEMS OF PIECEWISE LINEAR EQUATIONS*

by

B. Curtis Eaves and Herbert Scarf

1. Introduction

In this paper we study, from a geometrical point of view, the
solutions of systems of piecewise linear equations involving one more
variable than equation, As our examples will indicate, virtually all
of the fixed point and complementary pivot algorithms, as well as a
number of related techniques which have been developed over the last
decade can be cast in this framework (Lemke and Howson [15], Lemke [16],
Scarf [20, 21], Scarf and Hansen [22], Kuhn [13, 14], Eaves {4, 6, 8],
Shapley [24], Merrill [18], Katzenelson [12], Fujisawa and Kuh [10], and
Chein and Kuh [1]). This geometrical setting leads naturally to an index
theory--analogous to that of differential topology--which is of consider-
able importance in the study of uniqueness and monotonicity of these al-
gofithms. Examples of the use of index theory in computation have recently
been given by Kuhn [14], Shapley {23] and Lemke [17].

In the development of our ideas we have been strongly influenced
by the lucid exposition of differential topology presented by Milmor [18],
and by a number of stimulating conversations with Stephen Smale. Other

important sources are the exposition of index theory on discrete structures

*The research described in this paper was carried out under grants from
the National Science Foundation, the Ford Foundation, and Army Research
Office at Durham.



given by Fan [9], and the comstructive proof of the piecewise linear non
retraction theorem of Hirsch [11].

In the interests of simplicity we have avoided the most general
presentation and restricted our attention to a small number of well known
applications. For example, the domain omn which our equations are defined
will be the union of a finite number of compact convex polyhedra. With
gsome coet in simplicity the domain could equally well have been a non-
compact oriented piecewise linear manifold. We have also omitted from the
paper applications such as the non-linear complementarity problem in which
index theory is extremely useful., These will be described in subsequent

publications.

2. Plecewise Linear Mappings of Polyhedra

We shall be concerned with a set of points P in Rn+1 which

is the union of & finite number of compact convex polyhedra, Pl, PZ""’ Pk
each of which is assumed to be of dimension (nt+l) ; and no two of which
have an interior point in common. The term polyhedron, with the adjec-

tive "convex" omitted, will be used to describe such a set., The convex

polyhedra used in constructing P will be referred to as the pileces of

the polyhedron.

Figure 1 represents a somewhat extreme example of such a polyhedron.
As the figure illustrates, the polyhedron P need not be convex even
though it is composed of convex pieces. It need not be connected or for
that matter simply connected, and moreover the intersection of two adja-
ceﬁt pieces of P mneed not be a full face of either polyhedron as they

are assumed to be in a simplicial subdivision.



FIGURE 1

An example which is more typical of those arising in the applica-

tion of our techniques is given in Figure 2. 1In this example the polyhedron

1 FIGURE 2



P 1is the product of an interval with the simplex S8 = {(xl, x2)|xi > 0,

xl + x2

this interval with each n-simplex in a simplicial subdivision of § .

< 1} . The pieces [Pi} are obtained by taking the product of

We consider ndﬁ a mapping Fi ﬁf-thérpolyhedron P 7iﬁto Euclidian
space R' , which is assumed to be linear (F(ax + (l-0)x') =
oF (x) + (1=-@)F(x')) in each piece P and continuous in P . In each
oI our applications the poiyhedron P and the mapping F will be defined

by the nature of the problem and we shall be concerned with gsolutions

to the system of equations
F(x) = ¢

for a specific vector c¢ in Rn .

In order to motivate the subsequent arguments let us begin with
a few Iintuitive and not quite rigorous remarks about the character of
the set of golutions to such a system. In each piece of linearity Pi
the mapping F(x) is linear with a maximal rank of n , since the map-

ping is into R® . If the mapping is, in fact, of rank n 1in a given

piece of linearity then the intersection
-1
F "(e) N Pi ’

if it is not empty, is generally a straight line segment touching two

distinct faces of Pi of dimension n .
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FIGURE 3

Consider an adjacent piece of linearity Pj whose intersection

with Pi contains a single point of F-l(c) . Since the mapping is
continuous on the common boundary of Pi and Pj we expect in general

that

iy n P

will be a straight line segment in the piece of linearity Pj which fits

together continuously with the corresponding segment in P We shall

i
see shortly what technical points must be examined in detail in order

to make this type of argument precise. For the moment, however, these
remarks seem to suggest that the set of solutions Fal(c) can be obtained
by traversing a series of straight line segments from one piece of lin-

earity P, to an adjacent one,

i

Since the polyhedron is composed of a finite number of bounded

pieceé, there are essentially two types of curves (by a curve we mean &

homeomorph of closed bounded interval or a circle) that can arise in this



fashion. One possibility is that the process of moving from one piece

of linearity to an adjacent piece will terminate by reaching the boundary

of the polyhedron P . Since movement is possible in two directions this

would imply a curve touching the boundary of P in two distinct points;

we shall call such a curve a path. This case is illustrated in Figure 4,

in which the dashed line represents F-l(c) .

FIGURE 4

ADOTMNEer posslblllity that may arise by continuing the straight line
segments is the generation of a closed curve or loop which has no inter-

section with the boundary of P . Figure 5 illustrates a possibility in

FIGURE 5

-1

which the set of solutions F "(c¢) contains such a loop in addition to
a path terminating in a pair of boundary pointes of P .
These rough arguments suggest that the set of solutions to F(x) = ¢

will either be empty or be a disjoint union of a finite number of paths



and loops. As we shall see, this important conclusion will generally be
correct. However, the problem may occasionally become degenerate for
specific cholces of the function F and vector ¢ and produce a set

of solutions more complex than that described above.

For example, We may be working in a piece of linearity Pi in
which the rank of F(x) 18 less than n . 1In such a region the solutions
of F(x) = ¢ may very well form a set of dimension strictly larger than
one. Another illustration of difficulty arises if for some piece of

linearity Pi the set Pi N F-l(c) liegs fully in the boundary of Pi .

; P
: e
; <
Py / ' Py
P, N Fle)
FIGURE 6

A final example occurs when the set F-l(c) intersects the boun-
dary of a plece of linearity Pi in some face of dimension less than
n . As Figure 7 illustrates, this case may produce a bifurcation of

the path in two differemt directions. The common feature of these examples,




and in fact all difficulties caused by degeneracy is, the fact that
F(x) = ¢ has a solution on some face of dimension less than n , of
a piece of linearity.

In the next section we shall use this idea to impose a condition
on the basic problem which avoids degeneracy and permits us to establish
the main theorem characterizing the set of solutions to F(x) = c .

It may be appropriate at this point to provide a formal definition
of the terms 'path" and "loop,'" which have been used in the previous
discussion.

2.1. [Definition] A path is a curve in P with two endpoints,
each of which lies in the boundary of P and whose intersection with
each pilece of linearity is either empty or a straight line segment. A
loop is a closed curve with no endpoints whose intersection with each

plece of linearity is either empty or a straight line segment.

Figurea 4 and 5 illustrate paths and loops; Figure 6 a path but
of the type we shall avoid, and in Figure 7 the dotted set is neither

a path nor a loop.

3. The Main Theorem

We are given a polyhedron P in Rn+1 and a plecewise linear
mapping F which carries P into R® . The following definition employs
a modification, which is suitable to our purposes, of well known termi-

nology used in differential topology.

3.1, [Definition] A vector ¢ in R® 4is a degenerate value

n
of F : P=R 1if there is an x in P lying in a face of dimension

less than n of some piece of linearity P for which F(x) = c .

i’



A vector ¢ which is not a degenerate value is called a regular vaiue
of the mapping.

Consider the following simple illustration of this definition.

