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MULT ICOLLINEARITY AND FORECASTING®

by

Gary Smith

Much of the available economic data is so highly intercorrelated
that it is incapable of distinguishing between radically different models
of economic behavior. The variation of a given dependent variable can
seemingly be explained equally well by a limitless variety of theoreti-
cally motivated and randomly chosen explanatory variables. And for any
particular model, the confidence regions are generally so large that the
point estimates and forecasts are of little interest.

One response to the inadequate informational content of the data
has been shoulder shrugging, with remarks akin to Johnston's that one cannot
"make bricks without straw.' Some of the shruggers view the problem as
annoying but intractable, while others seemingly argue that having highly
correlated explanatory variables is not necessarily a problem. Raduchel,
for example, has written that "collinearity should be viewed more as a
condition to be recognized rather than as a problem to be corrected....
No particular virtue attaches to orthogonality nor any grievous vice to
collinearity."

A more popular response is for the model builder to limit himself

to a relatively small number of explanatory variables, chosen in part

*The research described in this paper was undertaken by grants from the
National Science Foundation and from the Ford Foundation.



for their relative orthogonality. Or a more complete theoretical model

is specified, and then variables are sequentially dropped when their coef-
ficients are found to be statistically insignificant. And in between we
have those who toil endlessly to find some combination of explanatory
variables which will yield statistically significant and plausibly signed
parameter estimates.

These practices are sometimes defended on the grounds that simpler
models are easier to understand, or that it is expensive to collect data
and to predict values for explanatory variables. More often, it is thought
that one is informally applying a priori information by trying to get
correctly signed coefficients, and formally applying statistical theory
by running hypothesis tests.

Econometricians generally respond that the final estimates and
statistics have little meaning and that the modeler has done little more
than disguise the imprecision of his estimates. And it is often noted
that incorrectly including irrelevant variables will not bias the estimated
coefficients, as will incorrectly excluding variables. Thus, Johnston
concludes that, "Data and degrees of freedom permitting, one should error
on the side of including variables in the regression analysis rather than
excluding them." In response to this, it is argued (particularly in the
pretest literature) that excluding variables will reduce the wvariance
of the estimates, and that this may more than offset the bias if a mean
squared error criterion is used. |

In this paper, I will argue that particularly in a forecasting
context collinearity can be an extremely serious problem, which should
motivate the liberal introduction of even weakly held a priori informa-

tion, However, such information should not be confused with the imposition



of arbitrary or randomly selected constraints on the coefficients.

The proposed remedies for multicollinearity which focus on reduc-
ing the number of explanatory variables amount to no more than awkward
ways of imposing a variety of wholly ad hoc parameter restrictions on
the model. While these may be accidentally beneficial, it is difficult
to rationalize their use in place of analogous a priori constraints.
Similarly, it i1s very hard to justify the mechanical imposition of arbi-
trary (typically zero) restrictions on the parameters whenever these are
unrejected by the data.

Instead of passively resorting to ad hoc constraints, economists
should view '"the collinearity problem' as an opportunity to introduce
valuable a priori information of a much broader range than simple exclu-
sion restrictions. One can informally impose exact restrictions based
upon a judgmeﬁtal blending of the inadequacies of the data, the faith
one has in the a priori information, and the uses to which the estimates
will be put. Or ome can directly accomplish thig with a Bayesian or quasi-
Bayesian (such as mixed estimation) technique which explicitly clarifies
(and exposes) one's subjective assumptions. While the informal approach
myopically chooses between no information and perfect information on a
parameter-by-parameter basis, a Bayesian approach permits flexible priors
and multi-parameter considerations.

In Section I of this paper, I discuss the ambigulties involved
in the detection and measurement of the collinearity problem. Section
II 1s concerned with the extreme but illustrative case of exact collinearity.
In Section III, I consider constrained, unconstrained and pretest esti-
mators for imperfectly collinear explanatory variables. Particular atten-

tion is pald to out-of-sample forecasting and (for expositional purposes)



the weaknesses of a principal components approach.
The following conventional framework will be used throughout the

paper. T sample observations from the assumed model

y = X B + e
Txl Txp pxl Tx1

will be used to forecast n out-of-sample values of y which are assumed

to be generated by

SO = x% 4+ &

where

§ € e\ -_02
€ € 0 UOIn

The forecasts will be denoted by
~ 0
y=x5

where the parameter estimates B use only the in-sample data.

I. Measurement

The common sense notion of collinearity is that when two explana-
tory variables have been highly correlated, one cannot accurately esti-
mate the effects of either moving separately. But it is not easy to go
from this heuristic notion to a rigorous definition and an attractive scale
upon which to measure the severity of the collinearity situation. The
essential problem is to define a way of quantitatively tying down the

harmful consequences of collinearity and to eliminate the ceteris paribus




ambiguities~-what factors are being held constant as one talks about
differing degrees of collinearity?

One of the more widely read approaches is Farrar and Glauber's
ingightful discusslon, which includes the recommendation that the severity
of the overall collinearity problem be measured by the determinant of

the simple correlation matrix for the explanatory variables:

- L

R| = | *x'xz 2|
where I 1is a diagonal matrix with the ith diagonal element equal to
the gsample sum of squares of the ith explanatory variable. Since this
determinant will lie down between zero (singularity) and one (orthogonality),
they argue that its closeness to either of these extremes can be interpreted as
a suggestive measure of how collinear the explanatory variables are. With
the assumption that X 1s multivariate normal, they offered as a more
precise measure Bartlett's chi-square test of the null hypothesis of ortho-

gonality in the underlying population.

-[T - 1 - g(2p+5)]Log[R] ~ ] :
sp(p-1)

Haltovsky correctly noted that this is a questionable null hypothesis
given Farrar and Glauber's emphasis on the unimportance of the parent
data, Haitovsky also argued that the test is conservative in that satis-
factory estimates do not require strict orthogonality. He consequently
proposed the alternative extreme of singularity as a null hypothesis,
degpite the acknowledged fact that this cannot be seriously tested since
an m-dimensional population will not generate data of more than m di-

mensions. Nevertheless, Haitovsky proposed the heuristic test statistic



-[T -1 - %(2p+—5)ILog[l-|Rf] ~

hghth

(rp-1)

which is at least successful in giving a more comforting signal than Farrar
and Glauber's test. For example, with 50 obgervations on two explanatory
variables, Farrar and Glauber's test would register trouble at the 1%
level when the squared correlation between the two variables ies greater
than .13, while Haitovsky would require a squared correlation coefficient
greater than .87. Part of the problem here is the usual classical dilemma
of which state should receive the presumptive weight of being classified
as the null hypothesis; but even more critical is the awkward struggle to
define multicollinearity in terms of the properties of a presumed parent
population. The consequences of multicollinearity are clearly due to the
nature of the available sample data, irrespective of the source of the
data. Indeed, the most important qualification to this statement is some-
what perverse: in a forecasting context, extreme sample collinearity is
the mosf worrisome when future samples are not characterized by such col-
linearity. Thus, in our two-variable example, a squared correlation coeffi-
cient of, say, .99 would be less worrisome if the squared population cor-
relation coefficient were .99 than 1if it were zero.

