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When estimating a linear regression model
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one is often interested in the accuracy both of the estimated parameters
and of in-sample forecasts of Y4 based on these parameter estimates
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In practice, the coefficient of determination
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is often explicitly used as a measure of goodness of fit or predictive pre-
cision in forecasting Yi and implicitly used as a decision tool for improving

the accuracy of the estimated parameters through the deletion of variables

*asgistant Professor of Economics, Yale University. The research described
in this paper was undertaken by grants from the National Science Foundation
and from the Ford Foundation.



whose coefficients are statistically insgignificant.

In a recent article in AmStat, James Barrett notes the usefulness
of R? as a decigion tool but argues that a confidence interval for the
expected value of y 1is of more practical value than R2 in assessing
predictive precision,'inasmuch as R2 depends upon the true values of the
Bj while a confidence iInterval does not.

In the first part of this paper, I note that Barrett's two alterna-
tives are not strictly comparable as one is an absolute and the other a re-
lative measure of goodness of fit. The limited usefulness of each in {its
own domain is more deeply explored and a broader view of the alternatives
advocated. In the second part of the paper, I point out that R2 is also
of extremely limited usefulness as a decision tool of the type discussed by

Barrett.

I. R2 as a Measure of Goodness of Fit

Predictive accuracy can be measured in either absolute or relative
terms. While an absolute measure is usually difficult to interpret or evalu-
ate, a relative measure invokes arparticular standard of comparison. Although
abgolute and relative measures are not comparable, they are obviougly related
since an absolute measure of goodness of fit is the basis of a relative
meagsure.

Barrett advocates measuring predictive precision by a confidence
interval for the expected value of y . This is an absolute measure which
would provide specific point forecasts with a welcome touch of modesty.
However, as a general measure of the predictive accuracy of an equation,

confidence intervals require an assumed distribution for the e, and suffer



from the obvious defect that they are dependent upon the selection of par-
ticular values for the explanatory variables. With k > 2 , it would be
quite inconvenient to graph or otherwise display these intervals for all
possible values of the explanatory variables. In addition a comparison of
particular confidence intervals for alternative sets of explanatory variables
would require the establighment of either a deterministic or stochastic
correspondence between the occurrence of particular values of one set of
variables and the occurrence of particular values of the alternative set.
Even with this, one would still have the awkward problem of comparing vectors
of confidence intervals unless one were willing and able to specify multi-
variate likelihood and loss functions.

It would be considerably easier to focus on predictive accuracy for
the actually observed sample values of the explanatory variables. One might
plot these intervals on a graph with the units of y on one axisg and i
(the observation label) on the other axis, and calculate a (possibly weighted)
average length of the confidence interval for the sample data. Althcugh
ghortness is a desirable property, it is not the only consideration. It
might also be of interest to know in which direction and by how far the
interval errs, when it does err. While such an exercige might have some
heurigtic value, it turns out that two of the more obvious potential weightings
give results which are closely related to the far more popular alternative
of measuring predictive accuracy by a simple comparison of the model's fore-
casts with the actually observed values of y . (Proofs are given in the
Appendix.)

The Mean Squared Error



n
MSE = % T Oy - ?1)2
i=1
ig a commonly accepted (absolute) summary measure of a model's actual fore-
cast errorsg, and is consistent with the minimization of squared errors in
most estimation procedures. Interestingly, using the sample data for a com~
parison of the MSE's for alternative models ls closely related to a compari-
son of Average Squared Confidence Intervals for the expected value of y ,

in that the latter can be shown to be equal (under the usual assumptions)

to

st = 2 (k) e

where toy2 is from student's t-distribution. Similarly, the squared con-
fidence interval for the expected value of y when the explanatory variables

are at thelr gsample means is

=~ 2 1
SCL(X) = 4t , (n_k_1>MSE .

For given n and k , these three alternative measures are equivalent.
However, MSE ignores the size of k while ASCI and SCI(E) penalize the model
with more explanatory variables. It is of course possible (and probably de-
girable) to modify the MSE criterion to include a degrees of freedom adjust-
ment ; however it is not obvious that onme would want to use either of the
specific adjustments implied by ASCI or SCI(E). One popular alternative

is the Standard Error of Estimate

n
SEE = <n_k_1>msn .