0,1) (1,1) 2,1)
(0,0) (1,0) 2,0)
FIGURE 8

The polyhedron P 1is composed of four triangles in R2 « The mapping
into R' is given by F(xl, x2) = X, + X, . According to the defini~
tion the degenerate values are those taken on at the six O-dimensional
faces (vertices), and are therefore given by (0,1,2,3) . The regular
values of the mapping consist therefore of all points in Rl other than
these four values--illustrating the fact that vectors in R" which are
not assumed by F are considered to be regular values. We also see that
degenerate values can be assumed on faces of higher dimension; for example,
the value 1 is assumed by F on the entire face conmecting (0,1) and
(1,0) .

We shall now provide a complete description of the set of solutions
to F(x) =c, when c¢ is a regular value of the map. We shall organize
the argument by demonstrating the following preliminary lemma.,

3.2, [lemma] Let P, be a piece of linearity, let ¢ be a

i
regular value of F , and assume that Pi N F-l(c) is not empty. Then
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Pi N F-l(c) conglsts of a single straight line segment whose endpoints

are interior to two distinct faces of dimension n of Pi .

FIGURE 9

In order to demonstrate this lemms let us assume that F(x) = Ax+b

in Pi with A an nx(nt+l) matrix. First of all let us remark that

the matrix A has rank n . Otherwise the value ¢ ig assumed on a

face of dimension n~l of P contradicting the agsumption that ¢

1 2
{5 a regular value.

Since A is of rank n the scolutions to Ax +b =¢ in Pi
form a straight line segment. The line segment cannot be fully contained
in any face of dimension n of Pi 5 8ince extending it would then en-
able us to reach a face of dimension n~-l . Its endpoints must therefore
be contained in the interiors of two distinct faces of Pi + This demon-
strates the lemma.

We are now prepared to prove the major theorem characterizing the
get of solutions to F(x) = ¢, where ¢ 1s a regular value,

3.3. [Theorem] Let F : P - R" be continuous and linear in each

piece P and let c¢ be a regular value. Then the set of solutions

1 Ed
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of F(x) = ¢ 1is a finite disjoint union of paths, each of which inter-
sects the boundary of P in precisely two points, and loops, which have
no intersection with the boundary of P .

The proof of Theorem 3.3 1s, of course, an immediate consequence
of the arguments of the previous section combined with Lemma 3.2. If

Fnl(c) has a non-empty intersection with a plece P then this inter-

i 3
section will consist of a straight line segment touching twc faces of
dimension n of Pi , and no lower dimensional face either of Pi or of

any adjacent plece of linearity. If either endpoint of this line segment

is not on the boundary of P it will be contained in precisely one other
plece of linearity, say Pj . (The fact that this endpoint is contained

in at most one other piece of linearity is the feature which assures that

paths do not bifuricate as in Figure 7.) But then Pj n F-ltc) will
not be empty and will consist of a similar straight line segment.
This process will either produce a path which intersects the boun-
dary of P in two distinct points, or a path which returns to itself
and is therefore a loop. This provides us with one component of the set
of solutions to F(x) = c . If there is another piece of linearity which
intersects F-l(c) we continue by constructing an additional component.
Since there are a finite number of such pileces of process of constructing
paths and loops will ultimately terminate. This demonstrates Theorem 3.3.
This characterization of the set of solutions to F(x) = ¢ is
valid only if ¢ 1is a regular value of the mapping; if ¢ 1is degenerate
the corresponding set may be considerably more complex. In applying

Theorem 3.3 it will be necessary to avoid degenerate values, which, as

the following theorem indicates, form a negligible subset of R® .
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3.4, [Theorem] The set of degenerate values is a closed subset
of Rn , contained in a finite union of (n-1) dimensional hyperplanes.

This theorem,analogous to Sard's theorem in the case of differen-
tigble manifolds, is an immediate consequence of the definition of a de-
generate value to be the image of a point x 1lying in an n-1 dimensional
face of some plece of linearity. There are a finite number of such faces,
each of which is carried by F into a closed subset of an n-1 dimen-
sional hyperplane in Rn .

Theorem 3.4, in the form stated above, is not quite suitable for
most of our applications since a value ¢ 1is considered to be & regular
value whenever F-l(c) is empty. While the degenerate values form a
emall subset of R° s they need not form a small subset of the image
of P under F . For example, If F maps all of P onto the same
vector then all values for which F-l(c) is not empty, will be degenerate.
The following theorem is a sharpening of Theorem 3.4, which is more ap-
propriate for our purposes.

3.5. [Theorem] Let Q be a face of dimemsion n of a pilece
Py and let x be interior to this face. Assume that the image of
Q under the mapping F 1s of dimension n . Then any relative neigh-
borhood of x on the face Q , contains points x' for which

¢! = F(x') 1is regular.

FIGURE 10
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The hypothesis of Theorem 3.5 imply that any neighborhood of x ,
on Q , will be mapped into a set of dimension n by the linear trans-
formation obtained by restricting F to Q . Since the set of degenerate
values of F 1s a set of dimension n-1 or less, there will be many
values of x' in this neighborhood, whose image is a regular value of F .

Theorem 3.5 permits us to treat degeneracy by a slight perturbation
of the vector ¢ , as is customary in linear programming. (See any stan-
dard reference which discusses the resolution of degemeracy in linear pro-

gramming.)

4, Examples of the General Method

In the present section we shall illustrate the significance of
our characterization of the set of solutions to F(x) = ¢ by applying
this result to a series of examples which have played an important role
in the development of fixed point computational techniques. There are

many other examples which we have chosen not to discuss in this paper.

Example I

Our first example is that of "integer labelling," one of the
earliest techniques for the numerical approximation of a fixed point of
a continuous mapping of the simplex into itself. For simplicity of ex-
position we shall take the particular form of this method described in
Chapter 7 of [16]. (Also see Cohen [2] and Eaves [4, 5].)

Consider a simplicial subdivision of the simplex § = {x = (xl,
coey xm)Ixi >0, % X, < 1} which is arbitrary, aside from the assumption

that the only vertices of the subdivision lying on the boundary of § are
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v = (1, 0, «u., 0)

V = (0, 1, L L | 0)

(0,0) (1,0)
FIGURE 11

Let every vertex v of this subdivision be given an integer label Ai{v)
selected from the set (0, 1, ..., n) . The label associated with a given
vertex will typically be assigned on the basis of some underlying mapping
of the simplex into itself. For our purposes, however, the labelling

can be considered to be arbitrary, aside from the pfoviso that vi re-
ceive the label i, for 1i=0, 1, ..., n .

We shall show that Theorem 3.3 can be employed, in the present
context, to demonstrate the existence of at least one simplex in the sub-
division all of whose labels are distimet. This conclusion can be viewed,
of course, as a simplified form of Spermer's lemma.

The conventional computational procedure for determining such g



15

simplex starts out with the unique simplex in the subdivision containing

3

the vertices vl, veey vt and the additional vertex v- . If the label

associated with v 1s 0 s the process terminates. Otherwise we re-

move that vertex of the simplex say vk whose label agrees with that of

vj . A new vertex vL is introduced, where the vertices vl, cony a s
L k

vj » v, with v omitted, form a simplex in the subdivision. If

the label associated with v£ is 0 the process terminates; otherwise

we continue by removing the vertex whose label agrees with that of v£ .

At each iteration we are presented with a simplex whose vertices
bear the labels 1, 2, ..., n . Of the two vertices with the same label,
we remove the one which has not just been introduced. The argument that
the algorithm does not cycle and must terminate with a gsimplex of the

desired type msy be found in the previously cited reference.

2
v
vj is assumed to have the
label 2 .,
v1
v0

FIGURE 12

In order to place the problem in our context we make the following

definition.
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4.1, {Definition] Define a continuous map f : § = § of the
simplex into itself as follows:

1. Let v be any vertex of the simplicial suﬁdivisibh,-and let
L(v) = 1 be the integer label associated with v . We then define £(v)
to be vi .

2, We extend the definition of f to the entire simplex by re-
quiring f to be linear in each simplex of the subdivision of § .