And, finally, the determinant of the simple correlation matrix
ig wholly arbitrary in that a linear transformation of the explanatory
varlables can always yield a determinant which 18 equal to one or arbitrarily
close to zero. This (and many other important issues) can be discussed
most clearly by considering in some detail the case of two explanatory

variables in an equation written in deviations from means form:

Y = lel + Bzxz + e .



We have the moment matrix

2
X P'¢
(x X )i(x X ) = l lKZ
1 2 1 2 X EXZ
1% 2
and covariance matrix
3 2 ~IX. X
1 2| K 1%2 1
Cov =0 2 ) 7
Py "X X X)) B EG - (X))
so that
2
var(f) = P 1oL L L
(Exi) l~r g, l-r
Xy

where r is the sample correlation coefficient between xl and x2
Thus, the estimates of the Bi would be more precise if the omitted
factors were less important, if there was more data, if there was more
variation in the explanatory variables, or if X1 and Xz were less
correlated. The question here is which of these factors to identify as
the "collinearity problem,'" and by what scale to assess the severity of
the problem.

The most natural (and common) cholce is r , the correlation be-

tween X, and X, . Often, the variables are standardized

I X
v = 8o k| + (8 )| 5 + ¢
1 1@1 ? 2/522

b,Z. + b,2

121 T oyt e



so that the moment matrix is a2 simple correlation matrix

(Zl Zz)'(zl zz) =
r 1

with a covariance matrix given by

2
Now, given O , the variances of the estimates of the bi are directly

tied to r2 » and 1t has been variously suggested that the extent of the

collinearity problem be measured by

r : the corrélation between Xl and X2
2 ) of A
-0 : the covariance between B, and b
1 2 1 2
-r
1 - rz : the determinanf of the standardized moment matrix

l-r , 1+r : the eigenvalues of the standardized moment matrix,

Consider, however, the effects of rearranging the explanatory vari-
ables, Since a linear transformation of the explanatory variables will
not affect the implicit estimates of any estimable parameters, the initial
arrangement of the variables is totally arbitrary and therefore should
not affect our measure of the severity of the collinearity problem. To

take an extreme rearrangement,



v - b1 + b2 z1 + 22 N b1 - b2 z1 - 22 .
/2 /2 /2 /2 ¢
= 71w1 + 72w2 + 6 .

Now the moment matrix is

(Wl Wz)'(wl wz) =

1
?1 5| 1+r 0
Cov =0
72 0 L
l-r
so that
2
- o 1
var(y.) = == w=
i T 02
w

In this form of the equation, the explanatory variables are uncorrelated
and the estimated parameters have no covariance, so that these two indi-
cators (which are based on the degree of diagonality of the moment matrix)
would indicate that there is no collinearity problem. If the estimates
here are imprecise, it is not because the associated variables are highly
correlated, but rather because they display little variation. Thus, any
gtatement of high correlation can be equally well expressed as one of

low variation. For example, one could speak of the high correlation be-

tween two interest rates or of the stability of the rated differential.
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However, we surely do not want our detection of a multicollinearity prob-
lem to depend upon whether we use the two rates as explanatory variables
or instead use one rate and the rate differential,

The determinant and eigenvalue tests hold up in this case, since
they are unaffected by an orthonormal transformation such as was used
here. It is desirable to restrict one's attention to orthonormal rearrange-
ments since these preserve the length of the parameter vector. That is,

in general, for

Y=2b+ ¢= ZH'Hb + ¢

Wy + ¢
we have y'y = (HB)'"(Hb) = b'b .

However, orthonormal transformations do not preserve the unit variances

of the explanatory variables. Thug if v, and v, had been our original

variables, we would have standardized them to

w w
1 2
Y = (71J1+r) 7T;:' + (72Jl-r) 7T:; + ¢
= Ci V1 + C2 V2 + ¢
with
1 0
v, v)'(v, v,) =
1 2 1 2 0 1
and
¢ 1 0
COV 1 =c’2 L]
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Thus, if we had started with v, and w, and calculated the determinant
or the eigenvalues of the standardized moment matrix, we would have found
no indication of a collinearity problem. Since neither the model nor the
estimates have changed, this means that (contrary to the widely held view)
the moment matrix or covariance matrix cannot alone convey the serious-
ness of the collinearity problem. This is because the variances can be
made arbitrarily large or small simply by changing the scale of the para-
meters--if the variance of & is 1000° , then the variance of :;a
will only be 0'2 » Thus, one cannot say whether the variance of an esti-
mated parameter is large or small without knowing the scale of the para-
meter and one's objectives. Specificaily, a seemingly large variance may
be of little concern if the parameter itself is large or uninteresting.

For a particular coefficient, one can examine the estimated parameter

and a representation of its variance

o 1

yeZ L 1
i T U2 2
i

Var(a
: 1 - Ri

{where oi 1s the variance the associated variable and Ri is the squared
multiple correlation coefficient between this variasble and the remaining
explanatory variables) and make a subjiective statement about the sgerious-
ness of the imprecision. And one can informally attribute part of this

imprecision to collinearity by a calculation of how much smaller the vari-

ance of the estimate (or the confidence band) would be if, ceteris paribus

RZ

; Wwere cloger to zero.

Statements about the overall collinearity problem would seemingly
require an examination of the covarilance matrix for a basis for the esti-

mable parameters and some sort of subjective loss function. It is probably
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most convenient to eliminate the covariances by working with the coeffi-
cients of an orthogonal basis for the explanatory variables. In our two-

variable example, we might use the principal components

Y = 71w1 + 72w2 + €

with
1 1
?l g Hr 0 2l M 0
Cov = J = g
vd n 1
2 0 T 0 n

where Kl and A2 are the characteristic roots of the standardized moment
matrix Z'Z . Now, all estimable parameters will be linear functions of
2 and 2N with variances given by linear combinations of czlxl and
52/A2 . Consequently, a loss function for any pair of estimable parameters
can be conveniently recast in terms of ?1 and ?2 .