Whichever specific criteria is adopted, one should be careful not
to compare predictive accuracy for different variables. A transformation
is necessary for example if one model forecasts y while the alternative
model forecasts Log (y) , yz , or y/z . The following discussion of
relative measures assumes that any needed transformations have been made
and that MSE is used as a summary measure of goodness of fit. A degrees
of freedom adjustment would affect the detail but not the substance of the
argument,

A poodness of fit comparison of alternative theoretical models may
be ambiguous if different bodies of data are used or if the explanatory
variables are themaselves stochastic.1 In addition, it is usually interesting
(and often sobering) to examine not only the predictive accuracy of competing
theoretical models but also to construct some benchmark level of performance,
in order to determine if the race is between glow or fast horses. For these
purposes, it would be desirable to examine the forecasting ability of a naive
model such as might be used by someone who was given unlabeled data.

It is instructive in thig context to view R2 as a relative measure
of goodness of fit where the comparison is between onet theoretical model

and the naive forecaster who uses the sample mean as his forecast:

- k
MSE(Y¥, = B, + T B.X,.,)
R2 =1 - : 0 =1 7y
MSE()‘ri”?) )

Viewed in this way, the adequacy of R2 as a measure of relative predictive

1For example, the stock market is a good forecaster of investment demand,
but this relation may be of little predictive use if the stock market cannot
itself be accurately forecast.



accuracy depends upon the adequacy of the sample mean as a benchmark stan-
dard. If the sample mean 18 a trivial or irrelevant competitor, then R2
is uninteresting and need not be reported.

In practice it is not difficult to think of situations in which one
will obtain an impressively high R2 y not because of the success of one's
model but rather because of the inadequacy of the benchmark model. Generally,
these will be cases where y 1s very stable and predictable but has a large
varilance.

To be more specific, it is necessary to look more carefully at the

2 2
MSE = o [1 - R_]
and the sample variance of y
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where Gi = gample variance of Xi
ni = gample variance of e
Dij = gample correlation coefficient for Xi and Xj
oej = gample correlation coefficient for e and Xj
Rex = gample multiple correlation coefficient for e and all k Xj

Barrett argues that R2 ig misleading becauge it depends upon the
true values of Bj while MSE (or alternative absclute measures) do not.
It is clear from the explicit expressions that the variance of y also de-

pends upon the variances of the Xj while MSE does not,2 and that although

2This could have been deduced from the fact the units of ﬁj can be arbi-
trarily changed by altering the units in which Xj is measured.



both expressions have a number of termsg in common, they enter in very different
ways so that a change in a parameter such as 012 will affect R2 in part
because of the altered goodness of fit of one's theoretical model and in
part because of the altered fit of the naive benchmark model.

Whether this is misleading or not depends upon one's expectations.
Since R2 ig a relative measure of goodness of fit, it must necessarily
reflect the success of the benchmark model as much as the theoretical model.
R2 will consequently be migleading whenever it is interpreted without re-
ference to the appropriateness of the benchmark standard. The appropriate-
ness of the benchmark model is a subjective gquestion which depends upon the
particular variable being forecast. It is not a simple question of the mag-
nitudes of the Bj or the cj or any of the other parameters. The relevant
question is instead whether or not the model § = ; gives a reasonable mea-~

sure of how difficult y is to forecast.

These points are most clear in the simple regresaion case. Here
y; = o+ BX + e, i=1, ...y n
and
MSE = (1 - oz)oi
var(y) = ci + Ezai + Zﬁcxceo

2 1

R =
2
n+BfJ_t>
o
e




where Gi and Gi are the sample variancegs of X and e, and o is the
sample correlation coefficient between X and ¢ . Ceteris paribus, R2
will approach 1 as oi -0, 92 -1, 62 ~ & or ci -~ @ ; while

MSE will approach zero only as 02 -1 or ci -+ 0 , Thug, if either the
sample variance of X or the absolute value of P is very large, this will
raise R2 by worsening the fit of the naive model. And in the nonextreme
situation, a change in either B , ci ’ oi , or ¢ has an ambiguous
effect3 on the fit of the naive model and consequently on R2 . Thus, even
in this simple case the guccess of the naive model is not simple, and it

is consequently difficult to say whether or not R2 is appropriate. As

illustrations, however, I will discuss two obvious situations4 in which models

that are only modestly successful will have impressive R2 .

Trend Variables

If v 1is a trend dominated or a highly autoregressive time series,
then ; will give particularly inaccurate forecasts. If x 1is similarly
"trend dominated or autoregressive, then one should expect to Be able to find
coefficients such that y = @+ PBx will dramatically outforecast the average
level naive model, even if x and y are conditionally independent.

Consider for example two independently generated trend variables

31f p =0, then matters are considerably simplified. The variance of

y Is then always increased and R2 always reduced by an increase in 82
or ci . In the multivariate case, if the explanatory variables are unco;-2
related with one another as well as with e , then an increase in any 5jcg
will unambiguously worsen the fit of the naive model and thereby improve R% .