With this definition the function £ is piecewise linear In § ,
and because of the special structure of the subdivision it is easy to
see that f(x) 18 the identity map (f(x) = x) on the boundary of § .
In order to demonstrate the existence of at least one completely labelled
simplex it is clearly sufficient to show that for any vector c¢ , interior

to the simplex § there will exist a vector x , for which
f{x) =c .

The vertices of that simplex in the subdivision which contains x will
certainly bear distinct labels. For if the label 1 1is omitted, then

the image of each vertex in the simplex will be on that face of S whose

n
ith coordinate is zero (or on the face Tx, =1, if i=0) . £(x)

1 i
will therefore lie on the boundary of 8§, contradicting the assumption
that ¢ 1is an interior point. Conversely, if the vertices of a parti-
cular gimplex in the subdivision bear distinct labels then it is easy
to see that the system of equations, f(x) = c , has a solution contained
in that simplex.

We begin by defining a2 polyhedron P in Rn+1 .
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4,2, [Definition] The polyhedron P 1is defined to be the pro-

duct of the simplex § with the closed interval ([0,1] , 1i.e.
n

, xn+1)|xi >0, % %, <1, and x ) < 1} . The pieces

{(xl, ey X

n o+l

Pis Poy aesy Pk of P are obtained by taking the product of an arbitrary

n-gimplex in the subdivisionof § with the same closed interval (0,1] .

n+l

FIGURE 13

The following definition will provide us with a function
F(xl, cees X5 xn+1) to which Theorem 3.3 can be applied.
4.3, (Defimition] Let d be that vector in R" all of whose

coordinates are unity. We define

F(xl, evey xn, xn"_l) = f(xl, ev ey xn) - xn+1d .

F 1s a continuous map of P into R® which is linear in each
piece of the polyhedron P . Our purpogse is to show that for an arbitrary
vector ¢ , interior to the simplex §, F-l(c) will intersect that

face of P on which X 41 = 0.
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Let ¢ be a vector interior to § and let us examine the inter-
section of F-l(c) with the other faces of P . First of all we remark
that F-l(c) cannot intersect that face of P on which X 1" 1.

This would imply that

f(xl, aney xn) -d=c¢,

which is impossible, since fi(x) <1, d=¢(,1, ..., 1) and e, > 0

for all 1 .

On the remaining faces of P , other than the two ends of the
prism, we know that £(x) =x . A vector x in F-l(c) which is on
such a face will therefore satisfy

X =X

n+1d =c,

the unique solution of which is given by

n

(lL-Zc
1 i

n !

)d

*
(xl) o0y x:) = ¢ +

n
(L-Ze¢,)

+* = 1 1

n+1 n *
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_U*
(e+x 1 ¥ =x

AT

c+xn+1d

FIGURE l4

We have therefore demonstrated the important conclusion that if
c is interior to S, the equations F(x) = ¢ have precisely one so-
lution on the boundary of P other than on that face where X 1= 0.
But if ¢ 1is a regular value of the wapping F , Theorem 3.3 can be
invoked to produce a path starting from x* . Since the path must ter-
minate at some other boundary point of P, there must be a vector on
the bottom face of P for which F(x) = ¢ . As we have already seen,
this demonstrates the existence of a completely labelled simplex.

In order for this argument to be complete we need only show that
there exists at least one vector ¢ , interior to § , which is a re-
gular value of the mapping F . But this follows immediately from Theorem
3.5 and the observation that F maps the face of P on which % X, = 1
onto an n-dimensional subset of R .

Let us examine the path generated from x* and terminating with
a solution to the problem in somewhat greater detail. Since ¢ 1is a

regular value this path will move from one piece of linearity to an ad-

jacent one by passing through the interior of their common face Q
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FIGURE 15

The face @ 1s the product of the interval [0,1] with the intersection
of two adjacent simplices in the simplicial subdivision of 5§, say
and S

S j It is easy to see, however, that the n vertices common

i
to §; and Sj must together bear all of the labels 1, 2, ..., n .
For if the ith such label were missing it would follow that fi(x) =0

on this common intersection, which contradicts

f(xl, sesy xn) - xn+1d =c .

We see, therefore, that the projection of our path to the lower
face of P moves through simplices each of which has vertices which
together bear all the labels 1, 2, ..., n, and which do not bear the
label zero until the process terminates. Each such simplex must have
a single duplicated label belonging to that vertex which is being removed
in passing to thg next simplex. The sequence of simplices is therefore
identical with that produced by the conventional algorithm, described

at the beginning of the example.
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It may also be instructive to remark that a second solution to

F(x) = ¢ on the face x

- 0 would generate a second path lying on

F-l(c) which would, of necessity, return to this face. This permits
us to arrive at the well knowm conclusion asserting the existence of an

odd number of solutions to f(x) = c . (See Figure 16.)

P
/
r---q //
1 |
1 i
{ 1
j R |
F==== r---qx*
t : '
| ! !
| i '
| I !
| 1 |
1 ! ¢
| i !
t ! l
i ! I
| I
1 I '
! I 1
1 | i
' I 1
1 I 1
S

FIGURE 16

Example II

As our second example we ghall indicate a way in which fixed point
methods based on "wector" labels (a version of the main theorem in the
monograph by Scarf and Hansen [22]) rather than integer labels may be
placed in the general framework of this paper. We begin with a simpli-

cial subdivision of the simplex

n
S= {x = (xl, seny xn)|xi >0, f x, = 1} .
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FIGURE 17

Let the vertices of the subdivision be dencted by

n 1l k
V, Vi, vesy V, V ', ves, VvV , where

v = (1, 0, ve., 0)

v = (0, 1’ ...’ O)

v =0, 0, vo., 1) .

For simplicity of exposition we make the assumption that no vertices of
this subdivision, other than the first n vertices, lie on the boundary
of § .

Each vertex vj will have assoclated with it a vector f(vj)
contained in R" . In practice this association is determined by the
particular problem being soclved; for our purposes, however, we may con-

sider the vector labels to be completely arbitrary aside from the assump-

tion that
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f(vi) = vi , for 1 =1, 2, ..., n.

In addition to this assignment of vector labels a specific posgitive vec-

tor ¢ In Rp is given,

By a solution to this problem we mean the determination of a par-

Jl jz ]
v

ticular simplex in the subdivision, with vertices v -, n

y ceey V ;
such that the equations
b i

J
o fv iy +a fEWS) 4+ ta E(VY =,
I j2 jn

have a non-negative solution (Qj ) 03 3 swey CG ) . 1In order to guarantee
1 2 n
that such a solution does indeed exist it is sufficient to make the fol-
lowing assumption.
4.4, [Assumption] Let a = (al’ Gy sney O%) be non-negative
and satisfy

k
Ta,frvd) <o .

1 3
Then =20 .
To cast this problem in our general form we begin by defining a
function £(x) taking the non-negative orthant of R" into R" , as

follows:

1. f(vj) = the vector label associated with vJ

for any vertex
of the subdivision;
2, f(x) 1is linear in each simplex of the subdivision § , and
3. f(x) 1is homogeneous of degree 1 , i.e. £f(x) = Af(x) for

any A20 .,



According to this definition, f£f(x) 1is therefore linear in each
cone with vertex at the origin whose half-rays pass through a particular
simplex in the subdivision of § . Because of the special assignment
of vector labels to the vertices vl, vy v ; the function is the
identity (f(x) = x) on the boundary of the non-neéative orthant of

n

R . Moreover, assumption 4.4 implies that for no non-negative vector

x , other than the zero vector, will £(x) be <0 .

n+l

FIGURE 18

It should be clear that solving the vector labelling problem is
simply equivalent to the determination of a non-negative vector x for

which
f(x) = ¢ .

The particular simplex in the subdivision invelved in the solution is
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then obtalned by intersecting the ray from the origin through x with

the simplex § .