Again, such a loss function is critical to an interpretation of
the collinearity problem. For example, if r {is positive then a confi-
dence interval for 103 is larger than one for 7 s but the gcale of
7, may be gso much larger than that of Yo s that one would conclude that
it ig the more precisely estimated parameter. This suggests pre-scaling
the parameters, so that equally wide confidence intervals would be viewed
as equally precise estimates, before attempting to determine in which direc-
tions the data is informative. In general, once we've gubjectively spe-
cified m parameters which can be accurately estimated and p-m which
cannot, then we can speak loosely of the data being effectively m-dimen-

sional and of accurately estimating no more than m linearly independent
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parameters, in the sense that any larger set of independent parameters
must necessarily depend upon some of the imprecise estimates. It is also

true that the sum of the variances of any orthonormal transformation of

P
the 71 will continue to equal 02 = %?-.
i=1 "1

This still leaves the question of whether the overall imprecision
is serious or not. This depends upon the absolute size of the bands (and
hence upon the variance of the disturbance term), and upon what values
of the loss function are considered serious. Thus, r could be very
close to one and yet we might conclude that there is no collinearity problem
because 72 is very large (in part, perhaps, because the variances of the Xi
are large), or because 02 is very small, or because it is not important
that we have an accurate estimate of Yy -

More concretely, consider the plausible situation in which the
objective of the model 1s to forecast the dependent variable accurately

in an out-of-sample context. Using the expected value of the mean squared

forecasting error as a loss function, we have

2 .2 0
MSE = (YO-YO)'(YO'-YO) i} 02 . Ei h11-h2 2rr h1h2
- n 0" T 2
1 -
where hi =g O/Ux « Quite obviously, the severity of the collinearity
X, i
i

probleﬁ depends upon a lot more than the abgolute magnitude of r . Indeed
it is even ambiguous whether or not an increase in the squared correlation

coefficient is harmful. For example, when h1 =h,=h,

2 1 -rr
2 g 2 0
EMSE=00+T2h 1_r2 .
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Now if the out=-of-gsample correlation, LI is .9, then [(1 -rro)/(l -rz)]
ig 1.0 if the in-sample correlation is .0 and only .55/.75 if r = .5 .
More generally, a value of r2 close to one need not be serious if the
correlatiqn persists out-of-gsample ( ro clogse to r ), if there is very
little out-of-sample variation of the explanatory variables relative to

the In-sample varilation, if the in-sample variance of the disturbance

term is small, or if there is a lot of sample data.

This of course does not imply that there will not be circumstances
in which the high correlation between two explanatory variables is a cause
for alarm, Indeed, one of the most pervasive arguments running through
the remainder of this paper is that, in the presence of highly correlated
explanatory variables, it is essential to liberally impose a priori infor-
mation in order to make accurate forecasts In a wide variety of situations.
All that is pointed out here is that there is no simple way of discerning

the geverity of the collinearity problem.

II. Exact Collinearity

Several general points are most easily introduced by an examina-
tion of the relatively straightforward case of perfect or exact collinearity.
Congider then the situation where X 1is of rank m < p . There are p-m
separate linear relations among the Xi in the sample period and p-m
of the characteristic roots of X'X are equal to zero. It is impossible
to measure the full p dimensional effect of X on Y, and this is
manifested in the breakdown of the ordinary least squares (OLS) regression

of ¥ on X .

We can however find an m=dimensional basis B1



X = B1 C1 where B1 =X Hl

Txp  Txm mxp (pxm)
such that we can work with m explanatory variables

Y = Blclﬁ + 6 = B1 7, te.
Txm mxl

The m elements of 71 can be uniquely estimated

~ . ] "1 ]
7y = (ByB)) "ByY

but the associated m equations

c.B=7%

1 1

15

cannot be solved for unique estimates of the p elements of £ without

the introduction of p-m linear restrictions (or pieces of a priori in-

formation) regarding £ :
a P = XN .

p-mxp pxl p-mxl

if 1 is nonsingular, then

can be solved for 6 R

The out-of-sample use of the m~dimensional basis

O, _ 0. _ _0.._ 0
X'B = By = B/C,B=XHCB
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will be generally correct 1f the exact in-sample collinearity persists

or if
B = chlﬁ .

since H,C; is of rank m , this latter condition states that CIB
is an m~dimensional basis for P --that is, it defines p-m linearly
independent restrictions upon B . Thus, forecasting with an m-dimensional

basis
Y = Bl7

is precisely equivalent to imposing p-m parameter restrictions. The
accuracy of these parameter restrictions will be unimportant if the p-m
linear dependencies among the explanatory variables continue to hold in

the forecasting period, but may be very important inlmore general situations.

An ancillary matter is the effect of using a different basis

BZ = X Hz .

Txm Txp pxm

For any such basis, there will be a nonsingular transformation G such

that

Thus
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Y= 3171 + ¢ = B2G71 + ¢ =3B + €

272

where 7y = Grl since B2 is of full rank m . The Gauss-Markov Theorem

implies that the OLS estimates will be such that

~ '10
71 =G ?2 -
That is, the implicit estimates of all estimable parameters will be in-
dependent of the particular basis used for the estimation,
However, the forecasts will generally depend upon the basis used
for predictions if the in-sample linear dependencies do not continue to

hold out=-of-gample, i.e.

A(z

Y ) =B o] -lg 5 = 5(1}

27y = BoW ¥y = By

if B, = Blw , but only by fortuitous coincidence otherwise.
Thus, forecasting with an m-dimensional basis is equivalent to
imposing p-m independent parameter constraints. The particular basis
chosen (or the parameter restrictions implicitly imposed) will be incon-
sequential as long as the p-m exact in-sample linear relations among
the explanatory variables continue to hold. If these evaporate, however,
then the accuracy of the forecasts will depend critically upon the accuracy
of the parameter restrictions, which resulted from the arbitrary and
seemingly innocent choice of a basis.