Related discussions are contained, for example, in Bartlett, Yule, and Yule
and Kendall. '



where T =1, and € and u, are independent disturbance terms. If we
assume for convenience that the sample covariances among e, u, and T

are zero, then the simple coefficient of determination between x and vy

will be
2 1
R = L[]
% &
1+ bzdz 1+ dznz
T T

This will approach 1 as Ui and ci approach zero, as d2 and b2

2
become very large, and as n becomes very large. Thus, R will be high
if one considers two unrelated variables which have each changed rapidly
and smoothly over a considerable period of time.

For the gpecific case where

NlﬂqM
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we have the fellowing sample R

2 10 20 50 100
4
2
1
.5

454 797 .963 .990
648 .890 .981 .995
. 795 . 942 .990 . 298
.889 .971 .995 .999
.25 . 942 .985 .998 .999
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Distinct Subsgets

If the observations on y and x are béth taken from two widely
disparate situations, then ; will forecast poorly and the sample R2 may
be impressively large even though the only association that exists is the
coincidence of the two disparate sample situations. For example, one might
be using pre- and post-war data, or war and nonwar years, oOr cross-sectional
data involving distinct subgroups. In this latter case, the sample might
include distinct subgroups (in terms of region or nationality, race, religion,
occupation, education, politics) which differ markedly in a number of ways
{such as diet, family size, handgun ownership, movie attendance, annual rain-
fall, unemployment, church attendance); these characteristics will then appear
to be highly correlated, even though they are unrelated within each subgroup.
Rather than using specific variables, one could alternatively boost R2 by
using ad hoc dummy variables which coincide with the disparate situations
or with the "abnormal values of y ."

As an example of the general situati on, congider this following simple

model :

vy = al + € i=1, ..., m
Xg =Pt e
y1=o12+c1 i=ml, ..e, n
X3 = Py g

where the &, and Bi are constants, and and e, are independent

i €

disturbance terms. For convenience, assume that the sample means of €



il

and €, are zero and the sample covariance between and €, ig zero.

Gl,

The simple correlation coefficient between y and x (for all n obger-

vations) can then be gshown to be

2 1
R =7 .
7 2
am(52_5)2+1 mwnsm 1_ 2" !
n n 1 2 n n (al Oé)

The smaller the variances of e; the more nearly equal m and n-m ,

and the larger the difference between oy and Q& and between Bl and

2
the larger will be R . In, for example, the quite plausible situation

2 2 . - - _ 2
where Gel = Gez =,25, m=n-m, and (4 Qé) = (61 By) =10, R

would be .98.

By »

Alternative Goodness of Fit Criteria

I have argued here that since R2 is a relative measure of goodness
of fit, any interpretation of it must consider the :trihgency of the standard
of comparison. If the sample me#n is an uninteresting naive model, then
R2 is uninteresting and one should use a more challenging benchmark.

There are a large variety of alternative naive models to select from,
and indeed one important question is in what ways the scope of the search
ghould be limited, It seems clear that the naive model ghould not be theo-
retically motivated, which could be enforced by requiring that the identifi-
catioﬁ of the data not affect the selection process. It is not as clear
whether or not data on variables other than Yq should be uged. Models in
which right-hand side variables are selected randomly or mechanically according

to purely statistical criteria are properly called naive, and yet at times
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are hard to distinguigh from what pose in the journals as theoretical models.
For gelf-testing, a randomly selected benchmark model is unappealing;
but there might be times when it is of interest to know how well frankly
statistical models perform.5 Simplicity is definitely a wirtue, and for
within-sample comparisons the naive model should probably be limited to having
no more parameters than the theoretical model. Whatever the particular choice,
it is important to acknowledge that a variety of options are available and
to exefcise some care in selecting a benchmark naive model.
For time series data, a variety of simple naive models are plausible,

such as

Yi = Yi-1 [no change]

yi = yi'l + (yi"l - yi_z) [saﬂle Change]

91 = ; [average level]

V; =Vt {average change]
ﬁi = o+ BT ftrend, T =1 ] .

Since thege models may give very different forecasts and consequently
provide markedly different benchmark standards, it might be preferable to

estimate the parameters of a more general autoregregsive model

5See Coen, et al., and the ensuing discussion, including the remark by
Durbin that, "As far as short term economic forecasting is concerned, my
feeling is that it is not clear at present whether one does better to fit
economic variables based on postulated relationships between the variables,
or to use statistical forecasting of a frankly ad hoc character."
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or perhaps use a moving average or mixed autoregressive-moving average model
(see Nelson, for example).