In order to define an appropriate polyhedron P we begin by re-

marking that assumption 4.4 implies that the set of non-negative x for

which f(x) < ¢ , 1is bounded. For if there were a sequence xl, xz, ‘oo

tending to infinity with f(xj) < ¢, then any limit point of the sequence

/2D

would be non-negative, different from zero and map into a vector all of
wnose coordinates were less tnan or equal to 0O . For specificity let

us assume that there is a positive constant M , such that x >0,

and f(x) < ¢ implies that
ZX <M.

4,5, [Definition] The polyhedron P 1is defined to be the product

of the closed unit interval 0 <X <1 with the set

n
[(xl, veuy xn)lx:l >0, in SM} . Each piece Pi is determined by a
1

particular simplex of the subdivision, Si » and consists of all

(xl, crver X xn+1) with

1. 0 Sx 481
n
2, }Z-'.xif_M, and

n
3 . (xl, seey xn),z xi contained in s

1 i
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n+l

FIGURE 19

We also define the function F(xl, cver X, xn+1) in the follow-

ing way.
4,6, [Definition] Let d be a vector in R" which is strictly

larger than ¢, and assume--for definiteness--that

[~ L+
E‘j‘>'d-i' for _‘]"2, o--,no

We then define
F(xl, sy X xn+1) = f(xl, eney xn) + xn+ld .

With this definition a solution to the vector labelling problem

-1
will be obtained by finding a vector (xl, sess X, xn+1) in F "(c)

with x = 0 . In order to argue that such a vector does indeed exist

n+l

let us examine the intersection of F-l(c) with those boundary faces of

P other than that face with =x =0 ,
n+l
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1. The upper face Rl = 1.

An intersection on this face would satisfy f(xl, veey X Y +d=c,
n .

which is ruled out by assumption 4.4 since d >c .

n
2. The face f X, = M, X4l >0 . .
Such an intersection would satisfy f(xl, ‘e xn) < ¢ and T X, = M,

1
which is again impossible by the implications of assumptiomn 4.4,

3, The face xi

On any such face the function £(x) is the identity, and the sys-

=0, for £1=1, ..., n.

tem of equations F(x) = ¢ may therefore be written as x + dxm”1 =¢c or

X =c - dxn+1 -

Given our assumption however that clldl < cj/d for j =2, ..., n,

3

it is easy to see that the only such intersection is the vector

x* = (¢ - (clldl)d, clldl) , on the face X, = o .

n+l
c
1
* ¢ = ——1d
X
¢ %
i
1
I
|
A 2
\
\t
c
1 FIGURE 20

We have reached the important conclusion that F-l(c) intersects

the boundary of P , other than that part of boundary where x =0,

nt+l
in a single point. If ¢ is a regular value of the mapping this completes
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our argum;nt, since the path beginning at x* must reach a second boundary
point of P which necessarily lies in the face X4 = 0. If ¢ 1s

not a regular value of the mapping we appeal to Theorem 5.3. The image

of the face % = 0, under F , 1is clearly of dimension n (since

f is the identity on that face) and we therefore conclude that there

are values of x' , 1lying on that same face and arbitrarily close to

x* , for which ¢' = F(x') is regular. The system of equations f(x) = c’
will therefore have sclutions, and by passing to the limit, so will the
original system,

It may be useful, as a final remark, to show that the path generated
above--when c¢ 18 a regular value--moves through a sequence of simplices
which is identical to that generated by the algorithm described in Scarf
and Hansen [22]., Consider two adjacent pleces of linearity P, and

1

P2 whose common face Q is traversed by the path. Since ¢ 1s a regular

n+l

FIGURE 21

value the mapping F must take Q into a subset of R" of full dimen-

sion, for otherwise a component of F-l(c) would be fully in this face.
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Let us expresg the action of F on Q as follows. The piece
P1 is generated by a simplex in the subdivision with vertices
j1 j2 jn jl
V ', V , seey ¥V and P, by the simplex, say, in which v is re-

placed by v' . Any (%15 weey Xy X on the face Q can therefore

n+1)

be written as

j2 In
(xl, a L | xn) = ajzv + L + ajnV ¥ SO thﬂt
1 iy
F(xl, cesy Xy xn+1) = f(v )+ ...+, £(v ) + xn+1d .

i in

Since this mepping has ruil rank, it follows that the matrix

5 J2 jn
4 VT o £ )
A=l . I .
] i
& f(v 2y .. £ |

has a non-singular determinant. Since A(xn+1’ o 2, eeey O, ) = at

jn
the point of intersection of the path and Q , it follows that the columns
of A form a feasible basis whose columns correspond to the vertices of

the simplex defining P. --with the single exception that the column

1
b
d has replaced the image f(v 1) - This is precisely the general posi-~

tion of the conventional almost complementary algorithm.
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Example III

The general arguments of this paper are very similar in spirit
to the homotopy methods introduced by Eaves [6, 8} and Eaves and Saigal
(7] for the approximation of fixed points of a continuous mapping of
the simplex into itself. The present example will illustrate this simi-
larity in some detail.

Let § be the simplex {x = (X1, oees xn)lx1 >0, % Xy <1},
and P the polyhedron obtained by taking the product of § with the

closed unit interval {t|0 <t <1},

t
L~ P
¥
0 )
*1
FIGURE 22

Let £(x) be the continuous mapping of the simplex § into itself,
whose fixed point we wish to approximate. We interpret this mapping as

carrying the lower face of P (where t =0 ) into S and on the upper

face (where t =1 ) we construct some simple mapping whose fixed point
is unique and easy to determine, For example the mapping on the upper

simplex may carry every point into the same vector b

A homotopy between these two mappings is a continuous mapping

f(x,t) of P into § such that
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il

f(x,0) = £f(x) , and

£(x,1) =

I}
o

Such a homotopy may arise quite naturally in some applications in which
a parameter t varies continuously in a closed interval or it may be

constructed directly by assuming for example that
f(x,t) = tb + (1-t)f(x) .

We shall make the simplifying assumption--which can easily be brought
about by embedding S in a larger simplex--that for each t , £(x,t)
maps the boundary of 5 1into its interior.

The basic idea or the homotopy method is to trace a path of fixed
points from the face t = 1, where the fixed point 1s given by x=b ,
until the path intersects the face t = 0 ., 1In order to carry this out
in a piece-wise linear framework we assume that the polyhedron P {s
given a subdivision with vertices {vj = (xj, tj)} . The subdivision may
be quite arbitrary, but if we are concerned with an accurate estimate,
the derived subdivision on the face t = 0 sghould have a fine mesh.

We define the piecewise linear mapping of P into R" by defining
it first on the vertices of the subdivision and then extending the mapping

linearly in each simplex of the subdivision. On a vertex (xj, tj) , we

simply require that

Fed, thy = xd - £ad, oy .

In order to evaluate F at a point (x,t) on the boundary of
P we locate this point in a face of dimension n of some simplex of

the subdivision, evaluate F on the (n+l) vertices of the face and
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extend the definition liﬁéarly. Since evef& vertex on the face where
t =1 is mapped by f(x,1) to b, we see that F(x,1) ==x-b. A
vertex (x,t) on the face where x; = 0 is carried into the interior
of the simplex, so that fi(x,t) > 0 and therefore Fi(x,t) <0 . It

follows that aside from the face of P on which t =0, there is pre-

cigely one boundary point of P contained in F-l(O) y L.e. X = (b,1) .

t
\_(b,l)
AN
N
>
e
rd
rd
<
>
”
’/
\\ 2
(x,O)
1 FIGURE 22

If 0 1is a regular value of F , the path in F-l(O) beginning
at (b,1) wust ultimately penetrate the face where t = 0 , say at the

point (x,0) . Llet x be contained in a simplex in the derived subdi-

vision on this face, with vertices vl, vz, ceey v® so that

X = Qv+ .. +av",
1 n

n

with ¢, >0 and T o, =1, Then
1= 1 i

u 1
1
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If the subdivision is sufficiently fine on this face, f(vi) will be
approximately equal to f(x) , for all i, and =x will serve as an
approximate fixed point of the mapping. If, on the other hand 0 is
not a regular value of F , Theorem 3.5 may be called upon to provide
starting points on the face where t = 1, which are as close as we
wish to (b,1) .