For a sample example, consgider two perfectly correlated explanatory

variables

Y = lel + 62x2 + ¢ where X2 = axl
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Using xlxl + AZXZ as a basis (Kl # -OAZ), we have in general

Py + 0B, APy NP
BiXy + BpXy = (MK +3,X,) X F o, + (X - X)) A+ 00,

which will

Pyt 0B,
X, + 2% ——2
ME TR ny * O

if X, = oX, or if Klﬁz = hzﬁl . In particular, using one of the fol-

lowing variety of bases is equivalent to imposing the indicated parameter

regtriction
kl kz Basis Parameter Equivalent
1 0 x1 82 = ()
0 1 X2 Bl =0
1 1 X, + x2 Bl = 52
1 -1 S By = B

Generalized Inverses (A Digression)

The generalized inverse is often defined as an nxm matrix A

such that

X=4d

is a solution of the consistent system of equations

A X = d .
mxn nxl mxl
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If the rank of A is r , this is equivalent to solving r linearly
independent equations for n unknowns, where n > r , There are of course
an infinite number of solutions ( n-r+l of them linearly independent if

d # 0 ) and hence an infinite variety of generalized inverses. For this

reason it is conventional to use the following four conditions to define

a unique generalized inverse, A+ :

asta = a
ataat = 4t

1
@y = an"

+ ! +
(AA) =AA.
Now, if X 1is of rank m then the normal equations
X'xg = X'Y

do not have a unique solution inasmuch as there are only m linearly
independent equations in p (>m) unknowns. Incredibly, it has been
sericusly proposed (by Swamy, et al.) that generalized inverses yield

a solution to this problem

B=(x'x) X'y .

In fact, the problem has only been redefined, since each of the infinity
of potential parameter values can indeed be written in this form. Thus,
the use of a particular generalized inverse is necessarily equivalent

to deleting p-m 1linearly redundant explanatory variables and imposing
p-m parameter constraints., The wholly arbitrary choice of a particular
generalized inverse is therefore nothing more than a disguised (but none-

theless arbitrary) selection of p-m parameter restrictions.
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Consider for example the generalized inverse

-1
_ (XIX,) 0
x'x) = 11
0 0

where Xl consists of m 1linearly independent members of X .1 Here

(xixl)'lxiy
B = @x'x)X'Y =
0
is identical to the "estimate' obtained by directly assuming that the
coefficients of X, equal zero.
If, instead, the previously described conventions are used to select

a unique generalized inverse, then it can be shown that this will be

(x'x)+ = % %h aiai
i=1 "1
where hi and a, are the nonzero characteristic roots and associated
orthonormal characteristic vectors of X'X . Using this generalized in-
verse to obtain estimates of all p elements of P is precisely equi-
valent to transforming X to its principal components and then equating

to zero the coefficients (linear combinations of the elements of B )2

lProof that this is a generalized inverse:

[} 1
- XY XJY
(X'E'x) X'y = -1 =
1 ) ¥
XX (X[X) XY XY

-1
= = 1 1
gince X, = XlH xl(xlxl) xlxz .

21n the two variable case, one would be assuming that Bl = BZ if there

is a perfect positive correlation and assuming that Bl = ~62 if there
is a perfect negative correlation.
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of the p-m components with zero characteristic roots. This approach
has been recommended by Massy as a principal components apprecach to per-
fect collinearity, and is digcussed in more detail in Section III.

For now, it suffices to reiterate that if X 1is of rank m,
then only m linearly independent coefficients can be estimated, and
the estimation of all p elements of P requires p-m additional in-
dependent restrictions on the parameters., The deletion of linear combi-
nations of variables or the use of generalized inverses to obtain complete
estimates of P are no more than ad hoc techniques for imposing p-m
arbitrary parameter restrictions. The only possible advantage of such
techniques is that by disguising the parameter restrictions one can avoid

making a decision about their reasonableness.

IITI. Imperfect Collinearity

Congider now the case where some of the explanatory variables are
highly, though not perfectly,correlated. Remembering the ambiguities
of the concept, we might say that p-m of the characteristic roots of
the moment matrix are close to zero, and that while X 1is of full rank
it has only m sgignificant dimensions. It is consequently tempting to
work with only m explanatory variables.

For generality, we can rewrite X 1in terms of a p-dimensional

basis F

Txp TxXp pPXp
which can be substituted

Y=XP+ e=FAB = c+Fy+ ¢
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If Y is regressed upon all p columns of F , then the implicit esti-
mates of the parameters associated with any such basis will be indepen-
dent of the basis used for estimatiomn, and the forecasts of Y will also
be invariant to the basis used for forecasting regardless of whether or
not the in-sample collinearity patterns continue. These unconstrained

estimates and forecasts will be labeled here as %" and Y" :

(F'F) ey

it

su _ _Qau 0, -1lq

3% = x%atsu o X0

o
[

Any such p-dimensional basis can be partitioned

_1 .

XA A-X[Hl: H, la

pxm pxp-m
— -

A

mxp

[F1 : F2 ] = FlAl + F2A2

Txm Txp-m A2

pomcp |

>4
i#

il

and p-m dimensions put into the error term

)
It

FlAlﬁ + F2A25 + €

= Fi 71 + [ F2 72 + €]
Txm mx1 Txp~m p-mx1l

(XH1)71 +u .,

Regressing Y on Fl will yield estimates of the m elements of 7y

aC ) -1 1
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However, these cannot be converted into estimates of the p elements of
B without the introduction of p-m independent parameter restrictions.

Using ?; alone to forecast Y

is equivalent to imposing the p-m restrictions that AZB = (0 and there-

by obtaining

as a constrained estimate of P ., Thus, p-m parameter restrictions

may be imposed upon a model by working with m linear combinations of

p explanatory variables. Conversely, working with m linear combina-

tions of p explanatory variables is precisely equivalent to imposing

p-m parameter restrictions and can be fruitfully evaluated on that basis.
For more generality, we can consider the imposition of nonzero

parameter constraints

Azﬁ =06 .
Now

Y - F26 = F171 + [e + F2(72 - ®)
and the constrained estimator 1is

aC ' -1_,

7= (FlFl) Fl(Y - Fzé)

-1 -1
= ' ] 1 t -
7t (FlFl) Fle + (FlFl) F1F2(72 )
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The mean squared errors for the constrained and unconstrained es-

timators are displayed here as the diagonal elements in the format

E(F-y) (F=7r)' = [E() - 71 [E(F) - 71" + E[7-EDIF-ED]’

or
MSE(F) = [Bias(¥)][Bias(?)]' + var(y) .
Thus,
MSE(ff) =G"(8-7,)(6-7,)'c + oz(FiFl)-l
MSE(F3) = (5-7,)(8-7,)' + 0

where G = FéFl(FiFl)-l . In contrast, for the unconstrained OLS estimates,

MSE(?T) =0+ 02[(1?11?1)'1 + G'(Fé?le)-IG]

MSE(F5) = 0 + czlpéﬁle]"l

~ -1
= - '
where P1 I Fl(FlFl) F1 .