For crogs section data, it is not as easy to think of reasonably
simple alternatives to §'. One might look at the digtribution of the Vs
for evidence of outliers or distinct subsets, or perhaps directly regress
y; on available Xj data without resort to any theoretically inspired ex-
clugion restrictions. It may of course be necessary (and fairer for within-
sample tests) to exclude gome Xj either randomly or on the basis of purely

statistical criteria.

2
IT. R __as an Hypothesis Test and Decision Rule

Barrett comments that, 'Researchers find that R2 is a handy index
in searching for a useful regression equation including a subset of

Xys Xpy enes Koo It is well known that under the assumption that
¢ ~ N[O, UZIN] ;s one can test the joint hypothegis that m of the Bj
are zero by examining the increase in MSE , or equivalently the reduction
in R2 » when the m associated Xj are deleted from the regression equa-
tion. Altermatively, one can conduct this joint significance test at the
0% level by asking whether or not the origin is in an m-dimensional (1-)%
confidence region for these m coefficients.

This provides another way of viewing our earlier results since, ceteris

paribus, R2 will be high and zero will be outside a confidence interval

for B 1in a simple regression equation: (i) when B 1s far from zZero;
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{(ii) when Ui is large or ci small, as this will make aé small; and
(iii) when ¢ and X are highly correlated as X will account for most of
the variation in ¢ and thus reduce & , which will reduce c‘ré .

However, I will argue here that it 1s a dubious procedure at best to
delete a variable whentever one can accept the null hypothesis that its coef-
ficient is zero; i.e., to mechanically assume thaﬂa particular arbitrary value
of a coefficient is true whenever this value is not contradicted by the data,.
The following discussion will ignore the question of ill-behaved digturbance
terms and emphasize instead the inappropriateness of routinely using hypothesis
tests for decision making.

One of the problems with this deletion procedure is that if we test
each Bj in a search for coefficients for which zero cannot be rejected as
a parameter value, then the probability of incorrectly rejecting at least
one null hypothesis will be greater than the probability of rejecting a par-
ticular null hypothesis. Thus if we conduct each tegt at the 5% level, then
the probability of incorrectly including at least one variable will be greater
than 5%, though less than .05 multiplied by the number of tests. Similarly,
the probability of committing at least one type II error by incorrectly
excluding a variable will also be increased.

While it is clear that one should take into account the fact that
more than one test will be conducted, it is not obvious in which direction
the procedure should be modiffed; i.e., whether each test should be conducted

at a higher or lower significance level.6 To answer this would require a

“The usval modification seems to be to lower the probability of Type I Error
for each test, which increases the probability of incorrectly excluding a
variable.
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resolution of the more basic question of why zero is given the presumptive
weight of being the null hypothesis. Since any point in the confidence in-
terval would be accepted iIf it were tested as a null hypothesis, one should
wonder why the origin is to be preferred over all other unrejected hypotheses,
and in particular why it should be preferrable to the unconstrained point
estimate.

The usual answer is that all of the parameters often cannot be accurately
estimated because of a limited number of observations on highly collinear
variables; omitting some varilableswill reduce the variance and may improve
the mean squared errorsof the estimates of the coefficients of the remaining
variables. 1In this sitdation, however, zero will often be in the confidence
interval not because the point estimate is close to zero but rather because
the confidence interval is very large; that is, zero is unrejected only be-
cause of the acknowledged imprecision of the estimate. And while it is true
that the use of correct a priori information will improve efficiency, the
automatic deletion of a variable is an ad hoc rather than an a priori restric-
tion that the associated coefficlent is zero, which may or may not improve
matters and in any case should be inferior to ﬁn a priori inspired restriction,

It is useful here to write the model in matrix form as

nxl nxk-m k-mxl nym mxl nxl

If the estimates of BZ are constrained to equal b, , then
Y - Xpby = XB) + [e+ X, (B, - by)]

and the QLS constrained estimates will be
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61 = (xixl)'lxi(Y - X,b,)

with mean squared errors displayed ag the diggonal elements in the following

format

2 2 2
mse(E,) = ias’ B)) + var(B)) .

Thus

MSE(él) G‘(b2 - Bz)(bz - ﬁ:)'c + ci(xixl)'l

-1
= w! '
where G' XZXI(XIXI) .