It is 1mportant to remark that the cylinder P can be continued
below the face t = 0 , and be given a simplicial subdivision which be-
comes increasingly fine., This permits the computational procedure to
be prelonged until an approximate fixed point is reached, with an arbitrary

accuracy which has been specified in advance.

Example IV

Qur fourth example of the general methods of this paper will be
the linear complementarity problem as treated by Lemke [16]. Consider
a square nxn matrix C and a vector c¢ in Rn . A solution to the
linear complementarity problem is a non-negative vector x , satisfying

the system of linear inequalities

n
Ze,x, >c,, for 1=1, ..., n,
jop 1=
n
with the additional proviso that X, = 0 for any index 1 with I cijxj > e, .
3=1

In order to place this problem in our setting we begin by defining
n functions gJ(xj) , each mapping R1 into R" .

1. 1If X, =0,
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gj(xj) = 1

with the single 1 appearing in the jth entry of this vector.
We then define the piecewise linear function f(xl, seey xn) ,

mapping R" into r® , by

n .

= J

f(xl, vesy xn) zg (xj) .
j=1
It should be clear that a solution to the linear complementarity problem
is obtained simply by finding a vector x for which £(x) = ¢ . To see
this we introduce the following notation. let x = (xl, eesy X ) be an
n

arbitrary vector in R" . Then

+
X

(max (0, xl), erey max (0, xn)) and

"
|

(min(0, xl), esey min(0, xn)) .

With this notation the equations f(x) = ¢ become
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Since X%, = 0 for all 1, the vector x 1is a solution to the linear
complementarity problem.
The natural definition of the polyhedron P in Rn+l is the pro-

duct of the half line [0,®) with R" . F is then defined by

F(xl, erey X xn+1) = f(xl, ey xn) + dxn+l

n’

with d a positive vector, strictly larger than ¢ 1in all coordinates.
However, in order to avoid umbounded pieces of linearity we shall restrict

P to be the bounded polyhedron

M<x <M, 1=1, ..., n, and

i

0 Slxn+1 <1,

for some large constant M . There are 2" pieces of linearity obtained
by selecting an arbitrary subset of the coordinates greater than or equal

to zero, with the complementary subset less than or equal to zero.
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(0,0,1, >
£
(c-d, 1) \
(0,60,0) (M,0,0)
(0’ -M, 0)
FIGURE 24

In order to solve the linear complementarity problem we find a
boundary point of P in F-l(c) and follow the piecewise linear path

from this boundary point until it intersects the face X1

cedure identical with that originally suggested by Lemke. Ome such vector

=0, a pro-

is given by x = (c1 - dl’ seey € " dn, 1) . In general, there may be

more than one boundary point of P , with X1 >0, contained in

F-l(c) , and the path may exit from P without reaching the plane X

The literature contains a variety of different conditions which

=0 .

may be placed on the problem and which have the effect of implying that

F-l(c) intersects the boundary of P at a unique point with xn+1 >0,

One such condition is the following:
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4,6, [Assumption] The matrix C will be assumed to have the
property that 1f x >0, and xCx <0, then x =0 .
The condition of this assumption {s known as "strict copositivity"
as discussed by Lemke. It may equally well be stated as x >0, =xf(x) <0

implies x = 0, a condition on the function £ which is also known

as "strict copesitivity."

The equations F(x, xn+1) = ¢ may be written as
-1 ves 0— -cll ces clnT
. T L e e
LO sue IJ _cnl oo cnn_
or
Cx+ 2ec- xn+1d .

If we multiply these equations by x+ , and use the fact that X *x
for all {1, we obtain

+ + + +

XCx = cex = xn+1dx .

Now let us examine the boundary points of P which lie in F-l(c)

l. The face Xl ™ 1.

Since d > ¢ we see that on this face cox’ - xn+1dx+ <0, so

that x+Cx+ < 0 . From assumption 4.6 this implies that x+ =0, and

the equations F(x, xn+1) = ¢ become
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1 o.oo
0 o .
. .x‘=c'd,
0 1
. d

yielding the unique solution on the upper face which we have previously
remarked upon.

2. The remaining faces other than Xoel 0.

As we shall see, assumption 4.6 implies that there are no solutions
of F(x) = ¢ on these faces, for sufficiently large M . Let us assume,
to the contrary, that as M = « , there exist solutions x(M) , lying
on these boundary faces and as a consequence having at least one of its
coordinates tending to infinity.

Consider, as the first subcase, the possibility that one of the

coordinates of x+(M) tends to +% , But then, if y(M) = x+(M)/Hx+(M)H ,

we have
yAOCYQ) = (coy®) - x_,, dy(0)/|Ix oo || .

If y 4is any limit point of the sequence y(M) , then ||y|| =1, and
from the above equation, yCy = 0 . This contradicts assumption 4,6, and
implies that x+(M) is bounded.

We are therefore lead to the second subcase, namely x+(M) is
bounded and some component of x-(M) tends to =« , But this is an im-

mediate contradiction of the equations

Ix'(n_) +CX(M) = ¢ - X (04,

since both Cx+(M) and x (M) remain bounded.

o+l
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We have therefore verified, that aside from the boundary face

where x = 0 , there is & unique point in F-l(c) lying on the boun-

n+l
dary of P, If ¢ 1is a regular value of F , the path emenating from
this point must terminate with a soclution to f(x) =c . If ¢ 1is not

a regular value we simply perturb the boundary point in order to initiate

the path.

5. The Index of a Solution

As the previous sections have showm, virtually all of our computational
techniques for approximating fixed points can be viewed as following a
plecewise linear path, contained in F-l(c) ;5 from one boundary point
of the polyhedron P until a second boundary point is reached. By in-
troducing the coancepts of index theory it 1s possible to obtain a con-
siderable increase in our understanding of such paths and consequently
of solutions. As we shall see, each solution to F(x) = c , on the
boundary of P , has associated with it an index which is either +1
or =1 ., The index may be calculated entirely in terms of the local
data specifying the solution, independently of the path which has been
traversed. The important global theorem connecting these locally deter-
mined indices states that the sum of the indices over all solutioms to
F(x) = ¢, lying on the boundary of P , 1is zero.

We begin with a few general remarks about the concept of orienta-
tion., A set of n 1linearly independent vectors bl, b2, .;., b® in
an n dimensional vector space determine a basis for this space. Any

two such bases (bl, b2, crey bn) and (Gl, 1;2

y seay b™) are said to
have the same orientation if the determinant of the linear transformation

carrying b into b is pesitive. If the determinant is negative the
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two bases have an opposite orientation. It is frequently useful to select
a specific basis for a vector space and to describe its orientation as
being positive. Any other basis for the same vector space will have a
positive or negative orientation depending on whether its orientation
agrees or disagrees with that of the standard basis.

A non-singular linear mapping T from one n dimensional vector
space into another will have an index of +1 if it maps positive bases
into positive bases; in the contrary case the index is defined to be -1 .
In the specilal case in which the standard bases for both vector spaces

are given by

b = (1, 0, ey 0)

-2
n

©, 1, ..., 0)

b = (0, 0, vosy 1)

the index is +1 1f the determinant of the linear transformation T
is positive, and =1 if the determinant is negative.