Since ?& is idempotent, Var(??) - Var(fi) is positive semi-
definite and consequently has nonnegative diagonal elements. Thus, the
imposition of exact parameter restrictions unambiguously reduces (or leaves

unchanged) the variance of the estimate of each coefficient.3 Notice,

however, that the size of this variance reduction is completely independent

3This is true of all estimable coefficlients, since

Var(Z3%) - var(2y°) = z{var(3%) - var(5%)1z’

is positive semi-definite.
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of the specific values chosen for the elements of & . 1In particular,
deleting a variable from an equation does not reduce the variances of
the estimates any more (or legs) than does constraining the associated
coefficlent to equal some nonzero value.

Where the choice of values for & shows up is in the extent to
which the estimates are biased., If the selected & 1is close to the true
ABZ , then the errors in the restrictions may be offset by the reduced
variances. Unfortunately this comparison is complex, ambiguous, and cri-
tically dependent upon the unknown Aﬁz . Looking at the difference in

mean squared errors for the constrained and unconstrained estimates,

MSE(F]) - MSE(FS) = ¢'[MSE(S}) - MSE(F)]G

A A 2 [d -
uSEGFY) - MSEGFD) = o (BB F, 17T - (8-, (87"

The MSE's for the constrained case are minimized by exactly correct re-
gtrictions (&6 = 72) , and in this happy situation the constrained esti-
mates dominate the unconstrained estimates.

In the case of a single restriction,4 we have the additional satis-
fying result that a decrease in (6&- 72) reduces (or leaveg unchanged)
the MSE's of each of the remaining coefficients, and that the constrained

estimates are either unambiguously superior or inferior to the unconstrained

MSE(?‘;) = Uz(FiFl)-l + MSE()‘?‘Z‘)G'G

AT 2 ' - 1 aC T
MSE(?I) ] (FlFl) + MSE(?Z)G G

where MSE(?;) and MSE(?S) are scalars and G'G 1is positive semi-
definite.
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)2 is smaller

estimates, depending solely upon whether or not (&~ 7o
than the MSE of the unconstrained estimate of 7y - Notice that again
6 = 0 has no special virtue, and will be thoroughly inferior to a more
accurate restriction,.

With more than one restriction, we have the possibility that some

incorrect restrictions may offset others. Thus,
MSE(F]) = MSE(F]) = G'{MSE($}) - MSE(F5)Ic

will be semi-definite if MSE(fg) - MSE(?;) is semi-definite. However,
the diagonal elements of this latter matrix may all be nonnegative or
non-positive without the matrix being semi-definite. It is consequently
possible to have smaller mean squared errors for each of the elements of
7y and yet have larger mean squared errors for each of the elements of
71+ In other words, if more than 1 constraint is incorrect, then the
effectiveness of the constraints in reducing the mean squared errors of
the remaining estimates depends upon the entire matrix, MSE(?z) , and
not soiely upon the diagonal elements. This 1is true both of comparisons
between alternative sets of constraints and of the choice between constrained
and unconstrained estimates,

One possible avenue for simplifying the analysis is to specify
a loss function with the MSE's as arguments. The comparison would then
be between scalars and an estimator would not have to have smaller MSE
for every coefficlent in order to be deemed superior. A natural loss
function arises from putting the problem in a forecasting context, with
forecasting inaccuracy measured by the expected value of the mean squared

error of the out-of-sample predictions
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emse??) = 2{ (€0 - v ' #© - ¥%/n] .

This is appropriate for a quadratic loss function and is consistent with
the minimization of squared residuals in the in-sample parameter esti-
mation. With the usual assumptions (presented earlier),

My [ad '
mse?’) = o + der(Fuse ()0

t
= 02 + %Tr[MSE(?)FO Fo] .

0

This is of course no more than a format without further specification

1 T
of F0 FO . However, none of the obvious options for specifying F F0

are very attractive: observing the actual FO'F0 before choosing an
estimator (with potentially a different estimator of 7y used for each
out-of-sample forecast of Y ); using F'F as an estimator of FO'FO 5
or building a theoretical model as to how FO'F0 is generated.

Even if one of these expediencies for FO'F0 were adopted, there
would remain the indeterminacy of MSE(?C) due to the fact that 7y is
unknown. That is, the EMSE for the restricted estimator will depend
upon the true values of Yy s OF where we are in this p-m dimensional
parameter gpace. One of the advantages of a linear unbiased estimator
such as unconstrained OLS is that the mean squared errors of the parameter

estimates (and hence FEMSE ) do not depend upon the true values of the

parameters.

2 '
EMSE(Y¥") = 0(2) + U;—frr(x'x) l(xo )

We can consequently obtain some simple yet suggestive values for the EMSE

for the unconstrained estimates by considering a few specific assumptions

1
for F0 F0
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In particular, i1f the in-«sample moment matrix is replicated out-

of -gsample,

Then

EMSE(S%) = o2 + sz—
0 T

And cne would think that nmormally most of this error would be due to the
irreducible out-of-sample variance of the disturbance term. Thus, irres-
pective of how highly correlated the explanatory variables were, there
would be little need for parameter restrictions if these correlations
hold up in the forecasting period.

If, on the other hand, the varlances of the explanatory variables

are maintained while the covariances evaporate, then

1.0'0 _ 1
nX X = TE
where L 1is a diagonal matrix with the ith diagonal element equal to

the in-gsample sum of squares of the ith explanatory variable, 1In this

case,
2 p
EMSE(EY) = cg + &z ;%—
1=1 M

where hi are the characteristic roots in the in-sample correlation

matrix for the explanatory variables, with Eki = P . If the explanatory

variables are highly collinear in-gample, then some of these roots will
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be close to zero and one should not be surprised by extremely large mean
squared errors for out-of-sample forecasts made when this collinearity
does not continue to hold. 1In this situation, it is clear that reasonably
accurate parameter restrictions may be very useful; however a detailed
comparison 1s too complex to really be interesting. Such a comparison

is instead made below for the simple cases of a principal components

approach and a two-variable example.

Pretest Estimators

An extensive literature has developed concerning the use of hypo-
thesis tests to choose between (or to construct a weighted average of)
constrained and unconstrained estimates. Some of the more frequently
referenced articles are Bancroft, Bock et al., Chipman, Sclove, and Toro-
Vizcarrondo and Wallace. Generally these articles take a particular loss
function or risk matrix and a given set of potentilal parameter constraints,
demonstrate that unconstrained estimates are not domlinant over the entire
parameter space, and explore the effects of different significance levels.
Usually absent from these articles are the recognition that there are an
unlimited variety of parameter restrictions available and the notion that
the decision rule should depend upon the confidence one attaches to the
possible constraints. The reader consequently learns that a constrained
pretest estimator may be successful, but has no idea of how to optimally
exploit this possibility. 1In this section, I will argue that the ambiguities
of the pretest procedures vitiate their usefulness and that their net
effect has seemingly been to give respectability to unjustifiable procedures.