In contrast, the unconstrained OLS estimates will have

[

i}

MSE(él) 0 + cre[(xixl)'1 + G'(Xé?lxz)'lcl

MSE(B,)) = 0 + ni[xé?lxz]"l

where P =1 - xl(xixl)'lxi .
Since ?i is idempotent, VAR(él) - VAR(él) is pogitive semi-definite

and consedquently has nonnegative diagonal elements. Thus, the imposition

of exact parameter constraints unambiguocusly reduces (or leaves unchanged)

the variance of the estimate of each coefficient., Notice though that this

variance reduction is completely independent of the gpecific values of b2

that are selected, In particular, deleting a variable from an equation does

not reduce the variances of the estimates any more (or less) than does the
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selection of any other value for the agsociated coefficient,

The estimated variances will however depend upon b2 since oi is
unknown. One could consgequently carry the usual two-step procedure to the
absurd cosmetic extreme of using the unconstrained estimates of BZ as the
constraint b2 , thereby recording a maximum reduction of Gi {through
an unwarranted degrees of freedom increase) and thus achieving the maximum
decrease in the reported variances of the parameter estimates,

The unreported problem with the two-step procedures is of course the
biasing of the estimates, which depends critically-but not unambiguously

on the selected values of b2 . Looking at the mean squared errors, we have
A » -]
use(B,) - MsE(B)) = G'(MSE(B,) - MSE(B,)]G

where

VY

MSE(éZ) - MSE(EE) = np[xéplxz]'l = (by = By)(b, - By)' .

The MSE's 1in the constrained case are minimized by exactly correct constraints
(62 = b2) and in this happy situation the constrained estimates dominate
the unconstrained estimates.
In the case of a single restriction,7 we have the further satisfying
)2

results that a decrease in (b2 - 62 reduces (or leaves unchanged) the

MSE(él) = (xixl)'1 + MSE(éZ)G'G

2
.1
2 2, 40 -1 2.,

MSE(B,) = a (X1X))T + MSE(B,)6'6

where MSE(éz) and MSE(éq) are scalars and G'G 1s positive semi-definirte,.
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MSE's of each of the remaining coefficients, and that the constrained esti-
mates are either unambiguously superior or inferior to the unconstrained
estimates, depending sclely upon whether or not (b2 - Ez}z is smaller than
the MSE of the unconstrained estimate of 82 . Notice that again b2 =0
has no special virtue, and will be thoroughly Iinferior to a more accurate
restriction.

With more than one restriction, we have the possibility that some

incorrect restrictions may offset others. Thus,

MsE(B)) - MSE(R)) = 6'[MsE(B,) - MSE(B,)]C

will be semi-definite if MSE(éz) - MSE(gz) is gsemi-definite. However,
the diagonal elements of this latter matrix may all be nonnegative or non-
positive without the matrix being semi-definite. It is comsequently possible
to have smaller mean squared errors for each of the elements of 52 and yet
have larger mean squared errors for each of the elements of Bl . In other
words, if more than 1 constraint is incorrect, then the effectiveness of
the constraints in reducing the mean gquared errors of the remaining esti-
mates depends upon the entire risk matrix, MSE(BZ) , and not solely upon
the diagonal elements. This is true both of comparisons between alternative
setg of constraints and of the choice between constrained and unconstrained
estimates.

The ambiguity is not likely to be reduced without the gpecification
of a loss function and information about how b2 is likely to differ from

82 .8 This would lead naturally to a Bayesian or quasi-Bayesian approach

8Bock, Yancey, and Judge investigate the characteristics of risk functions
over the parameter space for unconstrained, constrained, and preliminary
test esgtimators.
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(such as mixed estimates). Foregoing this, the decision to impose constraints
must be based upon a vague weighing of the inadequacy of the estimates and
one's confidence in the proposed constraints. This implies that mechanically
imposing ad hoc constraints has little to recommend it. Unless truly a priori
inspired, the benefits from routinely deleting variables are necessarily

accidental.
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APPENDIX
th
Let X be the 1 row of X
i nxk+1
1xk+1

kt1

N

Tr(Ik+1) = Tr[x'X(x'x)'ll = Tr[x(x'x)“lx']

X

. 1 "1 [ - [}
Tr P X) T[X] L.l xn]

N

X
n

n _1
Y,xi(x'x) xi .
i=1

Now

ASCI

i

1 A / T,
£y Ty Syt
nizilzTGVzct X (X'%) "x4]

47232 n

b)) xi(x'x)'lx;
i=1 _

4¢2<zlﬁti— MSE

1]

n

n-k-1



2
[2'ra/2csc\/ X(x'x)'lx']

4723?()( )y

SCI(X)

It

= 4T2MSE/(n-k-1)

since

-1 . -1 1 x(x'x) "
I=X'XE'R) " =(1 X )XX'X) " = : 1
nxl nxk X* x(X'X)
implies that
1
E1
'_l"]-""l.._]-l 1"1'-1_1-_ =1_
Xx'x) x' = ;{1 x(X'x) "1x' = [n 0 0...0] -

21
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