Such linear mappings arise naturally in the context of our prob-
lem. Let P be an ntl polyhedron, F apiecewise linear map into R" and
¢ a regular value of this map. Theorem 3.3 tells us that the set Fhl(c)
is a finite union of paths, each of which touches the boundary of P
at two points, and loops which have no intersection with the boundary
of P . We shall assume that each path and léop in F-l(c) is given a
specific orientation. For a given path this means that the directions
in each piece of linearity intersecting F-l(c) are selected to be con-

sistent with movement along the path from one endpoint to another; and for

a loop, to be consistent with cyclic movement,
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Now let us counsider a piece of linearity Pi which has a non-empty
intersection with a particular path or loop in F-l(c) --an intersection
which is a straight line segment connecting two distinct faces of dimen-

sion n of P Assuming that the path beging at one such face and

1 L]
terminates at the other, its direction numbers will be given by a specific

vector q 1in Rn+1 ; normalized in some conventional fashion. The reverse

-

direction will, of course, be described by the vector -q .

FIGURE 26

Now consider any hyperplane H of dimension n which intersects
the straight line segment at a single point x in Pi s 1l.e. H is

transversal to the path at x . The set of vectors (y-x) , for
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FIGURE 27

Yy in H, form an n dimensional vector space which we shall denote

by VH .

We shall adopt the convention that a linearly independent set of

vectors bl, caey b* in VH has a positive orientation if the determinant

1 2 n 7
by by eee By 9
1 2 n
(5.1)  det| P2 by e by 92
1 2 n
bl Pmtr vt Parl Yan

is positive, and has a negative orientation otherwise. This is equiva-
lent to deriving the orientation of a basis in VH from a standard orien-
tation of the enveloping space, Rn+1 and a given direction q , trans~

versal to the plane H .
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The mapping F , which is linear in Pi {and non-singular since

¢ 1s a regular value) can be extended to a non-singular linear map of
VH into RY . More specifically let F(x) = Ax + a2 in P
an nx(nt+l) wmatrix. Then vectors {y=-x) in V

g2 with A

y are mapped into R"

by A(y=x) .
In order to determine the index of this map, we endow the target

space R® with the standard orientation, and consider a basis

1 2 n

b, b, vsey b of V., . The index of the map 1is determined by compar-

H
ing the orientation of bl, teey b in VH with the orientation of its

image Abl, vouy Abn in Rn . In other words we compare the sign of

(5.1) with the sign of

(5.2) det (AbY, abZ, ..., ™) .

If the two determinants have the same sign the index is +1 , if not -1
The importance of this definition is displayed in the following

lemnmsa,

n

5.3. {Lemma] The index of the map from v, to R s the same

for all n-dimensional hyperplanes H which intersect the segment

p, 0 F-l(c) in a single point.

i
The basic geometric idea behind this result is that the orienta-

tion of the wvarious vector spaces VH are all determined by the same

direction q and the orientatiomn of Rn+1 « In order to give a formal

proof, we shall simply demonstrate that the index is identical in sign

to the determinant
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a1 81y e- al,n+1
. A
det a a a = det 3
nl n2 °°" “n,n+l q
q q "o q
|1 2 o+l

which is itself independent of the hyperplane H , and the point of

intersection x .

We have
e - - b
1 2 n
811 %12 *cr 8 aa || P11 By eee B g
®n1 %2 - %, nt1
1 2 n
N 92 e Gy | _bn+l Payl **t Pan Un41 |
-

. 2
= |lq]|“dec(ab’, ..., a6 ,

where we have used the fact that Aq = 0 , since the function F is
consgtant along the path with direction gq . This concludes the proof

of Lemma 5.3,

The index of the mapping from VH to R {is independent of the
hyperplane H and the point of intersection x on the straight line
segment Pi n F-l(c) « In particular x may be selected to be either
of the two endpointe of this line segment and H to be the n face of

P, through which the path enters or leaves this piece of linearity.
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Calculating the index in this fashion also permits us to relate the index
in two adjacent pleces of linearity containing parts of the same path
or loop in F-l(c) .
5.4, [Theorem] The index 1is identical for any two points of the
same oriented path or leop in 1'«"'1 (¢c), 1f ¢ isaregularvalue of the mapping.
In order to demonstrate 5.4 we need only show that the index is
unchanged when calculated in either of the two possgible ways at a point
x* contained in a common n face H of two adjacent pieces of linearity

2

P. and P2 + Let x*¥+b13 x*+b 3 wany x*+b" be a set of linearly

1

independent vectors on this face, and let

F(x) = Aix + ai in P, for 1 =1, 2 .

The direction of the path in P, 1is given by ql and in P2 by q2 .

1

FIGURE 28

Since q1 and q2 point to the same side of H , we have
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= =
1 n i
bl e b1 q1
ST I
det
1 n i
| Pa1 ot Potn Gne

used in calculating the index in each of the two adjacent pleces of linearity
willl therefore have the same sign.

Since Alx + al - Azx + 32 for all x in H we also see that

Al +bd) + ol = A% +b9) + a2,

and therefore Albj = A?bj for all j . It follows that the two deter=-

minants

det (alp?, ahv?, ..., aT6")

are identical in each of the two computations. This demonstrates Theorem
5.4,

The index we have been discussing so far should be thought of as
being defined at each point of an oriented path or loop in F-l(c) .
A more cumbersome but appropriate title would be "oriented curve index."
The wmajor conclusion of Theorem 5.4 is that this oriented curve index

is identical at the two endpoints of a path contained in F-l(c) .
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FIGURE 29

At such an endpoint, however, it is appropriate to define fhe index in
the following way, which 1s independent of orientation. Such an index
might be thought of as & '"boundary" index.

5.5, [Definition] Let x* be a boundary point of F-l(c) s
contained in the relative interior of an n face H of some piece of
linearity in which F(x) = Ax + a . Let x4—b1, x+—b2, reny x+b" be
a set of linearly independent vectors in H , and let q be an arbitrary

*

direction pointing into P at x* . The index of x* 1is defined to be

4+1 1f the two determinants

det (ab®, AbZ, ..., ab") , and
B 1 n N
bl LN N bl ql
1 n
det| P2 0 Py 9
1 n
| Pl 0 Prr 9pny |

agree in sign, and ~1 otherwise.

In this definition the direction ¢ is an arbitrary direction
pointing into P at x* ; rather than the specific vector associated
with the direction of the path in F-I(c) which starts from x* . This

more general choice is possible since the sign of the second determinant
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in definition 5.5 is the same for all directions pointing into P, by
an argument identical with that used in the proof of Theorem 5.4.

With this definition the following theorem is an immediate conge=
quence of our previous arguments.

5.6. {Theorem] Let ¢ be a regular value of the piecewise linear

map taking P into R" . Then
I index (x) = 0 ,

with the summation taken over all x in F-l(c) which also lie on the

boundary of P .

6. Several Applications of Index Theory
In order to apprecilate the additional information provided by index
theory, we shall apply the results of the previous section to the examples

studied earlier in this paper.

Example I

We are given a simplicial subdivision of § = {x = (%15 ves) xn)[xi >0,
n
f X, < 1} with vertices vo, vl, ceny vn, seey vk , and with the pro-

perty that

<
]

(0, 0, vee, 0)

<
h

©, 0, «.., 1),

are the only vertices of the subdivision lying on the boundary of § .
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Each vertex v is given an integer label 4£(v) , selected arbitrarily
from the set (0, 1, ..., n) except for the proviso that L(vj) = j
for 1 =0, vesy, n .

The function f(xl, suey xn) , mapping § into itself, is defined

L(x) for each vertex =x of

to be linear in each simplex and equal to v
the subdivision. The determination of a simplex with distinct labels is
then equivalent to finding a vector x for which c¢ = f(x) is interior to

The function £ was then extended to the product of S5 and the

closed unit interval by defining

F(xl, sevy X 4 X

" n+1) = f(xl, cevy xn) - dx

1l

with d a vector all of whose coordinates are unity. A solution to the

original problem is then obtgined by finding a point (xl, sees Xy xn+l)

-1 _

in ¥ “(e¢) 1lying on the face X4l 0
n+l
,,—-H
¥
<*
1 Jf‘/””1
b 2

FIGURE 30
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In our previous study of this example we argued that there was a

unique point in F-l(c) lying on some boundary face of P other than

X1 = 0 . In particular the point' x* 1ies on the face H defined by
n
Zx.=1.
.