To review briefly, if B is viewed as fixed, then there is no

linear estimator which has a smaller5 risk matrix E(B-B)(é-B)' for all
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possible values of £ . There are, however, constrained and pretest esti-
mators which are superior to OLS for some parts of the parameter space

and inferior elsewhere. One substantial advantage of unconstrained OLS
is, that being linear unbiased, the risk does not depend upon the true
value of P . If B is viewed as random, then unconstrained OLS is the
linear estimator which minimizes the risk matrix when the prior variances
on B become infinite.

There are nonlinear Stein-James estimators which dominate least
squares for the case of at least three orthonormal regressors and a scalar
mean squared error loss function, E(é-B)'(é-B) + Unfortunately these
results have not yet been extended to risk matrices for the general re-
gression case. 1In addition, the extent of the dominance depends upon
the true values of the parameters and the null hypotheses and test-levels
that are utilized. As a consequence, even where operational the optimal
Stein-James estimator requires a priori informationm, |

The pretest literature generally takes note of the high variances
associated with the estimates of the coefficients of highly collinear
explanatory variables and argues that for the seemingly reasonable MSE
criteria it may be worthwhile to impose admittedly incorrect parameter
restrictions in that the biases that are introduced may be more than
offset by the reduced variances. It is then explicitly demonstrated that
unconstrained estimates can be bested by constrained and pretest estimates.
The source of the parameter constraints is rarely discussed and much of

the literature conveys the impression that a priori information is unnecessary.

5"Smaller" and "minimum" are shorthand for the difference between the risk

matrices being positive semi-definite,
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Even worse, the practical impact of this literature seems to have been

to rationalize the common procedure of '"omitting insignificant variables"
by assuming that a coefficient is zero whenever that value is not rejected
by the data.

One problem with this common practice 1s that there is rarely a
predetermined single null hypothesis or nested set of hypotheses. In-
stead the model builder looks for hypotheses which will be accepted, and
then mistakenly equates a number of single tests to a joint test or pro-
ceeds sequentially in some ad hoc fashion. If each coefficient is tested
in a search for parameters for which zero cannot be rejected, then the
probability of incorrectly rejecting at least one null hypothesis will
be larger than the probability of rejecting each particular nuil hypothesis--
if each test is conducted at the 5% level, then the probability of incor-
rectly including at least one variable will be greater than .05, though
less than .05 multiplied by the number of tests. Similarly, the proba-
bility of committing at least one Type II error by incorrectly excluding
a variable will also be increased. While it is clear that one should
take into account the fact that more than one test will be conducted,
it is not obvious in which direction the procedure should be modified;
i.e., whether each test should be conducted at a higher or lower signi-
ficance level. The usual modification seems to be to lower the probability
of Type I error for each test, which increases the probability of incorrectly
excluding a variable.

A theoretically motivated adjustment would require a resolution
of the more basic question of the source of the null hypotheses that are
tested. Typically, only a subset of all possible parameters arc tested,

namely those which are explicitly estimated. It is well-known that linear
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rearrangements of the explanatory variables will have no effect on the
lmplicit estimates of any estimable parameters nor on the variances of
these estimates. Thus hypothesis tests of any estimable parameters are
invariant to the way in which the explanatory variables are arranged for
estimation purposes. There will always be an infinite number of combi-
nations of coefficients for which zero cannot be rejected as a null hypo-
thesis; and which (if any) of these hypotheses are tested typically de-
pends solely upon the arbitrary choice of which parameters to explicitly
estimate. That is, a model can always be simplified (down to one explana-
tory variable in fact) but how far and in what ways it is simplified by
the pretest procedure depends upon a series of arbitrary choices.

Similarly (or equivalently if the intercept is introdﬁced into the
shuffling of explanatory variables), it must be asked why zero is always
glven the presumptive weight of being the pull hypothesis. Since any
point in the confidence region would be accepted if it were tested as a
null hypothesis, one should wonder why the origin is to be preferred over
all other unrejected hypotheses, and in particular why it should be pre-
ferable to the unconstrained point estimate. We've seen that a zero con-
straint has no advantage over a nonzero constraint in terms of variance
reduction and consequently must be justified in terms of a smaller bias
or an offset to the biag in other restrictions., But this is a comparison
which necessarily requires a priori information. A major inadequacy of
the usual pretest procedure is consequently that it takes no account of
a priori information in choosing the constraints that are to be considered
and takes no account of the confidence one has in the constraints when
deciding whether or not to impose them.

A further problem with the usual pretest procedure is that it does
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not accurately divulge which parameters are most in need of a priori in-
formation. Thus the fact that zero is inside a confidence band neither
implies that the ccefficient is close to zero nor that the band is wide,
It is the variance of the estimate or the width of the band (rather than
the location of the band) that most accurately reflects the informational
content of the data and the susceptibility of the estimate to a priori
information. More specifically, it is only when zero is outside a small
confidence band that the pretestor makes a generally defensible decision,
;hough even here firmly held a priori beliefs might have been useful. If
zerco is instead outside a large confidence band, then the pretestor does
nothing when a restriction may be badly needed and the data is very recep~-
tive to even vague information. When zero is inside a tight band, the
pretestor overrules informative data with an ad hoc restriction; and when
zero is inside a wide band he resorts to adhockery when information would
be welcome.

Finally, the pretestor ignores the covariances In his egtimates
and in his a priori information. We've seen that errors in the constraints
may multiply or may cancel each other ocut, so that unambiguously closer
restrictions may give unambiguously less accurate estimates. Thus a pri-
mary‘lesson of the Bayesian approach is the importance of covariances and
the inadequacies of a parameter-by-parameter approach to model improve-

ment {see for example Leamer).

Principal Components

A linear transformation of the explanatory variables will in general
change the eigenvalues, eigenvectors, and principal components. For this

reason, the explanatory variables are often standardized to have a mean
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NTo, .
i Xi

such a transformation will not affect the unconstrained estimates or fore-

of zero and unit variance--i.e., here working with X Although
casts, our previous mnotation will now (for convenience) refer to standardized
variables for both the constrained and unconstrained procedures. It should
be borne in mind though that the constrained estimates will depend cri-
tically upon the esgentlally arbitrary choice of which linear combinations

of explanatory wvariableg to standardize. .

If the rows of A are the p orthonormal eigenvectors of X'X ,

then

N 0 P
AX'X)A' =D = t . , I Ay =P
0 ’ xp i=1

where D is a diagonal matrix whose ith diagonal element is the eigen-
value of X'X corresponding to the ith row of A . The principal com-

ponents of X
F = XA'

are an orthogonal basis for X

such that the m principal components with highest associated eigenvalues
(i.e., variances) minimize the total sum of squared residuals for a regres-
sion of each of the p explanatory variables on m linear combinations
of the explanatory variables,

It has frequently been argued on rather vague grounds that replac-

ing X with its principal components and then discarding p-m of these
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components might "alleviate the collinearity problem" or yield a "con~

siderable parsimony in analysis.”" That is, as in the previous section,

Y=XB+e=XA'AR+ e=Fy+ ¢

= FIA\B + {FoA,B + €] = Fi7y; + [Fy7, + ¢

= xnlyl + [}{1{272 + ¢l

where again
(= “
A
] . mxp -1

F =[F, . F, 1 ; A = sy A'=A " =114, H, ]
T 1. 2 Xp A 1: 72

P Txm Txp-m P 2 pPXm pxp-m

p-mxp

Kendall has perhaps been the most influential advocate of this
approach and one of the few to note its equivalence to Imposing the p-m
parameter restrictions, AZB = 0 . Thus, he explicitly considers H1§1

to be an estimate of £ , which would be appropriate if one assumed that
AZB =0,

Although this procedure has been generally viewed by economists
with some suspicion or even confusion, it offers the great pedagogical
advantage of orthogonality between the omitted and retained explanatory
variables (F{F2 = () . The estimated coefficients of the retained vari-
ables are consequently independent of the accuracy of the implicit restric-
tions on the coefficients of the omitted variables. This considerably
simplifies the analysis and permits a much sharper focus on some important

issues.

If all p components are retainad, then
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u
~ "1
¥ - . Ve D, Fle
L e e By =0 Levryse) = | 1| 4 21 1
L
'"1 [ "'1
where Di = (FiFi) is a diagonal matrix whose diagonal elements are

the inverses of the characteristic roots associated with the principal

components collected as F

;-
u
7 D11 0
MSE =0+0 a1
7, 0 D,

Thus the MSE of the coefficient of the ith component is 0'2/2\i .
If instead it is assumed that 7, = & (6=0 1is equivalent to
dropping the p-m components collected as F2 ), then the resultant

constrained estimates are

c —

~ t -1 ' - -1 '
2 i (F'F ) F'(Y-F,b) _ 7 . D, Fje
with
-~ (o4 -1
¥ 0 0 D 0
MSE 1 = + 02 1
7p 0 (7=~ ®' 0 0

Thus, the estimates of the coefficients of the retained components
are unaffected by the constraints on the remaining components, and the
relevant comparison for each component reduces to the gimple question
of whether the coefficient can be more accurately estimated or specified.

On the other hand, the estimates of £ will generally depend upon
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all of the estimated elements of ¥ :

B% = a5 =B+ ap lax'e = B+ (x'x) 'x'e
AC _ ,1aC _ Au _su
B = aA'y B” + H2(6 75)
- - =1 4o
=B + Hz(b 72) + H1D1 Hlx €
with
-1
0 0 D 0
MSE(B“) = +62A‘ 1 A‘-=C>‘2H D-lH'+02H 'lH'
-1 i1 71 272 72
0 0 0 D2
c 0 0 2 DIl 0
MSE(B") = A' A+ 074"
0 (7,=8)(7,-8)" 0 0
- oZH D-l

' - NI
1Dy By + Hy(7y=8) (7,=8) "H,

Thus, for each element of B , the unconstrained estimate has a smaller
bias and larger variance than the constrained estimate. The difference

in MSE's

MsE(B") - MSE(F®) = Hz[vzlv,;1 - (7y- 8) (7, ~ 8)'1H,

is ambiguous even 1f each restriction om 7o is more accurate than the
unconstrained estimate.

For out-of-sample forecasting,

- T
crg + lllczTr{(X'X) lxo xO] +0

EMSE(Y")

ac 2 12 -1.0' 0 1 0' 0
EMSE(Y ) Tg + 5 Tr[Dl Fq F1] + E‘l‘r[('rz - 6)(72 - 6)‘?2 FZ] .
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This consists of the irreducible out-of-gample variance of the disturbance
term, the effects of the errors in the estimated coefficients, and the
effects of the errors in the imposed parameters constraints.

If the out-of-sample variances and covariances among the explana-

tory variables are identical to the in-sample ones
L = Ly

X X = TX X

then

EMSE(Y")

I

og + p0'2/T

ac 2 2 1 1
EMSE(Y') = 0y + w0 /T + JTr (7, - 8)(7, - 8)'D, .

Thus, if the correlation matrix for the explanatory variables is repli-
cated out-of-sample, we are directly trading off the fewer estimated para-
meters against the inaccuracy of the restrictions, and these restrictions
will normally have to be fairly accurate if the constrained model is to
outforecast the unconstrained model,

1f, on the other hand, the explanatory variables are uncorrelated

6
out-of-gsample but replicate the in-sample variances

then

6This suggests that the analysis would be considerably simplified {if the
initial standardization were of variables whose variances could be expected
to change little.
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2 p
EMSE(?") = 0(2) + -?—1.— T %—
1=1M
2 m
EMSE(ES) = o2 + = 5 4 Lor gy, - 8)(y, - 8
0 TN T2 2

where the m characteristic roots in the second expression are those
agsociated with the retained components. Thus, when the in-sample multi-
collinearity evaporates out-of-sample, the deletion of p-m components
with eigenvaiues close to zero can easily be profitable even if the im-
plicit parameter restrictions are only vaguely accurate, Howevef, there
is no limit to the potential inaccuracy of the restrictions and hence
to the EMSE for the constrained forecasts. Thus, the benefits of purely
ad hoc constraints are necessarily accidental. On the other hand, it
does seem sensible to try to obtain parameter estimates which will pro-
vide reasonably accurate forecasts in a wide variety of gituations. This
implies that one should try to find reasonably accurate values for all
of the coefficients in the model and not rely upon fortuitous interrela-
tions among the explanatory variables to render some parameters unimportant.
After standardizing the parameters, an examination of the eigen-
values and eigenvectors of the moment matrix can indicate the effectivedimen=-
sionality of the explanatory variables and thereby the minimum number
of a priori parameter restrictions that are required for robust forecasts.
The eigenvectors assoclated with the smallest eigenvalues will indicate
those parameters for which the data provides the least information and
which are consequently most receptive to a priori information. However,
mechanically constraining these parameters to be zero (by routinely de-