Let us gelect a basis bl, oy b" for the vector space H=-x" .

The direction gq , pointing into the polyhedron P at x* y will be

taken as

q= ("l, '1, ssey -1) .

The determinant

F 1 n ]
bl e bl 1
1 n
b e e b "1
det 2 2
1 n
_brl"']. L) bn_'_]- -1—

[~ 1 1 n n
bl - bn+1 “en b1 - bm1_1
~det . : .
1 1 n n
n

On the face T xj = 1 , the mapping F 1s given by
1
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F(xl, ve ey xn+l) = : ’

so that a basis vector (bi, ooy bj

n+1)' is carried into

b33 Jo_ 3
(b] = b2 15 eeey B) - b

T
n+1) *

the index at x* are therefore opposite in gign, and the index of x

The two determinants used in evaluating

*

equals -1 .
We obtain the important conclusion that the sum of the indices

assoclated with points in F-l(c) for which Xl = 0 (the solutions

to our original problem) equals +1 . Let us attempt to determine the

index for such a solution x , lying in a completely labelled simplex
g Ja - - jO
with vertices v ', ..., vV =~ . For definiteness we assume that v

3
bears the label 0 , v 1 the label 1 , etc.

1 FIGURE 31

A basis for the hyperplane Xorl 0 may be obtaining by selecting
h| j

bi =v i v 0 for 1= 1, ..., n, and the direction q as (0, 0, ..., 0, 1) .

The first determinant used in evaluating the index at x 1s therefore given

by
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r : n
3 Jo Jn_ oo
Vl Vl Tee 1 Vl
det [ ] L ] -
3 j0 jn jO
v -V ves WV -V 0
n n n n
L 0 0 1
.
j1 - jO jn _ ng
VI Vl sa e Vl
= det . . .
ot do
Lvn Vn *sa n nJ

In order to evaluate the gecond determinant we remark that F maps the

3

]
LI v 0 into the ith unit vector in Rn « The second

basis vector v

determinant is therefore equal to unity. We have the following theorem.
6.1. [Theorem] Let vjo, vjl, ceny vjn be the vertices of an

arbitrary completely labelled simplex, and assume that vji bears the

label i . We define the index of the solution to be equal to +1 if

the determinant

1 "o 1 1
det : .
5, i i 3
v -V e v -V
n n n n

is positive and -1 if the determinant is negative. Then the sum of the

indices over all completely labelled simplices is +1 . Moreover a so-
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lution obtained by initiating the algoritim on the boundary with X 11 >0

will have an index of +1 .

Example II

We begin with a simplicial subdivision of the simplex

n
s = {(x= (xl, asey xn)|xi >0, T X = 1}, with vertices
1

n _ntl k
Vi, ¥V, weey V3 V7, eesy, vV, where

<
1]

(1, ¢, «.., 0)

-

v = (0, 0, XEY) 1) »

and the remaining vertices interior to § . Each vertex has associated

with it a vector label f(vJ) , arbitrary aside from the requirement

that f(vi) = vi for i=1, ..., n . A specific non-negative vector

¢ is given and we are concerned with finding a simplex in the subdivision,
j1 j2 jn
with vertices v ', v, ..., v , such that the equations

3

1 j
A E(V 1) + oy (v

i
2
)+...+Otnf(vn)=c,

have a non-negative solution «a .

As we have previously seen, the procedure for converting this prob-
lem to the solution of a system of plecewise linear equations is to de-
fine the function f(xl, cuey xn) in Ri by the conditions:

1, f(vj) equals the vector label associated with the vertex

v’ of the subdivision,
2. f 1is linear in each simplex of the subdivision, and

3, f 1is homogeneous of degree 1.
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The problem is then equivalent to finding a vector x for which f(x) =c .
The polyhedron P is given by the product of the closed unit in-
n
terval [0,1] with the gset {x = CIPRRTTY xn)|xi >0, Tx, < M}, and

1
the fuaction F by

F(xl, cors X xn+1) = f(xl, csey xn) - xn+1d .

-1
In our earlier discussion we saw that d could be selected so that F " (¢}

contains a unique vector x* on the boundary of P , with xn+1 >0 .

The path emanating from this point must therefore reach the face

Xl - 0 , and provide us with a solution to f(x} =c¢ .
n+l
-X*
/
rd
L
P
s
”
./
;T
/ 2
yj
/
FIGURE 32

It is a routine matter to verify that the index associated with
the point x* is =1 . The sum of the indices associated with the so-

lutions lying on the face x = 0 is therefore +1 . Rather than

n+l
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caiculating this index directly let ﬁs take a slightly different approach
and examine the index along the path traversed by the computational pro-
cedure.

In general, if the function F = Ax + a in some piece of linearity
Pi , and if the direction of the path 1s given by the vector ¢ in Pi »

then the index along the path has the same sign as the determinant

211 %12t ®1an
det a a .
nl n2 "°" “n,n+l
U 92 et Tpep

We may use the fact that Aq = 0 to express the index in a different
form. Assuming that Y # 0 we multiply the jth column of this

matrix by qj/qn+1 and add it to the last colum, for j =1, ..., n,

obtaining
B n+l A 7]
31 %12 e f 21495794
det n .
a1 %2 ¢ f anjqj/qn+1
T2
i 9 9 f 44/ 904

Every entry in the last column of this matrix is zero, other than the
diagonal entry, and we see that the index along the path has the same

sign as
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8y eee @y
pep det . . )
anl L ] ann

Moreover, if 941 #0, it follows that this determinant is different
from zero. On the other hand, if 941 = 0 , then it is easy to verify
that the corresponding determinant is zero.

Let us attempt to calculate this matrix for the general vector

labelling problem. A specific simplex in the subdivigsion with vertices
3 B
V T, ese, ¥ will define the piece of linearity consisting of all vectors

(xl, cons Xo» xn+1) with

jl jn
(xl, ve ey xn) = aiv 4+ e + th R
n
for @ 2 0, ‘lixj <M, and 0 X €1 . In this pilece of linearity
jl jn
F(xl, sees Xy xn+1) = Qif(v Y+ ... + Ohf(v ) - xn+1d .

If we define the two mxn matrices

- .
£ Ly ... £,0°%

U= . . , and
j j
A y ... £ (v “)J
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le an
1 L IR ) 1
V= . : ’
1 jn
v "o v
L. D n_

then the linear representation of F in this piece of linearity takes

-1
the form F(xl, ceey xn+1) = UV (xl, eeay xn)' - d . We obtain the

Xn+l

important conclusion that the index along the path, which must be equal

to =1, is identical in sign with

q,; det vty .

The quantity 944 has a specific interpretation. If it is positive

the coordinate x is increasing in this plece of linearity and the

ntl

path is therefore moving away from the plamne Xl 0 . On the other

hand if 9y < 0 the path is approaching the plane x 1= 0 and if

ot
Qi1 = 0 the path is moving parallel to this plané. But from the index
theorem the sign of 941 must be opposite to that of det(UV-l) if
this determinant is not zero. If the determinant is zero, then 94 = o .
This demonstrates the following theorem:

6.2, [Theorem] The path generated by the algorithm will be moving
towards the plane X4
det(UV-l) >0, away from the plane if det(UV-l) < 0, and parallel

= 0 in any plece of linearity in which

to the plane if det(UV-l) =0 .
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det (W 1) >0 ~ -

P get (wv™Ly <0 det (W L) =0 | det v 1y >0

FIGURE 33

This result is significant in revealing the lack of monotonicity
in approach to a solution which is characteristic of fixed point methods.
In any two adjacent regionms in which the determinants det(UVhl) are

different in sign the rate of change of X will differ in sign. 1In

+1

order to guarantee monotonicity of convergence it is necessary to require
that det(UV-l) have the gsame sign in every simplex of the subdivision,
a property which holds only for rather special problems.

0f course, must be decreasing in the final piece of linearity

X+l
in which the determinant will therefore be positive. We have, in fact,

the following theorem which characterizes the index of a solution on the

plane =x 1= 0 1in terms of the determinants det(UV-l) .

3 i

6.3. [Theorem] Let v 1, crey V be the vertices of a completely

n+

labelled simplex, i.e. one for which U@ = ¢ has a non-negative solution.
The index of this solution, based on a direction pointing into P, 1is
equal in gign to det(UV-l) . The index sum over all completely labelled
simplices is equal to +1 ,

The proof. of Theorem 6.3 follows the same arguments which we have

just presented and need not be given explicitly. It is appropriate to
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remark, however, that the solution will be unique if it can be shown that
det(UV-l) >0 for every simplex in the subdivision. For then each solu-
tion will have a positive index and there will, of necessity, by only

one such solution. There are a number of important problems (for example
the convex programming proolem, and the non-linear complementarity prob-
lem when the Jacobian is a P-matrix) whose solutions can be shown to be

unique, for sufficiently fine subdivisions, by this argument.

Example III
In our third example the polyhedron P 1is given by the product

of the closed unit interval [0,1] and the simplex
n
§={x= (xy5 eve, X )|X, >0, Tx, <1} . A continuous map £(x,t)
1 n i= 1 i-
from P into the interior of the simplex § 1is given with the property

that f£(x,1) maps the upper face t =1, into a constant b,

P
L
F
(b,1)
<
\
\
qi
4
7
2 7 2
!
Oléfésvl S
v

FIGURE 34
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In order to approximate a fixed point of the mapping £(x,0) ,
of § into itself, we take a fine simplicial subdivision of P , with

vertices {(vj, tj)} . For each such vertex we define

rovd, edy = o - fedd, oy,

and extend the definition linearly in the interior of each simplex. An

approximate fixed point of the mapping £(x,0) will be provided by a
vector (x,0) in F'l(O) .

As we have previously argued the vector (b,1) 1is the unique

boundary point in F'l (0) , with x atl >0 . 1In order to determine the

index at this point we ramark that P(xl, seey oo t) = A(xl, sess X, t)'+a,

in the piece of linearity contasining (c,1l) , with

+1 e 0 .1,ﬂ+1
0 see 0 .2,n+1
A= . . . .
i 0 +1 .B,MlJ

If ¢ = (ql, ceey Quy qﬂl) is the direction of the path amerging from
(0,1) , then as bafore the index has the same sign as

[ ... o

(v} 0
9oy det| .

LO +1

Siace Sarl <0 , this index 1s equal to -1 ,
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The sum of the indices associated with the approximate fixed points
of f(x,0) 1is therefore equal to +1 . Consider a particular
(x,0) ¢ F-l(O) , and let x be contained in a simplex on the face t =0,
with vertices vo, vl, eesy v . The index of x then has the same sign

ag det B 1if
F(x,0) = Bx + a

within this particular simplex.

n n
Let x =1L Qﬁvj , with aj >0 and T 03 =1, or alternatively
1 0
n
x = vo + IO (vj - vo) .
1 3
If we define
—vl - vo Ve - voj
1 I A | 1
V= . .

o
-
o

then (al, cvey an)l = V—l(x - vo) .

With this representation for x , we have F(x,0) = F(vo, 0)

n 0
+ Eaj(F(vj, 0) - F(v°, 0)) , so that if
1

F,(v', 0) - Fl(vo, 0) ..o B, 0) - F (0, 0)

[ =]
1l
L

LFn(vl, 0 -F ° 0 ... F GO, 0 F_v0, 0)

it will be correct that



F(x,0) = F(°, 0) + UV *(x ~ v°) .

The index of the solution is therefore identical in sign with det U\.i'-1

Example IV

62

In order to study the linear complementarity problem

n

jflcijxj Z.Ci gy for 1i=1, ooy, m

n

with x = (xl, . xn) =20 ( x, = 0 if jzicijxj > e

n } , we introduced

the function f(xl, ey xn) s defined for all vectors in R" , as

follows:
£(x) = Ix + AxT .

The polyhedron P , in Rn+1 s 1s the cube

"stiSH, for inl’ --.,n,

0 Sx 4,51,

and the piecewise linear function F 1is given by

F(x1’ ey xn, xn+1) = f(xl’ seey xn) + x

with d a positive vector strictly larger than ¢ .

19 2
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(cl-d ..,cn-dn,l

1’

FIGURE 35

The polyhedron P is naturally divided into 2" pieces of linearity,
each obtained by selecting a specific subset § of the integers (1, +.., 1)
for which the coordinates X 5 for 1 ¢ S8, are non-negative.

The linear complementarity problem is solved by finding a vector
(xl, sy xn+1) in F-l(c) , for which X = 0 . In our previous
study of the problem we demonstrated that under certrain assumptions on
the matrix C , there would be a unique boundary point of P in F-l(c) ;
on those faces of P other than the face X 41" 0 . The specific boun-
dary point is given by (cl-dl, veey cn-dn, 1) .

It is a trivial matter to verify that the index associated with
this boundary point is -1 . Assuming it to be the unique boundary point

in F-l(c) lying above the face X" 0 , we conclude that the sum

of the indices associated with solutions to the original linear comple-
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mentarity problem is unity. Let us calculate the index associated with

a solution x on the lower face of P .

Let x be contained in a plece of linearity defined by the index
set S . In other words x, 20 for i e § and <0 for i £s .
Let (ql, vees Gy qn+l) be the direction of the path terminating at
X , and observe that Dy <0 . As in Example II the index along the

path (which must be -1, since that is its value at the beginning of

the path) agrees in sign with

~ -
1 *** 84q
9e1 det . . s

where F(x) = Ax + a in this piece of linearity.

This latter determinant is very easy to evaluate. For j ¢S,

its jth column is givea by
L}
(clj’ c2j) ey cnj) 2
and for j ;’S its jth column consists of O's and a single 1 appear-

ing in row j . We see that the index of a solution is given by the sign

of the determinant ot that principal minor of

€11 *** Cin
c=| : : ],

whose rows and columns have indices belonging to § .
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Just as in Example II, these observations provide us with consider-
able information along the path. Each plece of linearity will have asso-
clated with it a principal minor of C obtained by striking out those
rows and columns of C corresponding to indices j for which xj < 0
in this piece of linearity. If the determinant of this principal minor
is positive, then 91 < (0 aund the path is approaching the plane X1 = o .
Conversely if the determinant is negative the path is moving along from
a solution in this piece of linearity. It follows that monotonicity of
the path can only be guaranteed if the matrix C has all of its principal
minors positive, i.e. if C is a P-matrix, Similar conclusions may also

be obtained for the non-linear complementarity problem in which the func-

tions T cijxj are replaced by non-~linear functions defined in R: .
i

The algorithm described and studied by Katzenelson, Fujisawa and
Kuh and others is in a setting somewhat more general than that of Lemke,
Let £ : R® = R" be piecewise linear and consfider the problem of solving

f(x) =y . Let X, be an estimate of the solution, let Yo = f(x

o’
and let

F(x,t) = f(x) - ty0 - {1-t)y .

Katzenelson's algorithm, as extended by Chien and Kuh consists of generating
a path in F-I(O) , beginning with fhe point (xo, 1) , 1in order to find
a point (x,0) e F-l(O) . Convergence of the algorithm is established by
these authors under a variety of assumptions on the Jacobian of the mapping;

these results can equally well be obtained by the use of index theory as

described in this paper.
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