leting the components asgsociated with the smallest eigenvectors) is not
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very attractive. It certalnly seems prefergble to consider nonzero con-
straints and to give some thought to what are a priori reasonable values
for the parameters.7 Unfortunately these parameters will generally be
linear combinations of all p of the original 61 coefficients, and it
may be quite inconvenient or even fruitless to try to imagine plausible
values for the particular linear combinations which are the ripest can-
didates for constraints. While arbitrarily assigning values such as zeroes
may occasionally be successful, it i3 not a dependable or defensible tech-
nique. This is particularly clear in the case where zeroes are rejected
by the data in the sense of being outside a confidence region for the
parameters. That is, since a large variance ozlki does not rule out

the estimated coefficient being large also, components that are of little
use in explaining the explanatory variables may be very powerful in ex-
plaining the dependent variable (see Hotelling). This has led Massy and
others to advocate the deletion of components which are statistically
insignificant (i.e., for which zero is inside a confidence region). If,
however, there is no a priori weight behind the selection of zero values,
then there is no justification for mechanically selecting zeroes from

the confidence region and in particular no reasom for prefering zeroces

to those values which maximize the likelihood function. Further, this
approach permits one to impose ad hoc constraints where the data is very
informative (when zero is inside a tight band) and to refrain when con-
straints are desperately needed (when zero is outside a large band). What

is needed then is a technique in which a priori (and not ad hoc) restric-

7The mechanical deletion of principal components has the added discomfort
that the eigenvectors and hence the implicit parameter restrictions depend
upon the arbitrarily selected units for the explanatory variables,
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tions are ilmposed on those parameters for which the data contains the
least information.

Since it is often most convenient to think of a priori values for
the original coefficlents, it is tempting to restrict one's attention
to these parameters. This would suggest examining which of the estimated
parameters have the largest variances, or equivalently (as per Farrar and
Glauber) which of the original explanatory variables are most highly cor-
related with the remaining explanatory variables as a group. Since these
variances depend upon the units of the explanatory variables, it would
be convenient to normalize them by choosing units for the parameters so
as to equalize the precision (i.e., the subjectively specified squared
error) for the proposed restrictions.

On the other hand, there may be cases where one will feel more com-
fortable in specifying linear combination of the Bi ; e.g., specifying
Bl + 52 or Bl - 62 rather than simply Bl or BZ . In this situation,
it would make sense to arrange the explanatory variables so that one is
explicitly estimating those parameters that one would be most willing to
specify a priori. By looking at the directly estimated variances (or by
running the Farrar and Glauber tests) one could then see which of the
potential restrictions are the most welcome in the sense of the data pro-
viding the least amount of information. However, this procedure permits
only inflexible exact restrictions, ignores the covariances8 on the priors
and the eatimates (and thus the possibility of errors compounding or can-

celling one another out), and leaves as a vague judgmental decision

8The variables could be transformed so that either the sample or prior
information is orthogonal, but it would be very surprising if these trans-
formations coincided.
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the weighing of the information contained in the data relative to the
confidence one has in the potential constraints, unless one is willing
to take the last Bayesian step and quantify the precision of one's priors
by specifying a probability distribution for the parameter space. Having

gone this far, that last step should be very appealing.

A Two-Variable FExample

Consider the model

in-sample: Y = lel + 32X2 + e

0 0 o
out-of-sample; Y = lel + 52X2 + €

where
Ol
x! 1 r X 1 r
1 1 0 0 4]
' (X, X)) = ; ot |(Xy %) =
X2 r 1 X2 ro 1
and

The eigenvalues and orthonormal eigenvectors are

<1+r 0 > 1(1 1>
D= A= -
0 l1~-r 75 1 -1

The principal components approach would rearrange the model as
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X, + X\ (B + B, X, = %\ P - By
RN 7z ) "\ T (/2 e

and then congider dropping one of the components, which would be equiva-
lent to assuming that Bl + B2 = ) or that Bl - B2 =0, Table I dis-
plays the consequences of retaining both components, assuming that
Bl + 52 = /2 62 » assuming that Bl - Bz = /2 61 s or assuming that
52 = b2 .

The EMSE for the unconstrained method becomes very large as r
approaches +1, unless I, is close to r . Thisg suggests that there is
a great need for parameter restrictions when the explanatory variables
are highly correlated, unless one is willing to rely on that collinearity
persisting. The effectiveness of the parameter restrictions that are
imposed will depend upon how accurate they are, how difficult the constrained
parameters are to estimate, and how important it is in the out-of-gsample
period to have accurate values for the constrained parameters. Consider,
for instance, the deletion of a principal component when r, iz not close
to r . If r is close to 1, then deleting the component associated with
Az = l-r can be extremely beneficial while deleting the component asso-
ciated with Mo l+r will be of little help; for r close to -1, the
situation is reversed. The usefulness of the first deletion will however

require that B, be fairly close to Bz s while the value of the second

1
depends upon Bl being close to -52 « It is clear that an a priori
consideration of non-zero restrictions can greatly improve the potential
usefulness of the restrictions.

In the two-variable case, the only effect on EMSE of imposing

2 2
B. = bl rather than BZ = b2 is to replace (ﬁz - b2) with (Bl - bl) .



TABLE I

Estimation
Equation

Effective
Constraint

In General

Y=X1.51+x252+ €

None

Y-F2%=Fﬂ&+U1
(F2 = principal

component assoc-
ciated with

Ay = l-r )
Y-F151=F272+U2
(F1 = principal

component asso-
clated with

Kl = l4r )

Y= Xyby =XB) + U,

4 -
T+

H
n

in-sample correlation between X

2
1-ry L+ry[B. 48, e
l-r * T sz 1
1~}-r2 --2rr0 2
= (fi2 -bz)
1 and X2

out-of-gsample correlation between Xl and x2

7%
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Thus, the choice between constraining 61 or 62 depends only upon the
accuracy of the constraint. Although it is camoflauged by the use of
standardized variables, this comparison is influenced by the variances
of the underlying explanatory variables. That is, if we represent the

unstandardized (deviations from mean) explanatory variable by Zi and

the associated coefficient by bi , then
2y
ByXy = V19, Sl 7To,
i

and, for given accuracy in specifying bi , the larger the variance of

zi the greater will be the level of inaccuracy in specifying Bi . This
is but a reflection of the fact that the greater the variance of an expla-
natory variable, the more accurate a restriction on the associated coeffi-

cient will have to be in order to be helpful.
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